MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

Computation Structures Group Memo 191

Building Blocks for Data Flow Prototypes
by

Jack B. Dennis
G. Andrew Boughton
Clement K. ¢, Leung

This paper will appear in t

he Proceedings of the 1
on Computer Architecture,

980 Symposium
to be held at LaBaule,

France, May 1980.

This research was suppott

ed by the University of California,
Lawrence Livermore Labora

tory under contract 8545403,

February 1980



Buiiding Blocks for Data Flow Prototypeg(a)

dJack B. Dennis
G. Andrew Boughton
Clament K. C. Leung
Laboratory tor Computer Science
Massachusetts Institute of Technology
Cambridga, Massachusetts 02139

Abstract -= A variaty of proposed architecturas for data
flow computers have been advanced. Evaluation of the
Practical potantial of these Proposais is being studied
through  analysia and simulation, but these techniques
cannat be used to study a machine design in aufficient
detail to make accurate praedictions of pPerformance. As o
basis ftor extrapoiating cost/performance of these
architectures, and for developing a methodology for data
Hlow program preparation, the construction of prototype
machines is negded. In this paper we present our plan for
reslizing experimental data flow machines as packat
communication systems using two types of hardware
elementy; a microprogrammed processing alement with
provision for packet transmission and reception; and a
router unit used to buitd networks to support packat
Communigation among procassing elaments.

Introduction

A variety of physical structures for computers
embodying the data flow concept have been pfomlidw.
and several experimental machines have been built or are in
construction4~5v15. Which concapts of data flow computer
organization ara ripe for deveiopment into practicaily useful,
widely applicable computar systems? Two large areas ot
concern  arg: (1) wil g Proposed dasign  achieve
Performance attractive in terms of cost? {2) How difficuit

will it be to prepare end test programs for the proposad
machinas?

Since data driven computers are radically different
from conventional machines, we cannot pradict the
performance that a data flow machine will achisve by
analogy with or extrapotation from that of conventionat
computers. Rather, we must determine, for any proposed
application, what program structure would be used and how
fast the program would run on the hypothetical machina.
Determining cost i also ditficult, since in the absence of
detailed designs of subunits the best assignment of function
to subunits is not obvious, and neither Is it clear which
design choices can lead to the best use of LS| technology.

(a) This research was supported by the University of
California, Lawrence Livermore Laboratory under contract
ho. 8645403,

Three approaches May be used to evahiate the
performance offered by a proposed architecture: analysis,
simulation; and construction. Analysis fails to give useful
anawers where a system or program is too complex or doas
not have & regular structure. Simuiation can ba used to
study the speed or throughput of the subunits of which a
machine is constructed, and small @xamples of hypothetical
machine code thay be run by programmed interpretation of
the machina's instruction sat. However, simulation of a
Practical machine at a sutficient lavel of detall to draw
conclusions its parformance for a particular
subsiantiat computation is well beyond the current powsr of
simuiation techniques.

Construction of a prototype is particutarly attractlﬁa
for a data flow machina because most of the proposed

of units in the maching without any change in their design;
or the technology used to construct the units can be
changed so the whole system operates uniformly faster, 'n
@ither case, the pearformance achieved by a prototype for a
scaled-down application provides a practical basis for
axtrapolating the performance to he axpectad from a
large-scais machine in the application.

In our data flow Project at MIT, wa are using all thres
approaches to detarmining the Performance potential of
data flow computers. The routing networks we have
proposed for use in data flow systoms have been studied
through analysisa and  simulation!d to determine the
relationship of throughput and perfarmance. Programs
having a regular structure such as the fast Fourier
transtorm® and a hydrodynamics simufation probiem? have
been studied by analysis of program structure in relation to
hypothatical computing systems.

The subject of the present paper is the approach we
have adopted for building prototypes of propoaed data fiow
computer architectures. In building prototyps machines we
wish to achieve the following objectives, which Include
answaring questions of performance, but aiso include
questions of construction methodology, programmability,
rellability and cost:



Run data flow programs that have maaningful
application.

Deveiop a basis for extrapolating performance
to iarge scale data flow machines.

Deveiop and evaivate instruction set designs.

Dovalop_alqorithma for code generation from
high leval langueges,

Determine functional spacifications of units
appropriate for LSl fabrication.

Evaluate applicabliity of asynchronous,
seif-timad logic design Mmethodology.

Study questions of correctness and testing of
programs and hardwars dasigne,

Study requirements for and approaches to
achisving fault tolerance,

Our first exparimental prototype will be a realization
of the data flow processor® whose operation is most readily
visualized in the form shown in Fig. 1. This processor is an
exampla of pachet communication architectura? In which
many hardware units are connected by tinks through which
information is sent as packets using a gseif-timed
ready/acknowiedge protocol. Hete the packets are
Operation packets of the form

<opcude, operands, destinations)
and resuit packets of the form

<value, destination)

The Activity Store of the machine consists of
Inatruction Cells which hoid a stored represantation of the
data flow program graph® to be axecuted. Resuit packats
containing operand vaiues arrive at Instruction Cells from
the Distribution Network. Each Instruction Cell sends an
operation packet to the Operation Saction when aif
operands have been received, The function of the
Oparation Section is to sxscute instructions and to forward

Activity Srore

el a) m Ja )
w/ Distri- [ Operation
bution Instruction
= Cel].s/ Section f—_
Network
——e~ : |89 J
) )
* S J
\__. result operaticn
packat packet
Figure 1. Data flow processor
P ™
‘ —— L e [
e
e tration
o | Ne bwork
——= Diseri- { cB
bution [ Cell ;—'—-—-J
_‘_J Block7
‘Network —— ’
bi- P
——ip —— CB Ar re—
tration
—— CB
N — Ne cwork
S e o el J—

Figure 2.

Practical form of the data flow processor



resuit packets to target instructions by way of the
Oistributiors Network.

The data fiow machine of Fig. 1 is impractical if the
Instruction Cells are fabricated as individual physical units,
since the number of devices and intercannections would be
é@normous in & machine having thousands of Instruction Ceils,
A more attractive structure is obtained if the Instruction
Cells are grouped into blocks and each block realized as a
single device. Such an Instruction Cell Block has a single
inbut port for rasuit Packets, and a single output port for
operation packets. Thus one Cell Block unit replaces many
Instruction Cells together with the associated portion of the
Distribution Network. Moreover, to further reduce the
number of connactions betwaen Ceall Blocks and other units,
a byte-seriai format for resuit and operation packets la
used.

The rasuiting structure is shown in Fig, 2. Here,
several Cell Blocks form a section of the machine sarved by
4 group of shared functional unitg Pp «s Py The Arbitration
Network in each section of tha machine passes asach
operation packet to the appropriate  functionsl unit
according to its operation code. The number of functional
unit types in such a machine i likely to be smait (fowr, for
example). or just one universal functional unit type might ba
provided, in which case the arbitration network bacomes
trivial.

The Distribution and Arbitration Networks in Fig. 2 are
@xamplas of packet routing networksd: 12,14 In general an
N X N routing network accepts packsts at N input ports and
transmits each packet at the output port specified by a
series of bita comprising a header or dastination tag of the
packet.

in a rauting network for a data flow computer, the
important properties are different from those of the
cross-bar switch used in conventional multiprocessor
systems. Thera, a prompt response by a memory unit to an
access request from a processor is a necessity. In
contrast, a packet routing network Is ons-way, snd high
throughput instead of smail transit delay is the important
desired property.

Prototype Construction Scheme

Many concepts for data flow computars are axamples
of packet communication architecture™9:10,18 At MIT we

are developing an approach to bullding prototypes of thess
“systems,

The first prototype we pian to construct (Fig. 3)is a
simpiified form of tha data flow machina shown In Fig. 2.
Here a 4 X 4 routing network is realized by means of four
2 X 2 routing units, and sach of the four Processing
Elements (PE‘s) implemants a Cail Block unit and a compieta
set of functional units for the Supported machine ianguage.
Thus each PE hoids a group  of activity tempialas
{instructions together with receivers for their operands),

.
M — PE_|——
——

4 x4
Routing
Networic

S S e

Figure 3. First data flow machine prototype.

raceives result packets from the routing network, axecutas
instructions as they become enabled, sending rasuit
packets to the routing network for distribution to spacified
PE's. This prototyps may be expanded as desired by
adding PE's and adding units to the routing network.

Since the purpose of the prototype is to serve as an
enginearing model to tesolve design problems, to explore
potentiai applications and to extrapolate performance
Prospacts, flexibility is more important to us than speed of
operation. In particular, we do not know s "good” design for
the machine representation of data flow programs, nor do
we know what algorithms will uitimately be used for code
generation by a data flow compiler. For thesa reasons, we
have chossn an approach to raslization of the prototype
that avoids making any commitmant to a particular (data
fiow) machina language, or sven 1o a specific division of the
tasks of Instruction execution among different hardware
unit types. The 2 X 2 router unit performs such a basic
function that a direct reaiization of its function will be used.
The PE's are realized using a standard hardwars unit
containing a microprocessor together with program and data
memory, which can be (micro) programmed to emulate any
desired packet communication modyle. Our choica of
designs for these two buiiding blocks for prototype data
flow machines are presented in the following sections,

The 2 X 2 Router and Routing Network Design

AR N X N routing network supports packat
communication between N source modules and N destination
modules (which need not be distinct). The 2 X 2 router Is a
simple building block which can be used to construct
classas of routing networks with diffarent topologies ard
Operational characteristics. We first discuss the dasign ard

. Implamentation of the 2 X 2 router in more detai, and then

Hlustrate its use in constructing two classes of routing
networks.

A 2 X2 routar receives packets at its two input
ports and dellvers each received packet at one of two
output ports according to a destination addrass carriad by



the packet. Each packet ia transmitted byte-seriaily
between modyles. Packst bytes are delivered and received
using an asynchronous Packet communication protocol. Each
intarmadule connection consists of a bundie of data wiras
and a pair of control wires (Fig. 4). Packet commusnication is
synchronized by sending control signais over the controi
wires. Availability of & new Packst at a connection is
signaieg by sending a ready signa! over the ready wira, its
receipt by returning an acknowiedge signal ovar the
acknowledge wire. To support variablie langth packets,
Packet boundaries in byta stream are indicated by adding
a /agtbyte bit to sach 8-bit byte. The fastbyte bit is on only
for the last byte in each packat,

A 2X2 router is designed so that packets to be
forwarded at different output ports can bs processed
concurrently (Fig, 5). Such concurrency s natueally
supported by decomposing the router into two input modules
(M) and two output modules (OM) (Fig. 8). Each input
module is a sequential machine which examines the
deatination address in sach input packet, makes an output
request to the specified output module and delivers the
racket bytes when the request is granted. Each output
module consists of a data multipiexer and an arbiter to
rasolve conflicts betwaen output requasts. A logic design
of the 2 X 2 routaer modife based on this modilar atructura
has been compieted. The asynchronous sequential circuits
and arbiters used In this design are constructed using 581

laltbytl ——
DO —_———— data wires
L ]
D7 ——————
ready — . contrel wires
acknowledgs —_————

Figure 4. Hardware Structure of a module connection.

————— —.j —
Non-Blocking

-1 -

a1
Bloeking

Figure 5. Parallel processing in a 2 x 2 router,

-

o

Figure 6. Structure of a routar modyle,

“E;<“
HEN . oy

componants and discrete transistors. The data paths
consist of MS| multipiexars andg S§t logic gates.

We are alsc developing a custom LSi implementation
of the 2 X 2 router since it ia sufficientiy well-specified,
does not have an exuberant input/output pin raquirgment
and wilf be usad In quantities in network constructions. It is
attractive to organize this implementation as an
interconnection of seif-timad hardwars slements to improve
the tolerance for variations in physical properties caused by
non-uniformitiss in manufacturing procesags and to simpiity
timing considerations In system integration and testing. An
appropriate logic design has been darived methodically from
& bwehaviorai spucification of the router to facilitate
verification ot functional correctness. The logic aiements
employed include the usual repertoire of logic gates, Muiler
C-slemants, and 2-input/2-output arbiters.

Building a N X N rectanguier routing network using
2X2 routers Iy done by the recursive construction
Hiustrated in Fig. 7. Such a natwork has logo N stages each
of which contains N/2 routers. The total number of routers
employed la (N/2) logs N. The path length between each
pair of source ang recesivar moduies grows uniformily as Iogz
N. Al packets sent to a receiver module, independent of
their sources, have deantical destination tags. Routers in
Succeeding stages in the network examing successive bity
in a destination tag to forward the Packet aiong the proper
path,

Tha N X N triangular routing network conatructed as
shown in Fig. 8 has rather different proparties. The number
of routers in this network grows as 2N-3. The dastination
address to be used in routing the packet through tha
network and the path delay Incurred depand on both the
Source and the destination. Some processing elements are
“closer” to each other In this network than to others and
this proximity is preserved as the network grows.

We have included features in oyr 2 x 2 routar
designs to faciltats construction of these networks from
Idanticat units. First, note that if & destination address is no
Ionger than eight bits, and if esch fouter uses the first bit
arriving on its DO input to control packet switching, then
correct routing by a rectanguiar network is accomplished by
simpiy Permuting the data wires Do - D7 cyclicaily in the
interconnection of Successive router units, To



accommodate destination addresses more than eight bits in
length, certain routers may be ‘“programmed® by
permanently asserting a control input which suppresses
transmission of the first byte of each packet. In addition,
we plan to provide some buffering of packets in our routar
chip since simulation has shown this to improve throughput,
and the chip area required is nominal.

Path control in a fouting network is distributed among
the routars, There is no centralized control machaniam
whose complexity must grow with network size and which
may becoma a performance bottleneck. A ractanguiar or
triangular natwork is capabie of forwarding many packets
concurrently to provide & high throughput. The average
path length in both classes grows as icgy N. These
characteristics are appropriate  for  supporting highly
concurrent packet systems. Tha triangular network favors
local communication within a subtres, but programs must be
suitably structured to axpioit this potentially higher
bandwidth. A parformance analysis for ractanguiar routing
natworks can be found inS.

The Processing Element

The Processing Element (PE) is a hardware modute
which can be used to emulate any packet communication
modula. The PE will be used to emulate a Callf Biock unit and
a sat of functional units In the first prototype configuration
(Fig. 3), and will later be used to emulate a varisty of
Packet communication modules  required by more
sophisticated data flow architectures. A typical prototype
will consiat of many PE's intarconnected by one or more
routing networks. To function in this manner, the PE must
have two key characteristics; tha flexibility to amulate a
wide variety of packat communication modules and a wide
variaty of aiternative behaviors for each module, and the
capability to send and receive packets In tha byte-serial
format of the 2 X 2 router.

The PE should have the Hexibility to perform a wide
variety of tasks. Even in the first configuration the PE will
parform both storage and arithmaetic operations. Further, the
exact specifications of the moduies to be emulated by the

— ©
N2 ox N2 Q" —_'.<®
Rectangular Network ’ O @ ><

receivers >0  — .<: @
P _ ®© ®
Rectangular Network : @\ @

-O . | Sl
O ™~
© ®

\ 7 : 2 x 2 router \.—-——o-——-.o/
/.\ @/ \ @]

(a) Recursive construction

(b)) An 8 x 8 rectangular network

Figure 7. Rectangular Routing Network

A

N

(1,n/2
tree

(1,8/2)

[ o 2

O
£% 6%

)

@) 4 (1, M) tree

i

Wl

Figure 8. A triangular network constructed out of I x 2

i

b A0 N X N eriangular neework

(c)} An 3 x 3 triangular necwork

Touters,



PE have not yet been datermined. Thus the PE shouid be &
general purpose machine that can bhe programmed to
amulate a particylar packet communication moduie,

The PE should be capable of sanding and recaiving
packets. In aj applications, the PE will be emulating a
packet communication moduie which processes packeta in
the byte-serial tormat adopted for the 2 X 2 router. For

many of the modules, Packst operations wiN teprasent a

mejor portion of the work to be done. Thus the PE shouid be
teilored to these packet Processing operations.

The performancs of the PE should be consistent with
tha intended use of tha prototype facility to atudy the
operation of various data fHiow machines. In particular the
PE ahould be capabie of & levet of performance which aflows
the amulation of 5 data flow machine on the prototype to run
much faster than a software simuiation of that machine.

The control of malfunctions due to design errors and
hardware faults in the PE is important. A probism in tha
prototyps facility May be caused by orors In any of the
following: the hardware, & module emuiation program, the
design of the data flow machine being studied, or the data

able to readily isolate and fix those problems caused by the
hardware. In particular, the PE should be carefully designed
for ease of construction and varification ot itg corract
operation. In addition, the likeiihood of a hardware fauit
during the operation of the PE should be minimized, and the
PE should provide sutficiant faciity tor easlly diagnosing
Such a fauit. To 3upport these gosis we fee it Is important
to keap the PE structuraily simple.

We have completad o design for the PE based on the
Fequirements outlineg above. The data paths of that design
&re shown in Fig. 9. The design is basicaily a convantional
microcomputer which has been extended to support the
sending and receiving of packats. The overal approach of

this design is based on the eariier work of Vishniac 15,

Bit-siice microprocessor chips were choaen for
imp!emanting the maching's data paths rather than a singie
chip microprocesscr, and & microsequencer with a writabie
control store was chesen for the machine's control. This
Choice allowed the machine‘'s data paths to be tailorad to
Our particular packet processing requiraments. In addition,
this approach promised sigmﬂcmﬂy better performance
beth by the speed of the chips in the data paths, and the
capability of performing the emuiation in microcode. In
comparison to the large number of memory and interface
chips required by the PE the number of chips required to
implement the data paths from bit-siice components |s sma.
Thus the additional board space and devsiopment cost
fequired by the bit-siice components in comparison o a
single chip microprocessor represented only a moderate
increase in the overall systam cost. The primary long term
cost of the bit-slice dasign is the effort required to program
in a fow lave) Rmiicro language, However, since we intend to
daveiop microcoda for only a few modules at a time ang

Input Port O Input Porr |

l Contrcll

data Lnput port stacua
and lastbyte

- 8 - 2
B ! { )
Bus y
8 8 8 4
T direct data P Fd
DA DB
(2) 2903's 2904
Data Alu and Gen. Reg,'s Stacus
Memory Control
Y status ” Unic
[
8 16
T o]
e
Y
8 8 & Bus
data data
‘b
18 q
t r
OQutput Pore 0 OQutput Pore I
%Dutpur POrt scatus l
1

te B Bug

Figure 9. para paths of the pr,

make axtensive use of each micro smulation program, the
additional sffort necessary to program in microcode seems
to be Justitied by the additional parformance that will be
Qained. We are Presently lmplcmnt!nq a microassembler
and simuistor for the maching as programmer aida for writing
and debugging microcode.

A horizontal miero instruction format was chosen to
increass the flexibility of the machine. Al important contrat
lings in the processor ware mapped into seperate bits
resulting in a rich instruction set. Thig large instruction aet



allows the machine to achiave good performance on a wide
variety of tasks. To further enhance the machine's
Hexibility we have chosen to use a 4K writable microstore
which our studies indicate is sufficient for emulating even
complex modules.

The PE has two sets of Input and output ports
capable of receiving and sending packets in the byte-sarial
format of the 2 X 2 router. We chose to make the packet
ports very straightforward to achieve our desired goais of
simplicity and reliability. tnput and output operations on
these ports are done under control of the microprocessor,
and the microprocessor can determine which operation to
perform by examining the various port status bits, It shouid
be noted that the microprocessor is a synchronous system.
The incoming asynchronous control signais, the acknowledge
signai for each output port and the ready signal for each
input port, must ba synchronized to the microprocessor
clock. To accomplish this each of thesa signais is strobed
into a separate fip-flop at the beginning of each clock
cyclie. The cutputs of thase flip-flops are not used until the
end of the ciock cycle. The langth aof the cleck cycle and
the speed of the flip-flops are such that the chance that a
flip=flop has not settied by the end of a clock cycle s much
less that the chance of some other hardwara fault such as
a chip fajlura.

The input ports and output ports require a minimum of
hardware. Each output port contains a data buffer, a
fastbyte filp flop, and supporting controd  logic. The
micraprocessor can in one instruction load the data register
and the lastbyte Hip tiop. The loading of thess registers
sets up the signals on the data lines of the corresponding
output cennection, and causes & ready signal to bhe
generated. Once the acknowladge signal is recsived, the
control logic of the part clears the ready signat and sets the
appropriate port status bits. An input port contains a data
bus driver and controf clrcuitry, The microprocessor can
read data from a particular input connection by enabling the
corresponding port's bus driver. The reading of a port
causes an acknowledge signal to be genarated for the
corresponding connection. The rast of the control cycle is
handled by the control logic of the port in a manner simiiar to
that described above for an output port., Other possible
port designs which we examined included ports with the
capability to interrupt the microprocessor and ports with the
capability of doing direct memory access. While these other
designs offerad higher performance, they aiso required
additional contral circuitry at each port. Since simpiicity and
reliability were higher prioritias than performance, we chose
to use the simpler status-criented port design.

The PE has been designed as a byte oriented
machine in order to match the byte-serial format of the
packets which it must process. For the majority of moduies
which the PE will emulate, byte orientad input and output
oparations  predominate over multiple  byte arithmetic
operations.  Thus the simpiicity of the data paths and the
micre instruction set obtained by supporting only byts
operations was more important than the parformance in
arithmetic operations lost by not supporting muitiple byte

operations in hardware.

Tha PE has been designed to intarface with the bas
of an externai supervisory minicomputer. The supervisor will
be used to load programs and data into the PE, to control
the opearation of the PE, and to perform maintenance tests
on the PE. The interface gives the supervisor access to
the data and micro instruction memories of the PE. In
addition, the interface gives the supervisor tha capabiiity to
halt and single step the PE as well as directly acceas aif
the registers of the PE. Tha interface has been designed to
only respond to bus commands with a particular bus address
(programmed by switchas). This allows many PE's to be
controlled by a single supervisor machine.

The firat proposed appiication of the PE, emulation of
a Ceil Block unit and a set of functional units for the
configuration ot Fig. 3, has been studied in some detall by
Fariduntl, The proposed emulation program consiats of a
supervisory routine and subordinate routines for the Cell
Block and functional units. First versions of the suparvisory
and Cali Block routines have been written. The Calt Block
Program is capable of emulating 1000 instruction cells in
32K bytas of data memory. Further, there ssams to be no
difficuity in coding the additionat routines required for this
application, or in placing all of thess routines In the X
microinstruction store.

Remarks

in conclusion, & few remarks are in order. First, the
reader may have observed that there wili be a considerabie
performance mismatch batween the throughput af the router
and the packet processing rate of the PE. For the purpose
of our enginsering prototype we accept this disparity aa a
price for the flexibiiity we desive. Once unit designs, such
as for a Cell Biock madule, have baen checked by amuiation
using PE's, the way is open to investing in realizations
(using PLA'S or custom LS|, for example) having performance
in better balance with the router modute.

An immediate problem is the choice of instruction sat
to be emulated by the first prototype. Wa expect to
implement a code ganerator that wilt produce machine code
for the prototype from programs written in a suitable
restriction of the VAL programming language’.

Another form of data flow machine we expact to
study is the data flow multiproceuorm, which appaars to
be well suited to cartain applications such as the
Navier-Stokes models of sirfiow of interest to NASA. A more
ambitious objective is to smulate a gensral purpose data
flow machine® using routars, PE's and an additional module
appropriate for emulating & structure memory to hoid
program and data base representations.



Acknowhdgnont

T. L. Tung worked on the logic design for the 2 X 2

fouter. W. B. Ackerman contributed to the design of the

Processing slament.

Ws are also grateful to Prof. C. L

Seitz of Ceitech for the arbiter circuit usad in the 2 X 2

router.

(1

[2]

(3}

[4)

(6]

(e]

{7

Raferences
W. B. Ackerman and J, B. Dennia, VAl: A Yalve
Oriented  Algorithmic Language, Preliminary

Reference Manual, Laboratory tor Computer Sclence,
M..-T.. Technical Report TR=-218 (June 1079), 80 Pp.

Arvind and R. E. Bryant, Paralie/ Computers for Partial
Ditferential Equation Simuiation, Laboratory for
Computer Science, M.LT, C5G6 Memo 178 (May
1979), 10 pp.

G. A.  Boughton, Routing Networks [n Pachet
Communication Architectures, Dept, of Electrical
Enginewering and Computer Science, 5.M. Thesis, M.L.T.
(June 1078), 93 PpP.

M. Cornish, Private communication, Texas instruments
Company, Austin, Taxas.

A. Davis, "A Data Flow Evaivation System Based on
the Concept of Recursive Locality," Proceedings of
the ACM 1970 Nationel Computer Confersnce (Juns

1979), pp. 1079-1088,

J. 8. Dannis, “Firat Varsion of a Data Flow Procedure
Language.” Lecture Notes in Computer Sclence, 19,
Sprlngor-\lerilg (1974}, pp. 362-378.

-J. 8. Dannis, “Packet Communication Architacture,”

Proceedings of the 1975 Sagamore Computer
Conferance on Paralie! Processing (August 1978), pp.
224-229,

£8]

(9]

(0]

[r1]

(12)

(13)

(14]

(18]

(18]

J. B. Dennis, C, K. C. Leung, and 0, P. Misunas, 4
Highly Paraitel Processor Using a Data Flow Mechine
Language, Laboratory for Computer Science, M.LT.,
C5G Memo 134.1 (June 1079), 23 Pp. Submitted to
the /EEE Transactions. on Computers.

J. B Dennis, and K. Weng, "An  Abstract
Impiementation for Concurrent Computation With
Streams,” Procesdings of the 1979 Internetional
Confarence on Parallel Processing (August 1979), pp.
35-486.

J. B. Dennis, "The Varieties of Data Fiow Computers,*
Procesdings of the First international Confersnce on
Olstributed Computing Sysiems (October 1079), pp.
430-439,

A, M. Feridun, Data Flow Cell Biock and Functionel Unit

Emulstion, Report In Progress, Laboratory for
Computer Science, M.I.T.
A. Hopper and D. J. Whaeller, "Binary Routing

Networks,* EEE Transactions. on Computers, Vol.
C-ZB.Nu.10(0ckbor1979h99-099-70&

P. Ressler, Simuiation of a Highly Paraliel Processor,
Dept. of Elsctrical Engineering and Computer Science,
S.B. Thesis, M.L.T. (Janvary 1979}, 40 pp.

A, R. Tripathi and G. 4, Lipovski, *Packat Switching in
Bayan Networks,* Procewdings of the 6ih Annual
Symposium on Computer Architecture (Apri 197}, pp.
160-1487.

E. Vishnige, 4 Processor Moduie for Dsta Fiow
Computer Development, Laboratory for Computer
Sclence, M.I.T,, CSG Mamo 176 (May 1978), 55 pp.

l. Watson and J. Gurd, “A Protatype Data Flow
Computer With Toksn Labelling,” Proceadings of the
ACM 1979 National Computer Conference (June
1978}, pp. 623-628,



