. MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE I TECHNOLOGY

Consistent Semantics for a Data Flow Language

Computation Structures Group Memo 172-1
June 1980

dJ. Dean Brock

‘This paper appeared in the Proceedings of the Ninth International Symposium
on Mathematical Foundations of Computer Science, Rydzyna, Poland, Scptember 1980.

This rescarch was supported by the National Science Foundation under contract
7915255 and the Department of Encrgy under contract DE-AC02-79ER 10473,

- J

45 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Consistent Semantics for a Data Flow Language*
g J. Dean Brock .

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

1. Introduction

Recent attempts to design programming languages for specifying concurrent computation, and,
consequently, recent attempts to semantically charactetize concurrent computation, have been "hardwarc-driven,”
Programming languages have made the trapsition- from modeling a singfe serial von Neumann process and its
memory; to modeling several processes sharing a memory; to modeling several communicating processes, cach with its
own memory. Concurrent programming coacepts, such as Hoare's (91 comumunicating sequential processes and
Brinch Hansen's [4] distributed processes, may be forgiven their semantic cumplexity, since they introduce abstraction
to the very important application arca of real-time systems presently dominated by ad hoc machine language
programming, and since most real-time systems are inherently non-detenninate and time-dependent and therefore
beyond straightforward semantic description. However, there are many semantically "simple™ application areas, such
as numerical simulation, in which any performance bencfits that could be gained using concurrency are overwhelmed
by the programming cost of partitioniiig tasks among several communicating processes. This partitioning task would
be immense on envisioned computer architectures exploiting the advantages of VLSI tcchnology by incorporating
thousands of very small processing clemnents. Consequently, it i imperative that models of concurrent computation
other than variations of the von Neumann model be mvestigated. The data flow modet of computation [6] is one such

model, ’

A data flow program may be translated into a data flow graph in which the grain of concurrency appears at
the level of clementary program operations instcad of procedures comsisting of several program statements,
Furthermore, data flow programming languages arc applicative languages, and, consequently, share with applicative

languages clegance of semantic characterization and case of program verification.

In this paper we will examine the data flow modet of computation and define ADFL, an Applicative Data
Flow Language. Additionally, the denotational and operational semantics of ADFL will be given and shown be
cons.tent. Scoit’s [1] fixpoint theory will be used to specify the denotational semantics. The opcrational semantics
are given by a two step process. One step corresponds to the translation of programs into data flow graphs, while the
other corresponds to the cxecution of the resulting sraphs. The result of graph exccution is derived using Kahn's (10]
fixpoint theory of communicating processes.

The denotational and operational semantics of ADFL. are not cquivalent. The denotational semantics specify

that expression cvaluation: must terminate to yield results and that, if expression evaluation termtinates, alt

*This research was supported by the National Science Foundation under contract T915255-MCS and the Depariment
of Energy under contruct DI-ACH2-791:R 10472,

subcxprcsmun evaluations terminate. However, in data flow, and many other models of concurrent computation, a
compumncn may producc results even if some internal computations do not terminate. The characterization of such
computations contributes much to the complexity of the operational semantics of ADFL. Conscqucatly, the simpler
denntational semantics are the more uscful in tasks such as program verification. The proof of consistency assures

those using the simpler semantics that the two semantic theorics agree on all "denotationally” terminating expression

evaluations.
L1 The Data Flow Model of Computation

The program schema of the data flow model of computation is the data flow graph, a directed graph whose
nades arc called operators. Each operator has labeled input and output ports, and graph links arc dirccted from
operator input ports to operator output ports, Graphs, like opcrators, have input and output ports. The unlinked
operator-ports within a graph arc the ports of the graph itself.

The execution of a data flow graph can bc interpreted within Kahn's [10] fixpoint theory by viewing t:e
operators as parallel programs and the links as channels for program (operaior) communication. Because graph
operators correspond to clementary program operators, they are exceeding simple parallcl "programs.™ For most
operators, exccution consists of a repetition of firings. Operators are enabled for firing by the presence of input values.
In firing, an operator accepts vatues at its input ports and produces results at its output ports. The following program
of Kahn's paralic programming language implements the data flow + opcrator:

Process plus(integer in 11, 12; integer out O) ;
Pepeat Begin Integer T ;
Comunent : the order of the wait mvocauons isirrclevant ©

T r= wait(11) + wait(I2) ;
send Ton O
End ;

The data flow graph and parse tree representation of elementary expressions arc very similar. The graph
representing an application of + to two arguments is formed by linking the output ports of the graphs computing the
two arguments to the input ports of a + operator. The duta flow graph for the simple expression:

xsx + ysy - .
is illustrated in Figurc 1. Note that the graph input ports arc labeled by the free variables of the expression. If a free
variable occurs more than once, a copy operator {represented in the figure by a solid black dot) is used tw distribute the

Figure I. A Sample Data Flow Program R

|

i~

variable. The data flow graph implementations of other cormmonly used programuming constructs will be discussed in

Scction 3.

There are two prercquisites to the practical use of data flow computation: (1), a machine which exccutes data
flow graphs; and (2), a programming language which can be translated into data flow graphs. Preliminary data flow
machine designs have been made by Dennis and Misunas [8] and Arvind and Gostelow {2]. Within these machines, a
data flow graph is distributed over a network of processing clements. These elements opcerate concurrently,
constrained only by the operational dependencics of the graph. Thus, a very efficient utilization of the machine’s

resources appears possible,

Data flow ﬁrogramming languages resemble conventional languages restricted to those features whose ease
of translation docs not depend on the state of a computation being a single, casily manipulated entity. Because the
"state” of a data flow graph is distributed for CONCUTTCNCY, gofo’s, expressions with side effects, and muitiple
assignments to the same variable arc difficult to represent. Since these *features™ are generally avoided in structured

programming, their absence from data flow languages is little reason for lament.

The "First Version of a Data Flow Language™ by Dennis [6] was a rudimentary ALGOL-like language. Most
data Row language are statement-oriented languages given an applicative flavor by imposing the single-assignment
rule: Programs are syntactically restricted to guarantee that each variable would be assigned only one value during the
program's execution. The languages of Weng [13] and Arvind, Gostelow, and Plouffe {3). in addition to having the
expressive power of ALGOL, facilitat: the programming of networks of communicating processes, such as co-routines

and operating systems.
1.2 ADFL - An Applicative Data Flow Language

ADFL, Applicative Data Flow Language, is a simplification of VAL, the Value-oricnted Algorithmic
Language developed by Ackerman and Dennis f1]. A BNF specification of the syntax of ADFL follows:

exp::= id | const | oper(exp) | exp, exp | let idlist = exp in exp end |
if exp then exp clse exp end | for idlist = exp do iterbody end

iterbody ::= exp|iter{exp) | let idlist = exp in iterbody end |
if exp then iterbody cisc iterbudy end

i 1= .. programming language identifiers ...

idlist::= id {,id}
const ::= .. programming language constants ...
gper ;.= .. programming language operators ...

The most clementary expressions of ADFL arc identificrs and constants, Tuples of expressions are also
expressions. One such expression is "x, 5”. The application of an operator to an cxpression is an expression.
Although, the BNF specification only provides for operator applications in prefix form, such as "+(x, 5)™;
applications in infix form, such as "x + 5", arc considered acceptable equivalents (sugarings) and will be used in
example ADFL programs. All operators of ADFL ars required to be determinate and thercfore characterizable by
mathematical functions. We will not attemnpt te completely specify the class of operators and constants. 1t is assumed

that at Icast the usual arithmetie and boolean vperators and constants are present

\.‘),]

S[noe ADFL is applicative, it provides for the binding, rather than the assignment, of identifiers. Evaluation
of the binding expression;
lety,z=x+ 5, 6inyszend
implies the cvaluation of "y « z" with yequai to "x + 5" and z equal to 6, The result of binding is local: the values of
y and z outside the binding expression are unchanged.
ADFL contains a conventional conditional expression, but has an unusual iteration cxpression. The

evaluation of the iteration expression:

for idlist = exp do iterbody end
is accomplished by first binding the iteration identiffers, the clements of idfist, to the values of exp. Note from the
BNF spccification of iterbody, that the cvaluation of the iferation body will ultimatcly result in cither an expression or
the "application” of a special operator iter to an expression, This application to iter is actually a Lail recursive call of
the iteration body with the itcration identifiers bound to the "arguments” of iter. The iteration is terminated when the
evaluation of the itcration body results in an ordinary, non-iter, expression, The valuc of this expression is returncd as

the value of the itcration cxpression. The following itcration expression computes the factorial of n:

fori,y =n,1do
ifi>ltheniter(i- 1,y v i) clse y end
end

In conventional languages cxecution exceptions, such as divide by zero errors, are généﬁiry handled by
program interrupts. This solution is inappropriate for data flow since there is no control flow to interrupt. [n ADFL
execution cxceptions are handled by gencrating special error vaiucs. A detailed specification of the class of error
values and the results of operator application to error valucs is given in the documentation of VAL [).

2. 8: The Denotational Semantics of ADFL

ADFL has a simple denotational characterization, similar to those given by Scott [11]} and by Tennent {12} for
other applicative languages. Before procceding, we bricfly review some of the notations and concepts of fixpoint

theory.

Notation: Given a sct A with partial ordering CZ, the least upp - bound of a subsct £ of A is denoted 1 E, and the
limit,N {x), x,, ...}, of an increasing scquence x, I x, T ... of As denoted 1 x.

Definition: A domain ts a partially ordered sct A with a least clement, usually denoted L, such that ¢very increasing
senuznce of A has a limit

Definitions: A function F° from domain A to domain B is continuous if, for every increasing sequence 5,CxC ..,
Rx)=nN F’(x‘.}. Every continuous function F is also monotonic, that is, x I y implics F(x) [/().)
Definition and Theorem: Given domains A and B, the product domain A X B, populated by the clements of the
Cartesian product of 4 and # and ordered so that (. 5 & (2,) if and only if x; & X, and y LT »,. and the
Junction domain A — B, populated by the continuous functions from A to £ and ordered so that £ £ Gifand only if
Fx) = ((x) for all clements x of A, are domains,

Definition and Theorenr: Given a continuous function £ of A — A, the least fixpoint {solution) to the cquativn

Rx)=x
exists and it denoted Y(F). Furthemore, letting 77 denote the function formed by composing F with itself n times:

Y(P =nF)

&

Let V be the set of all valucs of ADFL, V™ be the st of all tuples of valucs, and V* be the discrete value
domain formed by adjmmng to V™ aleast clement L. v n is ordered discreetly, that is, for aifl clements x and y of
v L-XxCyifand only if L = x ur x = y. The five scinantic categories of ADFL, constants, operators, identifiers,
expressions, and itcration bodics, will be denoted, respeciively, Const, Oper, Id, Exp, and Iterbody. The semantic
function 3 maps ADFL constants and operators into their interpretations. The interpretation Iconsd] of a constant
const is an element of V™ . Hoperf is the usual arithmetic or Boolean function associated with oper, extended te V¥ n
by defining applications of 3[oper] to tuples i inappropriate in type to map into special error values. For example:

I{+](x.») = x + y,if x and y arc intcger values
A (x ¥) = x A, if x and y arc boolean values

A complete specification of wilt not be given here. However, the denotational interpretation of operators is required
to be srric in the following sense: I[oper](x) = L if and only ifx = L. Because L. will correspond to the result of a
hon-terminating computation, this strictness requircment insures that an application of oper 10 an cxpression

terminates if and only if the expression terminates. In addition, this requircment insures that Ifoper] is continuous.

Because ADFL is applicative, its expressions may be denotationally characterized by a function mapping
each environment, association of identifiers and valucs, into the tuple of values rcturned by expression evalimation
within that environment. Let U, the environments of ADFL, be Id — V, the continuous functions from 1d to V. The
semantic function § is the expression evaluation fuaction of ADFL. 8, a member of Exp— U — V¥ 1+ maps {in
curried notation) cxpressions and environments into tuples of values. In the specification of 8, expressions which a
compiler could declare “invalid” arc ignored. Such expressions are invalid cither because they contain instances in
which an unbound (uninitialized) identifier could be evatuated or instances in which an operator could be applied to

an expression of inappropriate arity,

The specification of § for expressions without iteration is trivial. Evaluation of an identifier yields the value
of the identifier within the current environment, evaluation of a constant yiclds 3{conss], and cvaluation of an

operator application is accomplished by applying I[loper] to the values of the argument expression.

Sfidlp = pllid)

8fconstjp = 3I]consi}

8foper(exp)p = IMoper(Elexplp)
Let Il, denote the strict concatenation operator over clements of VI That is, for tuples x and y of V™, x Lyis¥ iy,
the concatenation of x and y, and x fLand LK oY are both L. Using the strict concatenation operator, we define
the value of a tuple of expressions to be L if one of its component expressions is L.

8exp). exp;lp = Blexp,p ¥, Blexp,lp
The updated environment resukting from binding the valucs of a tuple x to successive identifiers of a list idliss in
cnvironment p is denoted plidfist/x]. Qur denotational spc.ciﬁcation requires the binding expression and the
conditional expression to be sirict. 'The precedes function = and the condition function — enforce strictness. -

Ll=y=1 .
s=y=yifx=® L

8[let idlist = exp, in exp, endlp = Sﬁexpl]]p = Sl[expzﬂp[idﬁsflsﬂexpl]lp]

L-xy=1

frue—x,y=x

false = x,y =y

z—+X, ¥ = ..somecrrorvalue .., if z € {L, true, faise}

8{if exp, then exp, elsc exp, endfp = E[exp, o — Blexp,])p, €fexp,lp

Evaluation of the itcration cxpression “let idlisi = exp in iterbody emi™ could be specified by considering
iterbody to be a recursive procedure, with name iter and parameters idlist. However, for the proof of consistency, it is
more convenient to view the iteration body as returning a tuple with a tag indicating whether or not iteration is to be
continucd or terminated. To do so, we extend tuples from their mathematical foundation as functions whose domain
is a subset of the integers to functions with arbitrary domains. Netc that cnvironments are such tupfcs. The tag of the
tuple x rcturned by the iteration body is appropriately denoted Xag' Additionally, this tuple has cither I components
Xppe Xpgo oo denoted x;, or R componcnis Xp1 Xjr - denoted Xg: A true tag requests continued iteration with the [
components bound to the itcration identifiers. A Lilse tag requests retum of the R components as the result of the
fteration cxpression.

The iteration body cvaluation function & of Iterbody — U — V_T_ is defined like 8. In the definition of &,
in imitation of the environment updating notaticn, the tple x with a true tag and I components x, is denoted
Altag/true][I/x]. Similarly, the tuple x with a false tag and R components x, is denoted A[tag/falsc}[R/xR].

&,[explp = 8lexplp = Altag/falscfR/S[exp] p}

Eiter(exp)p = Bexplp = Ajtag/truci1/8[expp]

&,fict idlist = exp in iterbody end]p = Eexplp = &, literbodilplidlist/8expllp)

&,[if exp then irerbudy, clsc iterbody, endlp = E[explp — &{iterbody, Do, Efiterbody,}p

The least fixpoint operator Y is used to specify the iteration performed during cvaluation of an iteration

expression:)
E(lfor idlist = exp do iterbody end]lp = Y(AF. Ax.x = (Sllilerbadylp[idlis!/x]')m —
P8 fiterbocyfplidiist/ i),
(8, Literbody]plidtist/xDg)8 exp]p
That is, each iteration is an evaluation of the iteration body with the iteration identifiers bound to some x and yiclds
the tuple &, fiterhdylplidlist/«}. 1f the tuple has a true tag, its [components are bouad to the iteration identifiers and
iteration is resumed. If the tuple has a false tag, its R components are returned as the result of the iteration, The
iteration identificrs are bound to 8Jexp]p on the first iteration. If the iteration never terminates, evaluation is defined
to "yicld" L. The following casily proven lemma will be used in Section4 to prove the conristency of the
denotational and operational semantics of ADFLL.
Lemma: 1FB]for idlist = exp do iterbudy end}p docs not equal L, then there cxists a sequence Py - P, Such that for
all ibetween 1 and #-1:
p, = plidlist/Efexplp]
Py = plidlist/(8 Riterbody]lp)]
(8, [iterbnts]p), g = lrue
(Slﬂi!erbwb’ﬁp ha e false
(8 Literbnlyllp)y, = Blfoc idlist = exp do iterbody end}p

3. 092 The Operational Semantics of ADFL

The operationat-semantics of an ADFL expression are a formal characterization of the behavior of the
expression’s data flow graph. The translation algoritvm 9”is the "compiler” of ADFL. It maps expressions into their
data flow graph implementations. "the scmantic function O maps graphs into functions representing their

input-output behavior, 0T, the composition of these functions, is the operational semantics of ADFL.

In this section emphasis will be placed on the operational semantics of iteration expressions. In Section 4,
the consistency of the denotational and operational semantics of ADFL will be proven using the productions of the
BNF specification of ADFL. as the inductive structure. Recall that, in the specification of the denotational semantics,
the least fixpoint operator was used for only onc production, that of the iteration expression. Likewise, in the
specification of the translation algorithn, cyelic data flow graphs will be constructed for only one production, that of
the itcration expression, Consequently, the iteration expression is the difficult and interesting case of the consistency
proof, thus justifying our emphasis. Readers interested in a more detailed description of the operational semanties of

ADFL may consult previous work of the author [5).

9’ maps expressions and ‘J; maps iteration bodies into their data flow graph implementations. The
implemcntation of an cxpression or itcration body has an input port for cach free variable of the expression or
iteration body and, if nceded, an input port trigger for enabling constants. An expression graph has an output port,
labeled by an integer, for cach value returned by evaluation of exp. Recall the domain of the tuple 8[[iterbodyfp. An
lteration body graph has an output port tag for the tag; a set of I output pert for results to be re-iterated: and asct of R

output ports for results to be returned.

The scmantic function O mapping data flow graphs into their operational characterization is defined using
Kahn's [10] theory of parallel computation, which we bricfly review.

Definition; The history of an operator or graph port is the sequence, possibly infinite, of values received or
transmitted at that port during a data flow computation.

Theorem:. Let Y denote the set of historics of data flow values. If V¥ is ordered so that X[Yifand only if Xis a
prefix of ¥, then V¥ is a domain whosc least etement is the empty history e.

Definition: The operational semantics of a data flow operator o are given by a continuous Aistory function Ofo]
mapping input h'-'ory tuples into cutput histery wples. For each input history tuple X, representing the history of
values reccived at the input ports of o, the output history tuple OJof(.X} represents the history of valucs produced at
the output ports of o in response to X,

Note: Not all operators may be characierized by history functions. In particular, only determinate operators which
for cach input history tuple have only onc possible output history tuple may be characterized thus.,. Since only
determinate operators are used to construct graph implementations of ADFL expressions, the history function
characterization is adcquate for describing the operational semantics of ADFL.

The result of graph exceution is defined to be the least fixpoint (zolution) to a set of simultancous equations, inferred
from the history functions of the graph operators, whosc variables represent the histories transmitted through the

graph links.

In the remainder of this section, we will give a recursive definition of 0°9" derived from fixpoint theory but
wiil omit many details of the derivation. Alse, the operational characterization of many ADFL expressions will be
justified more by the actions of their data flow cxccutions than by the structure of their data flow graph

implementations. Readers desiring more detail knowledge of graph implementations should consult Brock],

Dennis [6], or Weng [L3].
Note that the range and domain of O<F{exp] differ from the range and domain of 8[exp]. T exp] maps
history environments, which arc functions from identificrs to historics, into output history tuples. Viewed

operationally, identificrs of ADFL arc bound tu historics of values.

The cxpression graphs, other than those for conditional and iterative cxpressions, have simple operational
characterizations. Evaluation of an identificr yields the history to which the identifier is bound.
09 id)P = P[id]
The data flow graphs T]consi} and Toper(exp)] contain the data flow operators const and gper. The operator const
has a single input port, labeled trigger, and produces I[consd] whenever it reccives the input value trigger. Whenever,
the operator gper receives an input tuple x, it produces Ifeper](x).

OeTJconsif P = Ofconsd(Pftrigger])
O<TToperexp)|P = Ofuper](OoT exp] P)

The denotational and operational semantics of ADFL differ in in their treatment of wple cxpressions and
binding expressions. The denotational semantics use the strict wple concatenation operator H_ and strict identifier
binding. The operational scmantics use the usual tuple concatenation operator, i, and non-strict identifier bi nding.

OeTqexp,, exp)]P = O+Texp [P 1 0°TJexp, P
O*T[let idlist = exp, in exp, end] P = OeFqexp,|Plidlist/O T exp 1 P]

qfif exp, then exp, clse exp, end], illustrated in Figure 2, contains a predicate subgraph Tlexp,}. a then
exprcss:on subgraph Er'[[cxpzﬂ a else expression subgraph ‘ﬂ‘l[exp}] and several gates. Each input value of -he then
cxpression must pass through a T gate and each input value of the clse cxpression must pass through a F gate. The
T gate has a control input port, a data input port, and a data output port. Each control value determines whether or
not a daia value may pass through the gate. If a true control value is received, a data value is absorbed and passed
through the data output port. 1fa false control value is received, a data value is absorbed but not passcd. Inthe F gate
the sensc of the coatrol valuc is reversed. The output ports of the then cxpression subgraph and the else expression
subgraph are paired by label, and each pair is joined by a M gate, The M gate has a control input port, two data input

Figure 2. Iif exp, then exp, clse exp, end]

N

ports, and & data output port. The control value detenmines wiiich data value is passed through the gate. Connecting
the control input ports of ali these gates to the output of the predicate graph insures that the predicatc can enable the

execution of and select the results of the appropriate subcxpression.

Let T be the compasite history functicn of all the T gatcs used to implement the conditional cxpression. T
maps a control history and a history environment into a history cnvironment.
T(X, PYid] = O[T](X, Plid})
With F and M denoting similar composite history functions, the operational semantics of the conditional expression
may be expressed as:
0°9Tif exp, then exp, clse exp, end] P = M(0 *Texp, 1P,
0T exp J(L(O=Texp P, B,
0T exp J_]] 7o "‘.‘J'He.x;w1 ie. P
The operational semantics of iteration bodics are a straightforward extension of the denctational scmantics of
iteration bodies and the operational semantics of expressions and will be discussed before the more oherous itcration
expression is examined. Again, except for the conditional iteration bedy, the semantic equations are simple,

OeF explP = Altag/O-]false] PJ[R/Q=Texp] P]
0+ [iter(exp)] P = Aftag/O°Ttrue] PJ[l/0Iexp]P)
OoTflet idlist = exp in iterbody end]P = O3 [iterbody] Plidlist/ G =T exp] P}

The graph TTif exp then iterbudy clse iterbody, end] resembles the graph, shown in Figure 2, of the conditional
expression. However, because the cor- ditional iteration body has three scts of output ports, a tag output port, I output
ports and R output pont: ; it has three sets of M gatces, each set receiving a different control history. We leave o the
most particular the wearisome sk of defining the three appropriate control histories nceded to specify
OedTif cxp then iterbody, clse iterbody, end}]P.

FYfor idiist = exp do iterbody end], illustrated in Figurc 3, contains an initialization expression subgraph
ITexp]. an iteration body subgraph 9, [iterbody]. FM gates, and FS gates. The FM gate is a M gate with an initial

Figure 3. Ifor idlist = exp do iterbody end] J L

O

false controlinput. The FM gates select, under control of the tag values of the iteration body, cither the outputs of the
initialization expression orthe R outputs of the iteration body. The selected values are sent Lo the iteration bedy input
ports labeled by the iteration variables. The other iteration body inputs pass through FS gates. The IS gate absorbs,
produces, and stores its data value whenever it receives a fulse control value. It produces its stored value, without
absorbing a data value, whencver it receives a true control value. The FS gate has an initial false control value.
Succeeding control vaiues are the tag values of the iteration body. Thus, the FS gates store ncw values only when a

"new" execution of the iteration body commences.

Let FMS“™ pe the composite history function of the FM and FS gates. EMg“ist maps a quadruple
consisting of the iteration body tag output, the itcration body I outputs, the initialization expression outputs, and the
iteration expression history cnvironment into the history environment input to the itcration body.

EMS¥S(X, ¥, Z, P)id] = OFFMKX. Y. Z). if id is the #th clement of idlist
= O[¥FSJ(Y, Pid]), if id s not an element of illist

The operational characterization of the iteration cxpression is obtained by deriving the least fixpaint to an equation

constraining the outputs of the iteration body subgraph.
Ooﬂ‘l[ror idlist = exp do iterbody end P = (Y(AX. o-«rllnem](zms“"“(xw, X Ol exp] P, P

The operational scmantics of ADFL are certainly more complicated than the denotational. Furthermore,
this complexity is not entirely the fault of our presentation, but rather largely the fault of the unusual conditions in
which graphs containing non-termizating computations may produce results. Consider the following ADFL
expressions with one free variable i

forj = idoifj = 0then iter(j) clse j end end
which we abbreviate DZ(1), for its cvaluation diverges on zero values of i, and:

letk = DZ(i)inifi = O then 0 else k end cnd
which we abbreviate /DZ{3}, for its evaluation intcrnally diverges on zero values of . That is, when i ks zero, although
DZ(V diverges, IT/DZ(V], the graph implémcntaﬁon IDZ(), "ignores™ this internal divergence and yiclds zero.
However, the ability to ignore divergence is limited. For example, if T{/DZ{i}] rcccives the input sequence 0+ 1 as
valucs of i, it will produce the output sequence 0. The sccond output cannot be produced until D7) terminates its
"computation” of the first cutput. Consequently, the ADFL expt - ision;

fori = 0 do
if IDZ(1) = 0 then iter(1) else i end
end

docs not tenninate, although it would if IDZ(i} freely ignored internal divergence.
The preceding example iltustrates the intrinsic complexity of the operational semantics of ADFL. and
demonstrates the need for the simpler denotational scmantics. In the next section, we will prove the consistency of the

operational and denotational scmantics.

4. The Consistency of ADFL

The operational and denotational characterizations of ADFL are consistent if they agree on ail expression
and iteration body evaluations defined to be non-terminating by the denotational seniantics. We believe that it is
quite reasonable to expect VAL programmers to only consider cxpressions which denotationally terminate to be
correct. Expressions which terminate operationally, but not denotationally, waste resources in unnecessary

computation.

Formatly, the consistency requirement may be stated as:

Slexplp # L implics 0°TTexp]p = &fexp]p, and
8,[iterbodylp = L implics 0T, [iterbody]p = 8, [iterbody]p

To prove, by induction un the syntax of ADFL, the consistency requircment, a stronger consistency requirement is
needed for the induction hypothesis, namely:
Given a sequence p,,p,, of environments such that, for all |, Slempﬂptr # 1
OTlexplp, * -+ p, = 8fexpllp, * .. » 8llexefp,
Similarly, if, for alt ;, 8 fiterbody]p = L:
Ogfiterbody]p, + .. = p, = 8,{iterbody]p, « ... « & [literbody]p,,

The proof of consistency is straightforward, but often tedious, for all BNF productions except the iteration
expression, the only expression semantically characicrized with the least fixpoint operator. For the simpler
productions, the weaker consistency requirement easily implics the stronger. We will sample the inductive proofs of
the simpler productions by proving the weaker consistency requirement for the binding expression.

Let p be an environment such that:
8flet idtist = exp, in exp, endp # L.
The strictness of the denotational specification of the binding expression implies that Slexpz]]p # L. Consequently,
using the weaker consistency requirement as the induction hypothesis, we know that;
0°TTexpylp = 8fexplp
With successive applications of the definition of 09, the weaker consistency requirement, the preceding equality,
and the definition of 8, the desired case is proven.
OoT{iet idlist = exp, in exp, end]p = OoT Jexp,) plidtist/C - Tlexp,Jp]
= Slexpzlp[idlisu()ﬂexpllp]
= Slexpzlp[idlisl/Sﬂexpl]p]
= 8let ifist = exp, in exp, end]p
Now we shall show how the stronger consistency requirement, used as an induction hypothesis, implics that
the weaker consisteney requirement holds for iteration bodics. Let £ be an environment such that:
8{for idlist = expdo iterbody eadflp # L
From, the lemma stated at the end of Section 2, we know that there exists a sequence P P, such that for all §

between 1 and o-1;

p, = plidlist/Blexpp]
Piv1 = plidlist/ (8 Jiterbodylp)]
(BIﬂil'erbw:nr.*‘y]lp‘.)t_,lg = trus
(Slﬂi!erbo:b'ﬂp")ug = false
(8 literbodylp) = E[lfur idlist = exp do iterbody end]]p
Recall the operational characterization of the iteration body. Let #be the iteration evaluation function:
F = AX.0°T [iterbudy] (EMS“*{(x, o X1 0°Tlexplp. p))
Conscquently:
OeTTfor idlist = expdo iterbody end]p = Y(F), = (NF(LY,
By induction on i, we may prove that;
F(L) = 8 fiterbocd]p, + .. * 8, Jiterbodyp, = O-Tfiterbody]p, + .o p, iFi < n
F(l) = 8 literbody]p, « .. « 8 [ierbody]p, = O3 literbodylp, * ...+ p,.i€i 2
For i= 1, we prove with successive applications of the definition of FY(L), the consistency requirement, the
dcfinition of FMS/ist {recalt its initial false control value), the definition of Py and the consistency requirement that:
FYL) = 0T iterbods J(EMS ¥, ¢, 0T exp]p, p))
= 0°F Jiterbody](FMS @ e, ¢, 8explp. p))
= 0T, iterbody] plicilist/Efexplp]
= 0T [iterbody)p,
= Sllifert':nrm’,v]p1
For i< n, the induction hypothesis and the lemma of Section 2 imply that:
F‘(.L)u' = (%[iterbody]p Viag (Sl[i!erbody]pl.)u‘ = true/
By successive applications of the definition of P, the induction hypothesis, the definition of EMS“™ and the
preceding cquality, we may conclude that:
Py P =P plidiist/Slexp]p » (8,Lirerbodylp), » ... « (Sl[ilcrbody]p,)ll
- = p o plidlist/Slexplp - (L))
= IMS @y, (L), 8fexplp, p)
= EMSBHF(L),,,.. F(L), 0T explp. p)
The definition of i+](_L). the preceding equality, and the consistency requiremcent imply that:
Friily = ova‘t]nerbam[(Fms“’fﬂ(f-"u.)m. F{L),, 0=Texplp. p))
= Ovﬂ;[i:erbodyﬂpl Py :
= & Jiterbody]p, » ... « 8,literbody]p, |
Similarly, fori > n: .
Fiti(1) = Oﬁ[i'lerbodyl{l_"Ms‘iﬂ“(F'(.L)m. F"(L)l. 0°9explp, p))
= 09 iterbodyJ(EMS™™(true™ ! « false, F{1.),, 8fexplp. p))
= Oﬁ[ilerbody]]pl ‘e,
= 8 fliterbody]p, ... - 8,{iterbody]p,,
Therefore, the above definitions of p; and Fimply:
Ooilor idlist = exp do iterbody cad P = Y(P = (OFt L) = (Slﬂi.‘erbaiy]pl ‘... .Slﬂf‘lcrbody]p”)n
= 8ffor idlist = exp in iterbody endp
This proof can be exicnded to the stronger consistency requircment by obscrving that the control input
tre™! « Fatse of FMS' has resct FMS 1o s original state of waiting for inputs from outside the iteration

expression. That extension completes the inductive proof of scmantic consistency.

