MASSACHUSETTS
- LABORATORY FOR INSTITOTE B
COMPUTER SCIENCE TECHNOLOGY

-

\

A Language Extension for Expressing
Constraints on Data Access

Computation Structures Group Memo 146-1
Revised June 1977

_ Anita K. Jones
{Department of Computer Scicnce, Carnegie-Mellon University)

Barbara H. Liskov

This research was sug{ported I::}f the Natioal Science Foundation under grants
DCR74-21892 and DCR74-04187.

ﬂ

J

345 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A LANGUAGE EXTENSION FOR EXPRESSING CONSTRAINTS ON DATA ACCESS

Anita K. Jones
Computer Science Department
Carnegie-Mellon University
Pittsburg, Pennsyivania

Barbara H. Liskov
Department of Electrical Engineering
and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

Controlled sharing of information is needed and desirable for many applications and is supported
in operating systems by access-control mechanisms. This paper shows how to extend programming
languages to provide controlled sharing. The extension permits expression of access constraints on
shared data. Access constraints can apply both te simple objects, and to objects that are
components of larger ob jects, such as bank account records in a bank’s data base. The constraints
are stated declaratively, and can be enforced by static checking similar to type checking. The
approach can be used to extend any strongly typed language, but is particularly suitable for
extending languages that support the notion of abstract data types.

Keywords and Phrases: programming languages, access control, data types, abstract data types,
type checking, capabilities

CR Categories: 420, 435

This research was supported by the National Science Foundation under grants DCR74-21892 and
DCR74-04187. This paper reports a substantial extension of work previously published by the
authors {7}; Section 2 of this paper describes the earlier work.

1. Introduoction

One important aspect of 2 programming language.is the way its scope rules control the
sﬁmng of data among Individual program units (prooedurﬁ. blocks, modules): two program units
can share a datum only if both can name it. Ordinarily, how&er. languages provide access to data
on an all-or-nothing basis. For e}xal*nple. if a module has access to i data structure, then every
component of the structure may | be read and modified. Yet experience in building large
applications and applia_tioni involving u_hsluve data has indicated that Finer control is desirable.
The ability to limit a2 module to read-only access o a datum provides only a part of the needed
control. For example, if some of the information in a data structure is sensitive, then the ability to
limit a module to reading only a subset of the components is desired.

In this paper we describe a programming language extension that permits controlled
sharing of data. We define a semantics and perﬁnemal syntax for this extension. Qur aﬁproach
borrows heavily from work in operating systems, where access-control mechanisms have long been
one-of the tools useful for realizing controlled sharing of data. In particular, our mecha:nism is
modeled after the capability protection mechanisms provided by some operating systems [9, 16}

In capability-based systems, all data are assumed to be contained in objects, such as
libraries, stacks, files or the central data base for an inventory control system or a hanking system.
For each object there exists a set of accesses, which are the only means for altering the ob ject or
extracting information from it. For somec objects, accesses are the familiar read, write, and,
possibly, execute access; for others, the accesses themseives are user-defined, tailored to the abstract
notions appropriate to a particular application. Controiled sharing of abjects is achieved by
limiting a2 program unit to a subset of the accesses for an object. For example, a programmer

defining a file system may chooss to distinguish between write access and append access. In

-3

contrast to a write access, an append access can be used to augment a file, but not to alter existing
content. Thus, a program granted append access, but not write access, will be unable to overwrite
existing data in a file. |

There is a similarity between the idea of an object and associated accesses and the
programming language concept of a data type. In strongly-typed languages, each type defines a set
of primitive operations that are the only direct means for manipuiating ob jects of that type. For
example, the various arithmetic operations are primitive for integers, while primitive operations for
arrays include operations to read and update array elements. The operations of a type correspond
closely (though net identically, as we shall show) to accesses, and acrass cantrol is a convenient way
to control the use of the operations.

Our technique for access control is based on an augmented concept of a data type, and
could be used to extend most (strongly-typed) programming languages. For example, if a language
containing data structures (like PASCAL [15) or ALGOL 68 [14]) were extended, then control over
reading and writing of each component of the structure would be possible. However, tHe class of
languages including SIMULA 67 [2) Cl;.U [i0), and Alphard 017] is particularly well suited to our
extension. Such languages permit the introduction of user-defined, abstract dara types, consisting
(just like the built-in types) of a set of primitive operations that provide the only direct means for
creating and manipulating objects of the type. By introducing a new type, a user can tailor a set of
accesses to ali application. We will show how to extend this class of languages; part of our
extension will lnvolve‘deﬁnlng rules governing new type definitions.

We will require that access-control restrictions be stated in a declarative fashion analogous
to type declarations for variables. In languages requiring type declarations for variables, a static
examination of the text of a program is sufficient to determine whether the program is

type-correct. Similarly, our addition enables static analysis to determine whether a program is

-4

Access-correct: A program 13 gccesscorrect if the accesses acwally used in it do not exceed those
stated in its declarations.

Thus, the access-control extension permits access-control restrictions to be stated explicitly
in programs, and enforced by the compller. The main benefit of the approach is enhanced
sof tware reliability: programs can be guaranteed to be well-béhaved with respect to the constraints
governing sharing of data. Access-control errors can be a.ught'early. and a programmer can be
confident that his program will nat fail du? 0 an access~control violation. In addition, the
access-control restrictions in a program cun:fey information about assumptions made by its
programmer; this information-cin be relied on by someone reading the program tﬁ obtain a better
understanding of its purpose. |

An additional benefit of the extension is that a programmer will be able to express fully
in the language how he intends to make use of the pratection facilities of an operating system. At
present, such access-control information {s expressed separately from the program in some sort of
Job-control language; this separation increases the diff iculty of writing programs for such sYSt’ems.
Also the Tanguage permits more precise specification of access requirements on a program unit by
program unit basis, not on a user- job or job-step basis.

In the next section, we define the semantics and syntax of the access-control mechanism,
and describe how access control is achieved for simple, unstructured data ob jects. Section 3 extends
the access-control mechanism to structured data ob Jects such as records and arrays. In Section 4 we
relate the mechanism to program construction and storage of long-lived objects. We conclude in

Section 5 with a discussion of what we have accomplished.

- 5 -
2. Access Control for Simple Objects

To accommodate access control, we will augment the notion of a data type by adding one
more component: In addition to ob jects and operations, a type also specifies a set of rights. A right
is 2 name that represents one of the legal accesszs to the objects of the type; often a right
corresponds to the use of one of the type's operations. The basic idea behind rights is: to legally
apply one of the type's aperations, a user must hold appropriate rights to the ob jects passed to that
operation as parameters.

An example is given in Figure | for the type AssocaziveMemery. This type includes an
operation MakeMem to create an empty AssoctativeMemory ob ject ﬁf a particuiar size, an operation
{nsert to add a name-value pair to an AssocictiveM emory, an operation CAgnge (o alter the value
associated with a given name, an operation GerVal to fetch the value associated with a given name,
and an operation Delete to remove a name-value pair. In order for Insert, Change, GetVal, or
Delete to be invoked, the invoker must present a right to apply the operation to the
7 erocia:warmry ob ject passed in as a parameter; in this example, the name of the required right
I$ the same as the name of the operation. The MakeMem operation returns all these rights for the
AssoctativeMemory object it creates. The AssoclativeMemory operations also use ob jects of type
- integer; for simplicity we have chosen to omit information about required rights for integer ob jects.

In general, we can expect some rights to correspond to the use of a single operation, sorme
to a group of operativhs {eg., a single right “arithmetic® might control the use of all integer
arithmetic operations), and some to a single parameter of an operation taking more than one ob jecz
of the type. Az an example of the latter case, consider the /il type discussed In the introduction,
and suppose a merge operation for ﬁles merged two files, / and g, by changing £ to contain the

result of the merge, and leaving g unaltered. It might be useful to require different rights for the

Figure 1. The AssociativeMemery typs,

Type AssociativeM emory
Rights: “Insert”, "Change”, "GetVal", "Delete”

Operations; -
MakeMem :
input: integer; - {desired AssoclativeMemory size) _
output: AssociativeMemory; “Insert”,"Change”,"Get Vai®, “Delete” rights are given
Ingert : ' :
input: AssociativeMemory; “Insert” right required.
Integer; ' ~ (the name)
integer; (the value)
effect (Insert modifies its AssociativeMemory parameter)
Change .
input: AssociativeMemory; "Change” right required .
integer; (the name)
integer; (the new value
effect (Change modifies its AssociativeMemory parameter)
GetVal :
Input: AssociativeMemoary; “GetVal" right required
integer; (the name)
output: integer; (the value)
Deiete
input: AssoclativeMemory; "Delete” right required
integer; (the name) !

‘effect: (Delete modifies its AssociativeMemory parameter)

two file parameters, eg., both the “merge” and "'mergeto" rights are needed for £, but only the

“merge" right for g.
2.1 Notation and Rules

Qur approach to access control is based on a semantic model in which obfecrs are shared
among warigbles. Each object has a type, which determines the legal accesses to the object. A
declaration must be given for each variable stating the type of object that variable may refer to,

and the rights that are available for that object when it is used via the variable. These two pieces

-9-

of information are captured in the notion of a qualified type. A qualified type Q is written
T{rl:...,rn]

where T is the name of some type, and {ry,..,7,,} is a subset of the rights of T. We refer to the two

parts of a qualified type as the base type and the rights; eg., base(Q) « T and rights{Q) = {rf,...7,}.

The following are some of the qualified types derived from the base type AssociatizeMemory
AssociativeMemory [GetVal}

AssociativeMemory [Insert, Change}
AssaciativeMemory {Insert, Change, GetVal, Delete}

The final example specifies all the AssociatizeMemory rights; a special notation
T{all}

may be used instead of listing all the rights.

Qualified types are used in variable declarations and in formal parameter specifications in

procedure headings. An example of a variable declaration is:

v: AssociativeMemory {Insert, Change}

The meaning of this declaration is: # is a variable that an be used ta refer to AssociativeM emory
ob jects, but only the “Insert” and "Change” rights may be exercised in con junction with 2.

We view a varlable as a pair |

{ob ject-id, qualified type}

The object-id is a name that is interpreted by the underlying éddmsing mechanism to select a

unique object. When a varlable is created, its qualified type is defined once and for all and can

‘never be altered. However, the object named by a variabie (via the object-id) can change by

application of the sinding operation. Binding causes a variable to refer to an object by storing

that ob ject’s id in the variable. Sharing of objects takes place when two variables contain the same
object-id. (Our variables are like typed pointer variables, and binding Is pointer assignment.)

A varlable contains a capability in the operating system sense [3, 4, 81 The capability
provides the basis for restricting the kinds of manipulation that can be performed on the ob ject
specified by the object-id. Intuitively, the restrictions on how an ob ject can be used are expressed
aiong the path to the object (the path through the vmable). Thus, using one path rather than
another to name an ob ject may change the way the object can be manipulated. For example,
suppose |

a: AssociativeMemory {GetVal, Insert}

b: AssociativeMemary {GetVal]
both name the same ob ject. Using b it is impossible to modify this ob ject, since only the GetVal
operation can be used; using a, the ob ject may be modified by application of the /nsert operation.

The effect of binding is creation of a new access path for the object, and we mus:' ensure
that"no new access rights are obtained from this new path. For example, suppose that x and y are
variables, and that x is to be bound to the ob jet currently bound to 3. This binding should be
allowed only if the quaiified types of x and y both arise from the same base type, and if the rights
obtainable by referring to the object via variable ¥ do not exceed the rights obtainable by
referring to the object via 3.

We can formalize the binding rule as follows. First, we define what it means for one
qualified type to be greater than or equal to another. If QJ and Q2 are qualified types, then Q! is

greater than or equal to Q2, written

Ql > Q2

i base(Q1) = base(Q2) and rights(Ql) 5 rights{Q2). Now the rule of binding can be defined:

y+&e

where 2 i3 a variable and ¢ is an expression and

Ty = qualified type of variable v
Ty = qualified type of expression e

1s legal provided that
Te2Ty

Thus a binding is legal only if the new access path provides at most a subset of the rights
obtainable via the original access path. Naote that this rule ensures that a variable will always refer
to an object whose typ§ is the base type of the qualified type of the variable.

The form of an expression determines its qualified type. An expression is either a
variable or a procedure invocation.! In the former case, T, 15 the qualified type of this variable,

and we have now defined the rule of binding. For example, consider variables a and &
]

a: AssociativeMemory {CetVal, Insert}

b: AssoclativeMemory {GetVal}
b* a is legal, but a ¢ & is not. This is illustrated in Figure 2. In Figure 2a, an initial
configuration is shown in which ¢ refers to an AssociativeMemory object a, and b refers to an
AssociativeM emory ob ject 8. Figure 2b shows the muit of b '- ¢. Both band 2 now refer toa. A
new access path {from b to a) has been created as a resuk of this binding, but no new rights to «
are obtained by it; in fact, the new access path via b has fewer rights to & than the old access path.
Figure 2¢ illustrates what would be the result of a + 4. If this binding were allowed, the new

access path from ¢ to § would allow more rights than the old one; therefore the binding is not

L. We are treating all built-in operations as procedures, irrespective of how they are implemented.

-10-

Figure 2 Binding.

A |AssociativeMemoary

GetVal, Insert}) "

@
b |AssociativeMemary 8
o

[GetVal} _%

Figure 2a. The initial state,

a [AssociativeMemory
GetVal, Insert}

b lfsodmveh{emory 8

{CetVal} _ O

Figure 2b. Result of b + a.

a |AssociativeMemory [
GetVal, Insert} O

b | AssociativeMemory a
GetVai} B

Figure 2c. Result of a + b (disaliowed).

permitted.

When an expression is a procedure invocation, the qualified type of the expression is
determined by the procedure definition. A procedure definition has the form
procedure <procnames (<formals specifications) raturns <result specification>
<body>
ond <procnames
Where <formals specification> specifies the name and quallfied type for each formal parameter,

and <result specification> specifies the qualified type returned by the procedure. The qualified

type of the invocation expression is the type specified in the <resuit specification>.

To understand whether a procedure invocation is legal, we must examine the semantics of
parameter passing. Our notion of parameter passing is defined in terms of binding. Each formal
parameter is a local variable of the procedure; this variable is created at invacation, and the actual
parameter is bound to it. The procedure Invocation is legal if the bindings of actual to formal
parameters are legal.

For example, suppose a procedure P has type requirements
procedure P (x: Ti{f.g)) returns T2{k}
and declarations

a: TIif.g.h}

b: T2{k}
occur in the invoker of P. Then the statement b+ P(a) is legal because the invacation P(a) is
_ lggal (x "-.a is legal), and the qualified type of the invocation expression is T2{k] and therefore the
binding to 4 is legal. However, b « P(c), where c: Ti{f,A}, is not legal because ¥ « ¢ is not leg'ai.2

The question of whether a procedure definition is access-correct can be answered
independently of any invocation of that procedure. A procedure definition 18 access-correct

provided that all bindings within it are legal, and for every return statement:
return <expr>

the qualified type of <expr> is greater than or equal to the qualified type in the procedure

«<result specifications.

2. Our notation can easily be extended to permit the invoker to specify that a subset of rights is
available, eg., P(a(f.g)). '

2.2 Remarks

Cur semantics was chosen to model systems in which cunrrolled slm-lng of objects is
fundamental: the shuing of actual ob jects (rather than just copies of the values of objects) leads
both to interesting behavior (eg. many programs working with the same data base), and the need
to exercise control aver exactly how the ob jects should be shared. Sharing exists whenever two or
maore variables contain the same ob ject-id; the binding operation causes sharmg by storing an
ob ject-id in a variable. Note that sharing is significant only if operations exist to change the value
inside the object. For example, sharing is significant for AssociativeMemory objects, since
AssociativeM emary operations Insert, Change and Delete modify the values inside of an
A.mcmtchmry object. On the other hand, sharing of integers causes no problems if none of

the integer operations modify the values in integer ob jects.

In conventional ALGOL-like languages, variables hold the values themseives rather than
pointers to values, and assignment copies a new value into z variable. To Support this view, we
must define an assignment rule analogous to our binding rule. Although more elaborate schemes

can be invented, a simple and probably sufficient ruls is:
vme

where T, and T, are the types of » and ¢, respectively, is legal provided
Ty 2T,

and furthermore

read ¢ rights (T,)
store & rights (T\)

where the “read” right permits the value of a variable t0 be read, and the “store” right permits a

- 18-

new value to be written in a variable. Almost all types would pravide these rights.

The binding rule described above only permits a decrease in the rights availﬁble to an
object. An -object is originally obtained by invoking a creation operation of its type.> For both
built-in and user-defined data types, the creation operations provide objects with full rights
whenever they are invoked, as is illustrated by the MakeMem operation in the AssociativeMemory
example shown in Figure . Thus the creator of an object obtains ali rights to it. "As the object is
passed from one Access-correct procedure to another, certain rights may be removed, but rights are
never gained. This is true because binding is the only method provided for passing objects
between procedures,

Sometimes, however, it is necessary for the called procedure to obtain more rights to the
. object than the caller had. When this occurs it is called amplification [5] In our model, we permit
amplification to occur at only one point: at entry to a procedure implementing a primitive
operation of a type. Implementation of a new type would be done by means of a linguistic
construct, s-uch as the SIMULA class, CLU cluster, or Alphard form, that provides imple:;-aentations
for the primitive operations of the type in terms of a representation selected for the ob jects.
OQutside of the type definition, (direct) access to the representation is not possible, but inside each
operation such access is needed and must be permitied. Thus, when it is invoked, a primitive
operation obtains additional rights to each object of Its type passed in as a parameter because it
obtalns rights associated with the ob ject’s representation rype.'*

Even within the operations of a type, access-control restrictions cannot be violated;

amplification occurs on parameter ob jects of the type, but thereafter all bindings must obey the

3. Objects may also be obtained by asking the file system for them. This case is discussed in
Section 4.
4. A more thorough treatment of amplification is given in 7]

-14-

binding rule However, tince extra rights are obtained at entry to a primitive dpm:ation. it is
possible that the operation may make some of these rights availahle to its caller; indeed the
operation may have been provided precisely for this purpose. Thus, amplification makes it
possible for an access-correct procedure to obtain additional rights to an ob ject.

Since it is the type definition that determines the behavior of the type, a user must study
the type definition to determine exactly what sharing an ob ject of that type means Restricting
amplification to type definitions ensures that only the type definition must be studied. A less
stringent restriction on amplification, for example, to permit procedures outside the type definition
to obtin additional rights, would mean that procedures outside the type definition must be
considersd to determine the behavior of ob jects. This iIs counter to the philosophy guiding the
design of the class of languages we are considering. Our restriction on ampliﬂcaﬁnn matches the

restriction in CLU and Alphard on access to the representations of user-defined ob jects.

3. Bharing Struotured Objects

The access-controi rules described in the previous section provide control over the sharing
of ob jects that are passed directly from one procedure to another. However, they are inadequate 1o
control sharing of ob jects passed indirectly — through the medium of another ob ject. For example,
Suppose a number of procedures share a data base of bank account records. Our rules can be used
to control the sharing of the data base as a whole, but there js no way to aiso control sharing of the
individual bank account records stored in the data base,

To discuss this problem further, we must introduce a notation that permits us to talk about

both the structure® as a whole {the data base) and the elements or components of the structure (the

5. We will refer to types providing storage for component objects as “data structurss” or
“structures.”

bank account records). The data type to be described is "data base of bank accounts,* which is
similar to data types already existing in programming languages such as "array of integers.” The

notation we will use is the following:
<data structure type name>{<element type names>]

Examples are

DataBase[Bank Account]
arraylinteger]
Both the data structure and the element types can be qualified. To specify qualified structured

types we will use the notation

TIQpQp T}
where T is the name of a structure type (for instance array, record or DataBase) for which rights
TpenTy are defined, and Qy...Q, are the qualified types of the n kinds of elements in the
~structure. In the Following discussion we will limit ourselves to structures containing a single kind
of element; this simplifies the discussion without loss of genemllty.s
Suppose that we wish to write a program, AccountSort, to sort an array of bank accounts
by account number. The program is not permitted to modify the bank accounts or even to
determine the amount of money on deposit In the accounts. Assume the rights te bank accounts
include Deposiz, Withdraw, and AccountNo, and that all these rights .permit the use of operations of

the same name. Then the access control needs of procedure AccountSors to the array can be

6. Limiting what appears between the square brackets to just types is another simplification. It is
€asy to permit other compile-time-known quantities to-appear between the brackets (for example,
the selector names for components of recards); an extension to quantities not known until execution
time (for example, array bounds or limited ranges of element values) can also be made, but at the
expense of run-time checking. '

expressed:

procedure AccountSort (a: arrayl Bank Account{AccountNo} J{all})

Anocther legitimate array type, one that might be used by a caller of AccountSort, is
b: arrayl Bank Account{AccountNo, Withdraw) Jall}

We want the invocation AccountSort(b) o be legal Intuitively, what we want is a binding rule that
Permits a structured ob ject to be bound to a variable provided that the rights to the structure as a
whole, and to the elements of the structure, do not increase.. However, a straightforward extensian
of our rule is inadequate, as will be shown below, |

Just as with simple data ob jects, a data structure such as array or DataBase may be
characterized by a group of operations, including element replacement operations, which store new
elemenis into the structure, and retrieval operations, which retrieve elements. For example,
operations of interest for arrays are: arraycreate{n), which creates a new array with lower bound |
and size_ n, size(g), which returns the size of array a, update(a, i, x), which binds ob ject x jnto the
Iih ;Ieme.nt of array a, and feteh(a, i), which returns the ob ject bound to the M element of array a.
Note that update is a replacement operation and fetch is a retrieval operation,

A data structure type name stands for a set of types, containing a different type for each
possible combination of element types of the structure. Thus, “array” names the set of types
containing among other elements

arraylinteger]

arraylstring)

The types in this set of types differ from one another only in the kinds of elements the arrays

contain. Each type (in the set) is associated with a group of array operatlons that are specialized to

-17-

work for the particular element type by an appropriate selection of types for their input and output
parameters. For exampie, the parameter and return types of the operations for the type
arraylstringlare (ignoring qualifications on integer and string elements)

procedure arraycreate (size: integer) returns arraylsiringl{all}

procedurs size (a: array{string]{size)) returns integer

procedure fetch (a: array(stringl{fetch}, 1: integer) returns string

procedure update {a: arraystringl{update}, i: integer, s: string)

Qualifications on tﬁe element type of a data structure type indicate the rights to elements
that are potentially available throughout the lifetime of each object of the data structure type. A
creation operation provides .a new data structure with the stated set of rights available for each
element. Element retrieval operations provide at most that many rights, while the user of
replacement operations must provide at least that many rights to a new element. When the
structure s passed 10 a procedure with fewer rights to elements, then a retrieval operation will
provide only the smaller set of rights. However, it would be incorrect to invoke a re?iacement
“operation with the smaller set of rights because other programs that share the structure make use
af the larger set of rights to elements. |

For example, consider procedures P and Q:

procedure P (a: array T{f} J{ail}, x: T(f)}%

u;;d.a.te (a, 1, x%
and P;

procedurs Q (b: arrayl T{f, g} Jall}, y: T{f, h});
z Tigh
P(b, yX
2 ¢ fetch (b, 1)

end Q;

-18-

Both of these procedures appear to be m—mrrect. assuming that Q's invocation of P is
permitted. The inmcil:im of P resulis in the sinsation shown in Figure Sa. Figure %b shows the
situation after P has returned and the binding resukting from z += fetch (5, 1) is made. Note that
access right g has been illegally obtained for object .

In a capability-based system, this set of actions would eventuaily result in a run-time
access—control error, most likely when @ attempted to use right g for object §. Note, however, that
the source of the error is in P's invocation of the array update operation. In the next section, we
define an extended binding rule that permits cermain invocations of P but guarantees that

access-control errors, such as that described above, cannot arise.

Figure 3. lllustration of Simple Extension.

b N |
y T~

z

a “ : s
X .

3a. The situation just before P returns.

z 8

3b. The situation after the binding z + fetch (b,).

3.1 Bxtended Rule of Binding

Our_extended rule of binding permits a procedure to state precisely what limited rights it
requires to all objects, including data structures and their component objects. Replacement
operations are still allowed, but only if the bindings performed result in a structure that is
consistent with the access-control assumptions made in all procedures that share the structure.

When a procedure is passed a data structure with restricted rights to the elements,
information is lost about rights that the caller, and other procedures sharing the ob ject, expect to
have for the elements. All that is known is that the structure provides at least those rights to
elements required by the called procedure. Consider the example of a procedure G, which accepts
43 a parameter an array of elements of type T with £and g rights, with full rights to use the array.
A call to G will be legal only if it is passed an cb ject of type

arraylR}{all}
where base(R) = T and rights(R) 2 {f. g}. Thus R > T{f. g}. We have just expressed exactly what

‘is imo;vn inside G about the element type of the array. 'I'he. notation we actually use is
procedure G (a: array{ R Jall})
where R > Tff, g}
We will refer to types like R as Mtypes; the ?* emphasizes that the rights associated with these types
are not comnpletely known. |

A formal parameter declaration containing a 7" before the type identifier is called the

defining occurrence of that Ptype. Each Ptype has a single defining occurrence. The ?type can be

used in other declarations, but the " does not appear; for example, in

-920-

procedure H (a: array[7R J{all}, b: array(7S Jall}, ¢: §) returns R
where R > T{f, g}, $ > T{f, g}
the declaration of & is the defining occurrence of 5, and this Rtype is also used. in the declaration of
. For simplicity, we limit defining occurrences of #types to formal parameter specifications in
procedure headings. Within a procedure body, Ptypes may be used to declare new variables in the
usual way. For example, inside H,

¢ array(s)

w: R
are legal declarations.

The association of actual type values with types is made at procedure invocation. Legality
of a procedure invocation having Mtypes for some of its formal parameter types is checked as
follows. Each Ptype is matched with the type of the actual parameter passed in the position of the
defining occurrence of the type. The match succeeds only if the type of the actual satisfies the

'
mnﬁtmints on the type stated in the whera clause. If the match succeeds, it defines the unique
qualified type associated with the type. Next, the declarations far the formals, and for the return
type, are rewritten, replacing the ypes with the matched type values. Finally, the actuals are
bound to the formals; if the bindings are legal (according to the rewritten dectarations and the new
binding rule discussed below), the invocation is legal

For example, suppose the f ollowing declarations appear in the invoker of & (H is declared
above):

x: array[T{f, g, h} I{all}

y: array[T{f, g} Jall}

u: T{f, g, h}
v: T{f, g}

-2]-

The statement & + H(x, 9, v) causes R to be associated with T{f, £, A}, and § to be associated with

T{f. g}. Then the formal declarations are rewritten:

-

a: arrayl Tff, g, h} Nall}

b: array[T§f, g} Nail}

c: Tff. g}
and the return type is T{f, g, A}. This statement is legal since all the bindings of actuals to formals
are legal, as is the binding of the returned ab ject to &

To define the extended binding rule, we must consider what assumptions can be made
inside a procedure using ?types. Inside such a pro:edufe, the qualified type associated with a rtype
is not known, but a set of possible candidate for the qualified type is known. This set consists of

all qualified types satisfying the constraints stated in the where clause. For example, inside of H

ftypes R and § are both known 1o be in the set

{T{f, g}, TIf, g, hl} '

The binding rule is defined so that no extra rights can be obtained no matter which member of
the set is assoclated with the 7type in the current invocation. Furthermore, no relationship can be
assumed batween two types with different names. In particular, even if two types are drawn from
the same set, it is not posiiblé to infer that one is less than or equal to the other. This can be
illustrated by invocations of #: The invocation H(x, 3, v) causes R » § while the invocation H{y,
x,. u) causes § > R,

Now we are prepared to extend our rule of binding to cover the two additional cases

introduced by data structures and ?types. We consider the binding

vy =g

where T, and T, are the types of 2 and ¢, respectively; again, we wish this binding to be legal if
we are certal; that T“ 2 T, In the case of data structures, the base type of qualified type
TQMNr;, . 75} 1s T(Q] {where Q is the quaiified element type), and we apply the binding rule ﬁf
Section 2 directly: T, and T, must be idenitical up to the rights on the. structure as a whole. For
example, y + x is legal if

x: array[T{f, g} Hail}
y: arrayl Tif. g} Jfewch}

x: arrayl $ J{all}

y: array[§ J}{fetch)
where § is 2 Mype. Essentially this rule ensures that a reduction in rights to an element type can be
accomplished only by introducing a new type. '

If T, and T, are unstructured but invelve Xypes, a binding is legal only if it is legal no
matter which member of the set is substituted for the ype. For example, if R is a type known to
be > T{f, g} and »: R, then x + y s legal only if

xR
or if the type of x is not a Rype and T{f, g} > the type of x (eg., x: T{f]). On the other hand,
y & x is legal only if

x: R
or

x: T{all}

3.2 Remarks

The_usefulness of the extended rule is demonstrated in Figure 4, which shows the
implementation of the AccountSors procedure, discussed earlier, to sort an array of bank accounts by

account number. A legal invocation of this procedure would be, for example, AccountSore(b), where
b: array(BankAccount{all} Xall)

A sorting example is of interest because sharing of the object being sorted is necessary, and because
it must be possible to read an element from the ob ject being sorted, and later to write that element
back into the object. Observe how the use of the dtype R enables this activity (the interchange of

the ith and fh elements of the array).

Figura 4. The AccountSort procedure.

procedure AccountSort (a: array(?R)all})
where R > BankAccount{AccountNo};

“ comment AccountSort sorts an array[Bank Account] by account number,
using a bubble sort;

Index: integer{all} « size (a);

repeat
bound: integer{all} + index;
index + |;
for | Integer{all} + 1 step 1 to bound -1 do
it AccountNo (fetch (&,] + 1)) < AccountNo (fetch {a,)
then begin
temp: R + fech (a, j+ 1)
update {a, j + I, fetch (z, %
update (a, j temp);
index « j
: end
until index =1

end AccountSort;

-24-

The type riou_uon requires only a slight extension to express information about general
type parameters. So far, we have always related a type to some identified base type; for type

parameters, what is needed is a notation that avoids naming the base type. A possible notation is

T z base{f g.h}

to indicate that any base type providing rights £, g, and A may be matched to the type T. For
example, using this notation we could write a general sort procedure

procedure Sort (a: array[7R Jall})

where R > basaflessthan, equai)

which would sort ﬁn array of any element type providing rights lessthen and equal. Note that we
are assuming that lessthan implies the presence of the "<” operation and that equal implies the-
presence of the "= operation, and that the twa operations together define a total ordering on the
clement type; similar assumptions must be made whenever general type parameters are permitted,

General type parameters are useful for implementing (user-defined) data structures. The
replacement operations for data structures store element ob jects for later retrieval; on retrieval the
rights available when the objects were stored are needed by the user. The ?tfpes can be used o
provide the user with rights to element ob jects without also providing those rights to the operations
of the structure type. Therefore, a programmer can use a data structure as a repository for
sensitive objects, without having to give the procadures implementing the operations of that
structure access to the component ob jects.

Access-carrect programs writien in terms of Ptypes cannot lead to illegal acquisition of
rights. This can be argued as follows. Binding that involves ?types is permitted only if it would
be legal (according to the basic binding rule of Section 2) for any qualified type in the set

determined by the constraints on the ype. Therefore it must be legal whenever the actual type is

- 98-
a member of that set. '
4. Writing Long-Lived Programs

To simplify the presentation of our accesscontrol mechanism, we focussed on the
specification and the access-correctness of individual programs units. However, real programs of
any size are composed of multiple program units. In the languages under discussion, two kinds of
program units are of interest: procedures and type definitions. In this section we discuss the
access-control aspects of the construction and use of long-lived and large programs. The issues
involved include storing program units for use in more than one program, combining (separately

~ compiled) program units to construct a program, and the storage and reacquisition of user-defined
ob jects across mukiple invoctions of a program. Thus we are led to consider the interface

between access control as provided in our language extension and in operating systems.

- 4.1 Sharing Long-Lived Objects

In systems where users share ob jects, there is usually some storage facility, which we will
call a library, to provide for long-term storage and later reacquisition of data objects, including
both programs and program units, as well as the data objects pertinent to various applications.

The library must:

L. permit users to associate a symbollc name with an ob ject.
2. retain the "name, ob ject” pairs for retrieval
3. only permit retrieval, deletion, or replacement of stored objects by

authorized users or their programs.

We will discuss only the third feature of the library, for it is here that the language and operating

=96 -

system acceas-control mechanises Interface. To be compatible with the access-control facility in the
language, it is necessary for the library to retain information about the rights available to a stored
ob ject, as well as any consiraints on which users can obrain access to It. In the following discussion,
we wiil assume the existence of a capability-based operating system, since this is perhaps the most
hospitable environment in which to build such a library.

When a request is made to the library 1o obtain access to a long-lived object, the library
must perform authentication of the requestor before granting access. Here the library must rely on
the operating system. We will skeich only' a .slngle alternative design for achieving this
authentication. We assume that with each ob ject the library maintains an authorization list [13).
Each entry in the list gives the name of a user and a capability for the object. The capability
specifies the base type of the object, and the rights that the named user has to the object. (Recall
that the qualified type of a variable and the operating system capability are similar.)

When some program (an behalf of a user) requests access 1o an object, it specifies the
symbolic name of the object If the symbolic name is known, the library invokes the o;;eratin_g
System requesting identification of the user on whose behalf the request is made. The library then
returns the capability associated with that user (if any) in the authorization list, effectively granting
the user’s program the ability to access the ob ject. {For simplicity, we have described authentication
In terms of users. More general designs, if supported by the operating system, would allow
prdgrams or user, program) pairs to have identities for access-control purposes.)

Linguistic extensions are needed to program the iibrary and the programs that interface
with it. Since users can define new types, these programs must deal with ob ject types that were not
defined when the programs were written. Enumeration of the types of all objects that might be
presented as parameters to an invocation of a library operation, for example, is impossible.

Therefore, the language must then include syntax and semantics to permit parameter ob jects of any

- emmmge

-97.

type. This can be accomplished by providing a type any. A variable of type ary can be bound to
an object of any type; such a binding, for example 2 ¢ ¢, causes information about the qualified
type T, of thie right hand side to be retained in the type any variable. Later, information about
this qualified type an be recovered by coercion: an expression of type any can be coerced to some
stated qualified type provided this qualified type is less than or equal to the originai qualified type.
The combination of type any and coercion permits programs to save objects in the library, and

then later to retrieve and vmanipulate them.

4.2 Program Construotion

To construct a program out of multiple program units, we require a policy for controlling
when a program unit i3 made available for use. One possible policy is to assume, as is done in
languages like PASCAL or ALGOL 80, that an entire program text, including the texts of all

Program units, is compiled at one time. Then the scope rules of the language determine where a

type or procediire is known and usable. '

A more promising alternative for long-lived programs is a policy permitting program units
to be separately compiled and stored in a program library. If this approach is followed, then the
issue of program unit availability becomes a subproblem of the general problem discussed above of
retrieving objects from the library: A user wishing to bind two program units together must have
the authorization to retrieve "execute” capabilities for both units from the library.

If program units are to be compiled separately, then a method is required for ensuring
that the interface requirements of a program unit are satisfied by every invocation of that unit.
The accesscontrol mechanism requires only a silght extension of a method that provides type
checking for independently compiled program units (see {10] for a method that does this checking

at compile time). In particular, the method must guarantee that every use of a program unit

-28 -

provides actual parameters of a qualified type greater than or equal to the quaiified type requlredr
for the formal parameters.

Another issue in program construction involves the question of what the availability of a
type definition means. Recall that a type definition defines a set of operations; the question we are
addressing is whether availability of the type definition implies availabllity of ali the operations or
a subset of the operations. We have made the simple assumption that if a type definition can be
used at ail, then any operations defined in the type definition can be used. (Whether invocation of
such an openﬁom fails due to insufficient or incorrect rights for actual parameter objects is a
different que.ition.) Note that alternative policies are feasible and may be desirable. For example,
a language supporting separate nﬁnpmm of program units could require that the use of each

operation be separately authorited. This is similar o the lpprw:ll used in the Hydra operating

system (6), and in the programming language Gypsy (L

5. Digocussion

In the preceding sections, we have proposed the semantics and syntax of a programming
language extension to permit controlled sharing of data objects. In Section 2 we introduced
nﬁtatlon and rules sufficient for controlling the sharing of simple, unstructured objects. In Section
3, we extended our notation and rulss to permit controlled sharing of both data structures and the
elements contained within them; we then showed how a slight further extension gave us the ability
to have general type parameters. [n Section 4, we discussed the interaction of the access-control
facility with the construction and use of long-lived programs. In the course of this discussion, we
identified the need for a non-enumerated, discriminated union mechanism (type any and the
coercion mechanism), if programs such as the library are to be programmed within the extension.

The goal of swtically performing the maximum amount of access-control checking

-99-

Influenced the definition of our binding rule. If more run-time checking were deemed desirable,
the rule could be altered so that currently disallowed bindings would be permitted. We believe,
however, that the effect of program execution should be clear when only the static program text Is
considered, so that relaxing the restrictions of the extended binding rule is inappropriate.
Furthermore, with the addition of type any, we believe the extension is powerful enough to be
useful in practical program construction.

Several areas associated with the extensions are worth further investigation. One topic is
to extend our mechani.sm to express additional access constraints; for example, constraints based on
the contents of the objects may be of interest. Another topic is to study the implementation of our
language extension to determine the set of programs and the set of properties on which
access-correctness depends. For example, it might be possible to structure a compiler in such a way
that access-correctness depends on only a subset of the modules. This work is similar to ongoing
work in operating system security 11,12}, and can be expected to enhance understanding of

_program specification and verification. Furthermore, only after such wark has been donk can the
relationship between our notion of access-correctness, and the acquisition and use of accesses in
programs, be fully understood.

In the introduction, we argued that the access-control extension was worthwhile because it
would enhance program understandability and verifiability. Certainly the extension permits a kind
of program propmy. access-correctnesy, to be defined and statically checked. To argue that the
extension is truly an aid to the production of correct software, however, it is necessary to show that
the constraints that can be expressed are of interest in a large class of programs, and are important
enough o compensate for the lingulstic complexity arising from the incorporation of the
mechanism. The extension is clearly benefidial for programs that are written to run on operating

systems providing access-control mechanisms. We believe that the extension is beneficial in a more

-90 -

general environment as well, and that the presence of the extension will lead to a style of
programming in which careful attention to actess-control improves program structure, Only by

practical experi-ence in using the extension can this claim be evaluated.

ACKNOWLEDGEMENTS

We would like to express our appreciation to the referees and to our colleagues,

particularly those working on CLU and Alphard, whose criticism and abservations have helped us

prepare this paper.

-8 -

REFERENCES

(2]

&)

(4]
(sl

[6]

(8]

9]

(io]

(]

a21

3]

(4]
sl

Ambler, A. L, et al. GYPSY: A language for specification and Implementation of veriftable
programs. Proc. of en ACM Conference on Language Design for Raliable Software,
SIGPLAN Notices 12, 8 (March 1977), 1-10. -

Dahl, O. J. and C. A. R. Hoare. Hierarchical program structures. Seructured Programming
(Dahl, Dijkstra, and Hoare, Eds.), Academic Press 1972,

Dennis, J. B, and E. C. Van Horn. Programming for multiprogrammed computations.
Comm, of the ACM 9, 3 (1966), 143-155.

Fabry, R. Capability based addressing. Comm. of the ACM 17,7 (July 1974) 403-412.

Jones, A K. Protection in Programmed Systems. Ph.D Thesls, Carnegie-Mellon University,
Department of Computer Science, 1973,

- Jones, A K. and W. A, Wulf. Toward the design of a secure system. Software Practice and

Experience 5 (1975), 321-336.

Jones, A K, and B. H. Liskov. A language extension for contralling access to shared dara.
[EEE Trans. on Software Engineering SE-2, 4 (December 1976), 277-285.

Lampson, B. W. Protection. Proc. of the Fifth Annual Princeton Conference on Information
Sciences and Systems, Princeton University, 1971, 437-143.

Lampmn, B. W. and H. E. Sturgis. Reflections on an operating system design. Comm. of the
ACM 19, 5 (May 1978), 251-190. :

Liskov, B. H., A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in CLU.
To appear in Comm. of the ACM.

Neumann, P. G., R. S. Fabry, K. N. Levitt, L. Robinson and J. H. Wensley. On the design
of a provably secure operating system. International Workshop on Protection in Operating
Systems, IRIA, Paris, August 1974, 16I-175,

Popek, G.], and D. A Farber. A model for verification of security In operating systems.
To appear in Comm. of the ACM.

Saltzer,], and M. Schroeder. Protection of information in computer systems. Proc. of the
{EEE 63, 9 (September (975), 1278-1308.

Tanenbaum, A. 5. A tutorial on ALGOL 68. Compusing Surveys &, 2 {June 1976), 155-190.

Wirth, N. The programming language PASCAL. Acta Informatica 1, 1971, 335-363.

-2 -

161 Wulf, W. A, E. Cohen, W. Corwin, A. K. Jones, R. Levin, C. Pierson and R. Pollack.
- HYDRA: The kemnel of a multipracessor operating system. Comm. of the ACM 17, 6 (1974),
337-348.

0N Wulf, W. A, R. L. London and M. Shaw. An introduction to the construction and
verification of Alphard programs. !EEE Trans. on Software Engineering SE-2, 4 (1976),
258-265.

