MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

545 Technology Square, Cambridge. Massachusetts 02139

Computation Structures Group Memo 192-1

Packet Communication Microprocessor Programming Manual

William B. Ackerman -

The preparation of this document was supported in part by the Lawrence Livermore
Laboratory of the University of California under contract no. 8545403, and in part by the
Department of Energy under contract no. DE-AC02-79ER10473.

20 October 1980

1 INTRODUCTION -2- 1 INTRODUCTION

1. Introduction

The MP (micrdprocessor) is a high speed programmable 8 bit microcomputer dé&igned for
simulation of devices that communicate by byte-serial packet communication. It is designed to be
"downloaded” from, and supervised by, a host computer such as a PDP-li or LISP machine.

The MP logically consists of the following items, as shown in Figure I:

Program memory - 4K (4096) 40 bit instructions containing the program. This is loaded by the
host and does not change while the program runs.

Data memory - up to 64K (65536) 8 bit words that may be read or written by the processor. It is
addressed by a 16 bit address register. This memory may also be read or written by the
host while the MP is idle.

Address register - a I6 bit register giving the address of the word in data memory that the
processor can read or write. The two halves of this register may be written by the
processor.

Scratchpad memory - 16 words of 8 bits each, all equivalent, used for most processor operations.
"Q register - one special 8 bit register used for shifting and special arithmetic operations.

Condition code - 4 bits, containing information about the instruction just completed. This
information is useful for conditional jumps or other operations. The meaning of these four
bits is explained below. '

Sign compare bit - a flip-flop used during divide and normalize instructions.

Program counter - 12 bits, giving the address of the next instruction. The host can set this to zero
prior to program execution.

Call stack - b words of i2 bits each, with a stack pointer. This is used for saving the program
counter during subroutine calls, and for storage of restart addresses in iterations.
Subroutine calls may thus be nested to a depth of five.

Address/count register - 12 bits, used for counting in loops, and for temporary storage of a jump
address.

Offset resgister - 8 bits, used for modifying the address of a control instruction with the result of
a computation.

External input and output ports - these are used for transmission or reception of data bytes to or
from a router, another processing element, or the host computer. There are 8 data bits plus
ore “last” status bit that is intended to mark the end of a packet. The processor can read
the status of these ports to determine whether an input byte is available or an output byte
may be sent.

1 INTRODUCTION -3- 1 INTRODUCTION

Port select register - this register determines which of the two ports is to be used by 10
operations. It may be written by the processor.

11 Number format

The MP normally uses 8 bit two's complement arithmetic. Hence the numbers that can be represented
tie in the range [-128, 127] inclusive. The addition and subtraction mechanism can also deal with
numbers that are considered to be unsigned, if the sign bit and condition code are interpreted differently.
If this is done, the allowable range is [0, 255] inclusive. The conditional instructions can deal with either
interpretation. The "HI" and "LO" conditions refer to unsigned numbers, that is, they consider 208, to
be greater than 177, . The "GT" and "LT" conditions refer to signed numbers. They consider 208,
to be negative and hence smaller than 177, .

in this document, the bits of a word are numbered as follows:

1.2 Condition code bit definitions
N - the result of the last arithmetic operation was negative, that is, its sign bit (bit 7) was on.
Z - the result of the last arithmetic operation was zero.

C - a carry came out of the sign bit of the last addition, considering a subtraction to be
' implemented as X-Y = COMP (COMP (X)+Y). (Warning: this definition for subtraction is
‘opposite to the definition used on a PDP-1L It is the complement of the “"borrow” condition.)
This bit also contains the bit shifted off the end of certain shift operations.

V - the last addition or subtraction overflowed, which means that the true algebraic resuit is not
within the range [-128, 127}, and hence can not be correctly represented in two's complement.
If this happens, the result that appears is the algebraically correct result plus or minus 256.
The following two conditions are also equivalent definitions of overfiow:

a carry (or borrow) occurred from bit 7 but not from bit 6, or vice-versa, that is,
overflow is the exclusive OR of the carry conditions from these two bits of the
adder.

two numbers of the same sign were added but the result had the opposite sign,
or two numbers of different sign were subtracted but the result did not have the
same sign as the minuend.

1 INTRODUCTION -4- 1 INTRCDUCTION

Figure 1. Logical diagram of the MP

SCRATCHPAD
168 /] 170 ports

L1

G REGISTER |,
(8) < PGRT I/0
SELECT (2} MULTIPLEXOR
CONDITION
CODE (4) PROCESSOR [

SIGN l 1)
COMPARE | OFFSET
1) (8)

Iﬁ | ADDRESS/
| AV N COUNT (12)
DATA ADDRESS
MEMORY K——REGISTER
(65536x8) (16} A
> PROGRAM
COUNTER (12} K&
4 h
PROGRAM [4
MEMORY CALL STACK
(4096x48) (Sx12)

2 SUMMARY ‘ : -5- 2 SUMMARY

2. Summary of instruction classes
Class [- Arithmetic and Shift

This can perform the full set of arithmetic, logical, and shift instructions, manipulating
scratchpad registers and the "Q register. The "special” instructions (multiply, divide, etc) are
permitted. It can perform a few program control operations. Data may not be read from or written to
data memory, IO ports or registers, or the condition code register.

Note -- in the following syntax diagrams, a hyphen is used to indicate that a symbol or option letter
within a symbol may be omitted. The symbol "<nul I>" will be used later in the instruction tables to
denote an omitted field.

The instruction format is:

(]

: 0 - shift/dest shift link - up to 2
{ ALU op } cl ia control {optional) RTN operands

z {optional) LLPCT

L
L— single symbol —J

Examples:
ADD X,Y
ANDQ NQ RTN X,
SUBIC LS R X,Y
NSRC LPCT X,Y
LDIVZ RO X,Y

X+ -> ¥

¥AQ -> Q, return from subroutine
{X-Y-14C) left rotated -> Y

X -» Y, count and loop

last step of divide

wd w8 w3 @8 W

The instruction symbols (but ot the operand expressions) may be written in any order. The
operands must always be written last.

The ALU operation field specifies the operation to be performed. These operations are described
in sections 3 and 4. The operation symbol may be immediately followed by a "carryin” modifier: "O",
"C", or "Z", specifying the initial carry for addition or subtraction. It may also be followed by a Q"
modifier specifying that the Q register, instead of the destination register, is to provide the second
operand. [f both modifiers are present, the carryin modifier must be first. The ALU operation and
these modifiers must be written as a single symbol.

The shift/destination control field specifies the shifting of the ALU result andfor Q register, and
the assignment of the ALU result. If it is not specified, no shift takes place and the ALU result is
stored in the destination register. This field is described in section 5.

The shift link field specifies how the ends of the ALU result andfor Q register are linked when
they shift. It is described in section 6.

2 SHMMARY -6- 2 SUMMARY

The program control field specifies the optional control action that takes place simultaneously with,
and independently of, the ALU operation. There are only three choices here: nothing, LPCT, and RTN.
LPCT allows the instruction to perform a loop count and iteration. RTN allows a subroutine return.
T hese are described fully in section 9.

The operand fields are two expressions, separated by commas, which give the numbers of the
“source” and “destination” scratchpad registers. For most ALU operations, the contents of these registers
are the left and right operands, respectively. The result is usually stored in the destination register. If
only one expression is present, it is taken as the second, and the missing first expression is assumed to be
zero.

Class I - Arithmetic, IO, and Memory

This can perform arithmetic and logical instructions, manipulating scratchpad registers and the
“Q" register, and can read data from or write data to the data memory, 10 ports, or special registers. It
can load the "[O port select” and memory address registers, and can read the 1O status word and the
condition code. It can also use “immediate” operands for the first operand of ALU operations. Shifts
and the "special” instructions (multiply, divide, etc) are not permitted. It can perform a few program
control operations.

T he instruction format is:

- o
0 -1 |- N mem/1O - up to 2
< > L. 3
{ALU‘ op } c a I] control RTN operands
z Na | {optional) LPCT
*— single symbol !
Examples:
ADDI 3,Y s 34 > ¥

ANDQI NO 7, s /M -> 0

SUB MR LPCT X,Y ;3 X-<memory> -> Y, count and loop
DST RIDSTAT ¥ ; i0 status -> Y

DST N RIOSTATH ; IO status -> memory

DST N Wit Y : Y —> <memory>

ADD N MWPSEL X, ; X+<memory> -> port select

The ALU operation field is the same as for class I, except that a third modifier is permitted: “I". If this
is on, the first operand of the instruction is "immediate™. It is 8 bits instead of four, and is the actual
data to be used as the first ALU operand, rather than the number of the scratchpad register from which
the first operand will be taken. The "I" modifier, if present, must follow the "carryin™ andfor "Q"
modifiers. The ALU operation and all modifiers must be written as a single symbol.

2 SUMMARY -7- 2 SUMMARY

The destination control field specifies the assignment of the ALU result. Tt is similar to the
"shift/destination” field in class I, except that no shift is permitted, so the only available options are
nothing, "N", "0", and "NQ". If it is not specified, the ALU result is stored in the destination register.

The memory/IO control field specifies how input data from an 10 port, data memory, or other
register is to be substituted for the destination register as the second ALU operand, and whether ‘the
result is to be sent to an IO port, data memory, or other register. 1t is described in section 7.

The program control field behaves exactly as in class L

The operand fields are similar to the operand fields in class I, except that their interpretation is
more complicated in some cases. If the "I" option is on, the first operand is immediate. Options
specified in the memory/IO control field may cause the second ALU operand to be other than the
scratchpad register specified by the second expression. If only one expression is present, it is taken as
the second, and the missing first expression is assumed to be zero.

Cliass 111 - CC Operations

This class directly medifies condition code bits. It can set, clear, or complement any or all bits,
load any or all bits from a scratchpad register, or load the "C" andfor "V" bits from each other. Like
classes T and [i, it can perform a few program control operations. This instruction class does not change
the condition code except as specified.

The instruction format is:

' - operand
{CC operation } RTN {optional)

LPCT
Examples:
SEZ 11 > 2
CLC CLN RTN s @ > C, @ -> N, return from subroutine
LYC LCV ; exchange C and V
IVvC LPCT ; compliement C, count and loop
LCC ¥ : load N, Z, ¥, C from register Y

The CC operation field specifies the operation to be performed and the bits to be affected. Several
symbols may be written here, as long as they specify the same operation. For example, "CLC CLN" causes
"C" and "N" to be cleared, and “Z" and "V to be unaffected. "CLC IVN" is illegal because the operations
are different. The operations are described in section 8.

2 SUMMARY : -8- 2 SUMMARY

The program control field behaves exactly as in class I.

The operand field specifies the scratchpad register to be used for loading operations. Each
condition code bit is loaded from a specific bit of this register, in this format:

Class IV - Program Control

This performs the full set of operations affecting program flow. It manipulates the call stack,
address/counter register, and program counter, and makes decisions based on the condition code. No
scratchpad register is ever changed, nor is the condition code changed, by any of these instructions.

The instruction format is:

condition - operand
{control operation } (optional) REG| [{optional)

Examples:
JSR FOOD + call subroutine at location FOO
JMP GT FOO ; if jast result was > 8, jump to location FOO
LOCT 35 : put 35 into address/counter
LSETUP CS REG ; if C =1, copy offset register into address/counter: push
LPCT s+ count and loop
EXIT FOO ; exit to FOO unconditionally

The control operation field specifies the action to be performed. These actions are described in section 9.
Many of these operations depend on a condition, and many of them use a 12 bit "effective address” either
as a count or as a program address.

The condition field specifies how the condition that controls the operation is to be computed from
the 4 bits of the condition code. If nothing is specified, the condition is always true. This field is
described in section 10.

The "REG" option causes the effective address to be computed from the offset register, instead of
(usually) being the operand field itself,

‘The operand field is a 12 bit quantity used to compute the effective address. If it is omitted it is
taken as zero.

2 SUMMARY ' -9- 2 SUMMARY

The effective address computation is as follows:

If the "REG" option is not specified and the operation is not VJIP or JCB, the effective address is the
entire 12 bit operand.

If "REG" is not specified and the instruction is VJMP, the left 8 bits of the effective address are the left 8
bits of the operand, and the right 4 bits of the effective address are the right 4 bits of the of fset register.

If "REG" is not specified and the instruction is JCB, the left 8 bits of the effective address are the left 8
bits of the operand. The right 4 bits of the effective address are the number of the Dbit position of the

leftmost zero bit in the offset register, or 8 if there are no zeros.

If "REG" is specified, the left 4 bits of the effective address are the left 4 bits of the operand, and the
right 8 bits of the effective address are the contents of the offset register.

No REG option, instruction = VJIP or JCB

Z11 718 23 28 77 6 15 4 Z3IZZ‘ZI Z8

(Z = operand}

No REG option, instruction = VJIP

Z11 718 29 78 Z7 26 I5 Z4|R3 R2 Rl Re

(R = contents of offset register)

No REG option, instruction = JCB

Z11 718 Z9 78 77 76 I5 Z4 (N3 N2 N1 N©

{N = bit position (7 through @) of leftmost
zero in R, or 8 if R = 11111111}

REG option used, any instruction

Zil Z18 29 Z8 |{R7 R6 RS R4 R3 R2 Rl RO

3 ALU OPS -10- 3ALUDOPS

3. ALU OPERATIONS

These are available in ciasses I and 11

ZERO zero

XFF -1, that is, 3774 or FFig (no *G* wmodifier allowed for
this instruction)

SRC SRC+carryin

NSRC SRC+1, that is, -SRC ©

CSRC SRC+carryin, that is, —SHC—1+carfgin

DsT DST+carryin

NDST DST+1, that is, -0ST B

CosT | 0ST+carryin, that is, -DST-l+carryin

QREG QREG+carryin ©

NGREG GREG+1, that is, -OREG ©

CQREG GREG+carryin, that is, -OREG-l+carryin &

ADD SRC+DST+carryin

SUB SRC+0ST+1, that is, SRC-DST B

RSUB SRC+DST+L, that is, DST-SRC &

SUB1, ADDCDST SRC+D5T+4carryin, that is, SRC-DST-lscarryin

RSUB1, ADDCSRC SRC+0ST+carryin, that is, DST-SRC-l+carryin

AND SRCADST

OR, BIS SRCVOST

XOR SRC@DST

NAND SRECADST

NGR SRCVDST

XNOR, EQV SRC@DST

ANDCSRC, BIC SRCADST

. 3ALUOPS S S P 3 ALU OPS

© Notes:

1. Those instructions which perform an addition or subtraction (SRC through RSUB1 in the above list)
leave E : :

V on if the addition overflowed

C on if a carry occurred out of the sign bit

N on if the ALU result before any shift is negative

Z on if the final result {including shift) is zero

_ The remaining instructions leave -
V off '
C off :
N on if the ALU result before any shift is negative
Z on if the final result {including shift) is zero

2. Assignment to the C bit shown here is _overridden if the shift link field specifies a shift into the C bit.
See section 6. ' ' : -

" 3. The carryin modifier may be

<nul |> add zeroI
o add one,
C add one if the previous C bit is on

There is another carryin modifier, available only with the MPY, UMPY, LMPY, NORM, DNORI, SMCVT, DIV,
and LODIV instructions: Co : : - _

ri add one if the Z bit will be set by this instruction

(For normal instructions, the state of the_Z' bit upon completion depends on the result, which may depend
on the carry in condition, so this modifier would be meaningless.) -

The "0" carryin specification may be used to compensate for the subtraction of one that happens in some
instructions, so, for example, "SUB10" computes SRC-DST. The "C” carryin specification is useful for
multiple precision arithmetic. The carryin modifier is not permitted for instructions which do not
perform an addition or subtraction, or for those mnemonics lisied in note & which have implied carryin
specifications.

4. If the "Q" modifier is used for any of these instructions, the second ALU operand (denoted DST in

_the table) is read out of the Q register {prior to any Q, register shift) instead of being read out of the
DST register. The result is still written back into the selected DST register if the shift/destination
control field says to do so.

3 ALU OPS -12- 3 ALU OPS

. If the "1” field is on, immediate data is used instead of the contents of the SRC register. In this case,
a shift must not be performed (section 5), and the shift link field (section 6) may not be specified.
Immediate data is permitted oniy in class II instructions.

6. Some of the instructions are actually just abbreviations for certain useful combinations of carryin and
“Q" modifiers. Explicit carryin or "Q’ modifiers are not permitted when the modifier is implicitly
specified in this way. For example, NOSTC and CGREGQ are meaningless. The abbreviations are:

NSRC = CSRCO
NDST = COSTO
OREG = 0STO
NOREG
COREG
sue

RSUB

cosToq

cos1a
SuB10

RSUB10

4 SPECIAL OPS -13- 4 SPECIAL OPS

4. SPECIAL ALU OPERATIONS
These are available only in class 1.

They do not specify a shift/destination control field, and may not specify a "Q" modifier. They may
specify a shift link (see section 6) to control the shifting that is implicitly performed.

Note that some of these operations are defined in terms of an intermediate "ALU result” which is not the
final result stored in the DST register. The ALU resuit is generally the result of an addition or
subtraction, and the final result is generally the result of a shift of the ALU result.

INC, INCO, INCC, INCZ
Result = DST+l+carryin

The result is assigned to the DST register without a shift. The parity of the shift in bit and the result
is made available to the linker, as if this were a right shifting instruction, just as for the <null>
shift/destination control field. The Q register is not shifted. The data presented from the Q register to
the linker is undefined. Note that INCO adds 2 to the DST register.

This leaves
V on if the addition overfiowed
C on if a carry occurred out of the sign bit
N on if the result is negative
Z on if the result is zero

SMCVT, SMCYTO, SMCYTC, SMCVTZ

if DST < @, ALU result = DST+carryin = -0ST-l+carryin, and final result = ALU resuilt®208,
if OST > B, ALU result = DST+carryin, and final resuit = ALU result

The final result is stored in the DST register without a shift. The Q register is not shifted. ‘T he parity
of the shift in bit and the ALU result is made available to the linker, as if this were a right shifting
instruction, just as for the <null> shift/destination control field. The data presented from the Q register
to the linker is undefined.

This leaves :
V on if the addition overflowed
€ on if a carry occurred out of the sign bit
N on if the final result is negative
Z on if the original DST was negative

4 SPECIAL OPS ' -i4- 4 SPECIAL OPS

This instruction is intended to be used with the "Z" carryin modifier {instruction = SMCVTZ), so the action
is:

if OST < B, ALU result = -0ST, and final result = (-DST)GZBBa
if OST 2 8, ALU result = DST, and final result = DST

SHCYTZ converts data in either direction between sign-magnitude and twos-complement form. If the
original data is 288, , the result will be zero and {in this case only) V" will be set.

UrPY, UMPYD, UMPYC, UMPYZ

If Oy =1, ALU result = SRC+DST+carryin
If @, =0, ALU result = DST+carryin

The ALU result is shifted right, shifting into the sign bit the "carry out” bit (i.e. what will go into the
"C" bit), regardless of what shift link is selected. Bit O is made available to the shift linker, as usual.
The Q register is shifted right, making bit zero available to the linker and shifting data from the linker
into the sign bit. The result of the ALU shift is stored in the DST register.

This leaves
¥ on if the addition overflowed
C on if a carry occurred out of the sign bit
N on if the ALU result before the shift is negative
Z on if O, was on prior to its shift

This instruction is intended to be used with no carryin modifier (instruction = UPY), and with shift
link = "0", so the action is:

If Oo = |, ALU result = SRC+DST
If Q, =0, ALU result = OST

and the ALU resuit and Q register shift right together.

MPY, MPYO, MPYC, MPYZ
This is the same as UMPY except that, when the ALU result is shifted right, the data shifted into the
sign bit is the exclusive OR of the overflow condition and the previous contents of the sign bit of the

ALU result (i.e. the exclusive OR of what will go into the *V" and "N" bits).

‘Like UMPY, this instruction is intended to be used with nb carryin modifier, and with shift link = "D".

4 SPECIAL OPS -15 - 4 SPECIAL OPS

LMPY, LMPYO, LMPYC, LMPYZ
This is the same as MPY except that the ALU function is

If0, =1, ALU result = DST-SRC-1+carryin
IfQ, =0, ALU result = DST+carryin

The shift of the result, and the assignment to the condition code is the same as for MPY. When the
ALU result is shifted right, the data shifted into the sign bit is the exclusive OR of the overflow
condition and the previous contents of the sign bit of the ALU result (ie. the exclusive OR of what will
go into the "V and "N" bits).

This instruction is intended to be used with the "Z" carryin modifier (instruction = LMPYZ), and with
shift link = "D", so the action is:

IfQ, =1, ALU result = DST-SRC
IfQ, =0, ALU result = DST

and the ALU result and Q register shift right together.

NORM, NORMG, NORMC, NORMZ
result- = 0ST+carryin

This is treated as a "left shifting” operation. The sign bit of the result is made available to the shift
linker, even though the result is not shifted. The Q register is shifted left, making its sign bit available
to the linker and shifting data from the linker into bit 0. The result is stored in the DST register.

This leaves
V = original Oy @ .
C = original Q, &0,
N = original Q, , i.e. the bit shifted out of the Q register
Z on if the original Q register was zero

DNORM, DNORMO, DNORMC, DNORMZ
ALU result = DOST+carryin

The ALU resuit is shifted left, shifting into bit zero the data provided by the linker. The exclusive
OR of the sign bit of the ALU result and the sign bit of the SRC register is made available to the
linker as the bit shifting out of the result. The complement of this is also stored in the "sign compare”
flip-flop. This flip-flop is loaded only by the DNORM and DIV instructions, and is preserved by all

4 SPECIAL OPS -16- 4 SPECIAL OPS

others. The Q register is shifted left, making its sign bit available to the linker and shifting data from
the linker into bit 0. The result of the ALU shift is stored in the DST register.

This leaves
¥V = original ALU, ®ALU,
C = original ALU, ®ALU,
N on if the original ALU result is negative
Z on if the original ALU result and Q register were both zero

For a normalize or first divide step operation, this instruction is intended to be used with no carryin
modifier (instruction = ONORM), and with shift link = "RD", so the action is:

The DST register and Q_ register are shifted left together. The exclusive OR of the bit shifting
out of the DST register {its sign) and the sign bit of the SRC register shifts into 0, , and the
complement of this is also stored in the "sign compare” flip-flop.

DIV, DIVO, DIVC, DIVZ

If sign compare flip-flop = i, ALU resuit = DST+SAC+carryin = DST-SRC-1+carryin
If sign compare flip-flop = 0, ALU result = DST+SRC+carryin

The ALU result is shifted left, shifting into bit zero the data provided by the linker. The complement
of the exclusive OR of the sign bit of the ALU result and the sign bit of the SRC register is made
available to the linker as the bit shifting out of the result. This is also stored in the "sign compare”
flip-flop. This flip-flop is loaded only by the DNORM and DIV instructions, and is preserved by all
others. The Q register is shifted left, making its sign bit available to the linker and shifting data from
the linker into bit 0. The result of the ALU shift is stored in the DST register.

This leaves
V on if the addition overflowed
C on if a carry occurred out of the sign bit
N on if the original ALU result is negative
Z = original sign compare flip-flop

This instruction is intended to be used with the "Z” carryin modifier (instruction = DIVZ), and with shift
link = "RD", so the action is: '

If sign compare flip-flop = 1, ALU result = DST-SRC
If sign compare flip-flop = 0, ALU result » DST+5RC

and the combined ALU result and Q register shift left. The complement of the exclusive OR of
the bit shifting out of the ALU result {its sign) and the sign bit of the SRC register shifts into G,
and is stored in the "sign compare” flip-fiop.

4 SPECIAL OFS : -17- 4 SPECIAL OPS

LDIV, LDIVD, LOIVC, LDIVZ

If sign compare flip-flop = 1, ALU result = DST+5RC+carryin = DST-SRC-1+carryin
If sign compare flip-flop = 0, ALU result = DST+SRC+carryin

The ALU result is not shifted. The sign bit of the ALU resuit is made available to the linker as if this
were a left shifting instruction. The Q_register is shifted left, making its sign bit available to the linker
and shifting data from the linker into bit 0. The ALU result is stored in the DST register.

This leaves
V on if the addition overflowed
C on if a carry occurred out of the sign bit
N on if the ALU result is negative
Z = sign compare flip-flop

This instruction is intended to be used with the "2" carryin modifier (instruction = LDIVZ), and with
shift link = 0", so the action is:

If sign compare flip-flop = 1, ALU result = DST-SRC
If sign compare flip-flop = 0, ALU result = DST+SRC

and the Q register shifts left, shifting a one into Oy . The ALU result is stored in the DST
register, and its sign in the "N” bit.

5 SHIFT/DESY : -18 - 5 SHIFT/DEST

5. SHIFT/DESTINATION CONTROL

These are available only in class I, except for "<nul I>%, "N", 0", and *NG", which are available in
classes | and IL

These control the shifting of the ALU result to make the final result, the shifting of the Q register, and
the storing of the final result into the Q register andfor the DST register.

They do not apply to special instructions, which have their own implicit shift/destination rules.

<nul |> no shift, store result in DST register and compute parity (linker considers this a right
shift) 32

N : no store (result is computed but not stored anywhere) (linker considers this a left
shift) 30

a ' store result in Q register {as well as in DST) and compute parity (linker considers this a
right shift) 3

NO no store, Q register (result is stored in Q register only, not in DST) and compute parity

(linker considers this a right shift) %

RS right shift

LS left shift

RA right arithmetic shift 2

LA left arithmetic shift 2

RSRQ right shift, right shift Q register also

LSLa left shift, left shift Q register aiso

RARQ right arithmetic shift, right shift Q register also 2

.LALQ left arithmetic shift, left shift Q register also 2

NRQ no store (result is computed but not stored anywhere), right shift Q register, compute
parity 2

NLG no store (result is computed but not stored anywhere), left shift Q register 3b

LXT left sign extend: the ALU result is ignored and replaced by 8 copies of the bit provided

S SHIFT/DEST -19- 5 SHIFT/DEST

by the shift linker. That bit is also sent to the linker as the bit shifting out of the feft
end. (linker considers this a left shift) 0

Yi7 no shift, rather useless (linker considers this a left shift) 3
Notes:
L. All codes except those containing the letter “N" store the final result in the selected DST register.

2. Q register shifts are always 8 bits. Shifts of the ALU result are 8 bits if the shift is RS or LS, 7 bit
shift leaving sign alone if RA or LA, If LA, it is bit 6 that is sent to the shift linker. If RA, the linker
data goes into bit 6. :

3. Codes <null>, O, and NO are considered to be “right” codes, and codes N, LXT, and Y17 are “left",
even though no shift takes place. This is important in considering the behavior of the shift linker.

32. Right instructions <nuli>, O, NO, and NRQ make the parity of the shift-in bit from the linker and
the 8 bits of the ALU result available to the linker. Hence <nul I> with shift link "UN" sets the "C" bit
to the parity of the ALU result. -

3b. Left instructions N, NLQ, and Y17 make the sign bit (bit 7) available to the linker, even though they
do not shift. Hence "N" with shift link "C" (see section 6) copies the sign bit into the C bit but otherwise
ignores the resuit. Instruction LXT makes whatever the linker provides at the right end available to the
linker at the left end. Hence "LXT" with shift link "OC" sets the result to 377, and shifts a one into the
C bit. '

4. A bit from the Q register is presented to the linker only if the Q register is shifting: RSRQ, LSLa,
RARQ, LALQ, NRQ, or NLO. For other specifications, the data presented from the Q register to the linker
is undefined. ,

5 The N bit is set from the ALU result before any shift, but the Z bit is set from the final resuit.
Hence "ZERO LXT" with shift link "0C" sets C (because a one shifts into it), clears N (because the ALU
result is zero, which is not negative), and clears Z (because the final result is 3774 , which is not 2ero).

6 SHIFT LINK -20- 6 SHIFT LINK

6. SHIFT LINK field

These are available only in class I.

This field has two completely different interpretations, depending on whether the ALU instruction is
considered to be a right shift or a left shift. For right shift instructions {including <nul >, Q, NQ and
special instructions UMPY, MPY, INC, SHCVT, and LHPY) the linker receives data that it presumes to be
shifting out of bit zero of the ALU result and the Q register, and provides data to be presumably
shifted into the sign bit of the ALU result and the Q register. For left shift instructions (including N,
LXT, Y17, and special instructions NORM, DNORM, DIV, and LDIV) it does the opposite. In either case, if
the description below shows data being shifted into the "C” bit, that shift takes precedence over the
normal loading of the C bit from the carry out condition of the adder.

The letters appearing in the mnemonics have the following general meaning:

rotate, i.e. insert the bit shifting out back in at the other end
shift in a one every place not otherwise specified, instead of zero.
double - ALU resuit is left half and Q register is right haif of a 16 bit register

consider C bit to be appended to left end of ALU resuit (but don’t shift in a zero or one)

c O O o @

"un-C" - consider C bit to be at right end of ALU result or double register
BC "branch carry” - copy whatever is shifting past the left end of the ALU result into C bit, but don't
put C bit into the shift chain

N shift the N bit in

6 SHIFT LINK -91-

6.1 Right shifts

<nul > 8- AU 2-x Q

0. 1] ALU 1 a

0 6 ALU a

0o 1 AL a

R - Lo

RO ALU 0

RC A L;|I
ROC ALU 0
RBC i EE
ROBC ALU a

oc ALU 0
DU 8 AU a

B SHIFT LINK

6 SHIFT LINK -22- 6 SHIFT LINK

LIN‘ LEBALU—‘N—;'D

X13 x—| ALY ——E
X16 x ALU \——;{_—u_:

* XI3 shifts the next "C” bit (the bit that is simultaneously being stored in "C") into the left end of
the ALU result. XI6 shifts in the exclusive OR of the next "N” bit and the next "V" bit. These
codes were intended for compatibility with ALU chips that were not as sophisticated as the 2903
in performing the MPY and UMPY instructions.

B SHIFT LINK

6.2 Left shifts

<nul I>

Do

RD

AC

RDC

RBC

RO8C

pc

Bu

.93
ALU a Q B
AU k-1 ‘jjﬂ
ALY 0 8
ALU B 1

L L

ALU

ALU

ALU

ALU

ALU

(] l.'".l. ('3- o) (]
-

ALU

(o

T

ALY —__u___—)eJ
[0

(o)

6 SHIFT LINK

6 SHIFT LINK -24- 6 SHIFT LINK

oc C [aLu 1

—
Tk

7 10/MEMORY

-2- 7 10/MEMORY

7. 10/memory field

These are available only in class L.

<nul i>

MR

LM

RI1ODAT

RIODATHM

RIOSTAT

Performs the same operation that would happen in class L.

Performs the indicated operation, but the data in the data memory is used as the second
ALU operand instead of the DST register. The final result is still stored in the DST
register if the destination field says to do so. The data is read from the memory at the
address given by the memory address register.

_ Performs the indicated operation, but the final resuit is stored in the data memory, as

well as being stored in the DST register and/or Q register as indicated by the
destination control field. The data is stored in memory at the address given by the
memory address register.

The incoming 10 data from the selected port is used as the second ALU operand,
instead of the DST register. The final result is still stored in the DST register if the
destination control field says to do so. The incoming data byte is acknowledged, and the
"input ready” status bit is cleared. This instruction should not be executed if the "input
ready" status bit for the selected port is off.

Similar to RIODAT, but the final result is stored in the data memory, as well as being
stored in the DST register andfor @ register as indicated by the destination control
field. The data is stored in memory at the address given by the memory address
register.

Similar to RIODAT, but the status word for the 1O ports is used as the second ALU
operand. The status does not change, and no acknowledges are sent. The status byte is
in this format:

@ [ORS OR1 OR LBS.IRSIIRI 1R

IRB Input port zero is ready, that is, it has a data byte available to be read by a
RIODAT instruction.

IR1 Input port one is ready.)

IRS The selected input port (determined by bit 1 of the port select register) is ready.

LBS If the selected input port is ready, the byte has its "last byte” bit set. This

condition must be sensed before the actual data is read.

ORG Output port zero is ready, that is, it may have a data byte transmitted by a
WIODAT or WIOLAST instruction.

OR1L Output port one is ready.

ORS The selected output port (determined by bit O of the port select register) is
ready.

7 10/MENORY

RIOSTATH

RCC

RCCH

WICDAT

Md10DAT

WIOLAST

HMWIOLAST

WARL

MWARL

HARR

MJARR

WOFF

- 96 - 7 10/MEMORY

Similar to RIOSTAT, but the final result is stored in the data memory in addition to its
other destinations.

Similar to RIODAT, but the condition code is used as the second ALU operand, in this
format:

The condition code is subsequently changed in accordance with the ALU operation.

Similar to RCC, but the final result is stored in the data memory in addition to its other
destinations.

The final result of the operation is transmitted on the selected 1O port, as well as being
stored in the destinations indicated by the destination controi field. The "last byte” bit is
transmitted as zero. This instruction should not be executed if the “output ready” status
bit for the selected port is off. '

Similar to WIODAT, but the data in the data memory is used as the second ALU operand
instead of the DST register. The final result is still stored in the DST register {as well
as being transmitted on the IO port} if the destination field says to do so. The data is
read from the memory at the address given by the memory address register.

Similar to WIODAT, but the "last byte” bit is transmitted as one.

Similar to WIDLAST, but the data in the data memory is used as the second ALU
operand instead of the DST register.

Similar to WIODAT, but the final result of the operation is stored in the left half of the
memory address register, as well as being stored in the destinations indicated by the
destination control fieid. The right half of the memory address register is not changed.

Similar to WARL, but the data in the data memory (using the old contents of the address
register) is used as the second ALU operand instead of the DST register.

Similar to WI10DAT, but the final result of the operation is stored in the right half of the
memory address register, as well as being stored in the destinations indicated by the
destination control field. The left half of the memory address register is not changed.

Similar to WARR, but the data in the data memory (using the old contents of the address
register) is used as the second ALU operand instead of the DST register.

Similar to WIODAT, but the final result of the operation is stored in the offset register, as
well as being stored in the destinations indicated by the destination control field. The

7 10/MEMORY

MUJOFF

WPSEL

MWPSEL

- 21- 7 10/MEMORY

data in the offset register will be used for address medification of VJMP and JCB control
instructions, or any controt {class IV) instructions that use the REG option.

Similar to WOFF, but the data in the data memory is used as the second ALU operand
instead of the DST register.

Similar to MIODAT, but the final result of the operation is stored in the 1O port select
register (right two bits only), as well as being stored in the destinations indicated by the
destination control field. The port select register has this format:

- < - - - - |wfour

IN Port selected for input (controls RIODAT and the "IRS” and "LBS" bits of
' RIOSTAT)

OUT Port selected for output (controls WIODAT, WIOLAST and the "ORS" bit of
RIOSTAT)

Similar to WPSEL, but the data in the data memory is used as the second ALU operand
instead of the DST register.

8 CC OPS -28 - & CC OPS

8. CC OPERATION field

These are available only in class [1].

SEN, SEZ, SEV, SEC Set the "N", "Z", V", or "C" bit, respectively. Any or all of these may be
used together.

SCC ' Set all four condition code bits. Equivalent to “SEN SEZ SEV SEC".

CLN, CLZ, CLV, CLC Clear the "N", "Z", "V", or "C" bit, respectively. Any or all of these may be
used together.

ccc Clear all four condition code bits. Equivalent to "CLN CLZ CLV CLC".

IVN, IVZ, Ivv, IVC Invert {(complement) the "N", 2%, "V", or "C" bit, respectively. Any or all

of these may be used together.
icC Invert all four condition code bits. Equivalent to "IVN 1¥Z IVV [VC".

LON _ Load the "N" bit from bit 3 of the indicated scratchpad register. The
other bits are unaffected.

L0Z : Load the "Z" bit from bit 2 of the indicated scratchpad register. The
other bits are unaffected.

Lov Load the "V" bit from bit | of the indicated scratchpad register. The
- other bits are unaffected.

LoC Load the "C" bit from bit O of the indicated scratchpad register. The
other bits are unaffected.

LCC Load the entire condition code from the low four bits of the indicated
scratchpad register. Equivalent to "LON LOZ LOV LDC™.

LvC Load "v" from C".

LCv Load "C" from "V". LVYC and LCV together exchange "C" and "¥".

9 CONTROL OPS .99 9 CONTROL OPS

9. CONTROL OPERATION field

These are available only in ciass IV, except for "enutI>" "RTN" and "LPCT", which are available in all
classes.

Many of these depend on the condition computed from the condition code and specified by the condition
field described in section 10.

<nul i> Do nothing, continue with next instruction. The condition is ignored.
JHP (conditional) If the condition is true, jump to the effective address.
JPR (conditional) Jump or use register. If the condition is true, jump to the effective

address. If not, jump to the address contained in the address/count register.

JSR (conditional) Jump to subroutine. If the condition is true, push the PC and jump to the
effective address.

JSRR (conditional) Jump to subroutine or use register. If the condition is true, push the PC
and jump to the effective address. If not, push the PC and jump to the address

contained in the address/count register. 1

RTN (conditional) Return. If the condition is true, pop the top address from the stack and
jump there. 2

yJhe Vector jump. Always jump to the effective address. (If the REG option is off, the low 4
bits of the effective address are the iow 4 bits of the offset register) The condition is
ignored. 3

JCB (conditional) Jump and count bits. If the condition is true, jump to the effective

address. (If the REG option is off, the low 4 bits of the effective address are set to the
number of the bit position of the leftmost zero bit in the offset register.) 3

LOCT Load count. Load the address/count register with the number which is the effective
address. The condition is ignored.

LSETUP (conditional) Loop setup. If the condition is true, joad the addressicount register with
the number which is the effective address. Push the PC in any case. 1

LOOP (conditional) If the condition is true, pop and discard the top address from the stack. If
not, jump to the address on top of the stack without popping it.

LPCY Loop count. If the address/count register is nonzero, decrement it and jump to the
address on top of the stack without popping it. If it is zero, pop and discard the top
address from the stack. The condition is ignored.

9 CONTROL OPS | -30- 9 CONTROL OPS

COUNT If the address/count register is nonzero, decrement it and jump to the effective address.
If it is zero, do nothing. The condition is ignored.

EXIT (conditional) If the condition is true, pop and discard the top address from the stack
and jump to the effective address. If not, do nothing.

TWB (conditional) Three way branch. If the condition is true, pop and discard the top
address from the stack and decrement the address/count register if it is nonzero. If not
and the address/count register is nonzero, decrement it and jump to the address on top
of the stack without popping it. If the condition is false and the address/count register is
zero, pop and discard the top address from the stack and jump to the effective address.

RESET Jump to location zero and clear the stack. The condition is ignored.
Notes:

I. The call stack can hold five items. If too many items are pushed onto it, the oldest item is Jost. No
indication is given when this happens.

2. If the RTN operation is given in a class I, I1, or 1II instruction, a condition may not be specified. The
operation takes place unconditionally in this case.

3, The instructions YJMP and JCB use an unusual effective address calculation. See section 2.

18 CONDITIONS -3 - 18 CONDITIONS

10. CONDITION field
These are available only in class IV.

The condition is computed from the "N", "Z" "¥", and "C" bits left by the previous instruction.

name logical meaning meaning

: condition after SUB X, ¥ after DST X
<nul i> Always true
MI, NS N X < @ signed
PL, NC N X > B signed
EaQ, 7S Z X=Y X=28
NE, ZC rd X =Y X =8
vs v . overfiou
vC v no overfiou
HIS, CS C X > Y unsigned
Lo, CC c | X < Y unsigned
HI CAZ x>y unéigned
LOS tvz X < Y unsigned
GT (NeV) AZ X > Y signed X > 8 signed
GE . Nev X > Y signed X > @ signed
LY N&Y X <Y signed X < @ signed
LE iNDY) VZ X £ Y signed X € B signed
cz ' cvZ

NCZ CVZ

11 APPLICATIONS -32- 11 APPLICATIONS

11. Applications
Subroutine call and return

JSR CS SUBR s call if "C" is on

SUBR:

RTN GE ¢ return if last result >= B

ADD RTN 4,5 do some arithmetic and

H
s unconditional return

Loop under count (uses address/count register for count and call stack for restart address)

LSETUP 5
e e e e e s all of this happens b times
LPI':T) ' ¢ discards return address when finished

Loop under test (uses call stack for restart address)

LSETUP
. e e : repeate unti! "V" is off
I:DE!P.V(': ; discards return address when finished

Loop under count without using stack (Since nothing is added to the stack, the loop may be exited at any
time with a JHP or similar instruction.)

LOCT &
; all of this happens once

: all of this happens 6 times

COUNT AGAIN-

A loop under test without using the call stack may be written in a straightforward way with a
conditional JHP instruction.

11 APPLICATIONS -33- 11 APPLICATIONS

Abnormal exit from loop that is using the call stack

LSETUP
éXiT.Ea 60NE : if result = B, exit from loop
LOOP V€
DONE: .+
Three way branch
LSETUP 5
e e e e s happens up to 6 times

s if result < 8, fall out of loop
: if not, repeat the loop if count
: unexpired, else exit and go to OONE

TWB LT DONE

16 way 'dispatcﬁ" jump

load of fset registér with R24R3,
for example
uses lou 4 bits of offset register

ADD N WOFF 2,3

- e

VJMP TABLE

e ¢+ 2 = &

LOC (.-1)}17+1
TABLE: ~ JMP X1
JHP X2
JMP X3

round up to 16 instruction boundary
here if low 4 bits = 8008

here if 8861

etc.

- ws W W

Multiple precision addition - sets Y1Y2Y3 to XIX2X3 + YIY2Y3

ADD X3, Y3
ADDC X2, Y2
ADOC X1, Y1

11 APPLICATIONS -3 - 11 APPLICATIONS

Muliiple precision subtraction - sets YIY2Y3 to XIX2X3 - YIY2Y3

SUB X3, Y3
SUBIC X2, Y2
SuBiC X1, Y1

Unsigned Multiplication
Put the multiplicand in register X, put the multiplier in the Q register, and clear register Y.

LSETUP 7
UMPY D LPCT X,Y { happens 8 times

The 16 bit product will be computed, with its left 8 bits in Y and its right 8 bits in the Q register.
Register X will be unchanged. '

Twos complement muitiplication
Put the muitiplicand in register X, put the multiplier in the Q register, and clear register Y.

LSETUP 6
MPY D LPCT X,Y ¢t .happens 7 times
LMPYZ D XY

The 16 bit twos complement product will be computed, with its left 8 bits in Y and its right 8 bits in the
Q register. Register X will be unchanged.

Division

To perform a division of a 16 bit twos complement dividend by a twos complement divisor, put the
dividend in scratchpad register Y (high part) and the Q register (low part). Put the divisor in
scratchpad register X.

ONGRM RD X, Y

LSETUP B
DIVZ RD LPCT X,Y + happens 7 times
LDIVZ O X,Y : now dividend = (0 x divisor + Y
; and —|divisor] £ Y < |divisor|
¢ the "N" bit contains the sign of Y

The quotient is now in the Q register and the remainder is in register Y. Register X is unchanged. To

11 APPLICATIONS -35- 11 APPLICATIONS

repair the case in which the remainder is negative, something such as the following might be executed:

JP PL .48, : jump if remainder 0K

OST N X : test divisor

JUP PL .+4

RSUB X,Y divisor negative, fix remainder

- we

OREGO NQ - fix guotient

JHP 43

ADD X,Y divisor positive, fix remainder
ADDQI NQ -1, fix guotient

now dividend = Q % divisor + Y
and @ £ ¥ < |divisor|

*u we e W

Of course, different correction routines might be appropriate for different applications.

12 OP CODES -6 - 12 OP CODES

12. APPENDIX - OP CODES

The codes listed here are for reference in examining object microcode. They are not needed for writing
programs, and may not be inteiligible to people unfamiliar with the detailed operation of the MP
hardware.

arithmetic operations (bits 27-24)

@ XFF/special &4 DST 8§ ZERO € AND
1 RSUB1 S CDsST 9 ANDCSRC D NOR
2 SuBl 6 SRC A XNOR £ NAND
3 ADD 7 CSRC B XOR F OR
special instructions (bits 23-28)
8 UmMPY 4 INC 8 NORM c o1y
S SMCVT
2 MPY 6 LMPY A DNORM E LDIV
carryin codes (bits 23-28)
B8 <nult >
1 0
2 2
3 C
right shifts {(bits 23-28)
%] RA 4 <nulls
1 RS 5 NRQ
Z2 RARQ & NOQ
3 RSRO 7 0
right shift {inks (bits 11-8) |
@ <null> 4 DC 8 RBC C ROC
1 0 S DN 9 RC 0 RDBC
2 UN 6 D A R E Xib
3 00 7 DU B X13 F RD
left shifts (bits 23-28)
g8 LA C N
9 LS D NLO
A LALQ E LXT
8 LSLO F Y17
left shift links {(bits 11-8)
g C 4 DC 8 RBC C ROC
1 oc 5 DOC 9 RC D RDBC
2 <nuyll> & D A R £ Ou
3 0 7 DO B U F RO

12 OP CODES -37-

10 sources {(bits 14-12)

8 RIODAT
1 RIOSTAT
2 RCC

0 destinations (bits 14-12)

8 <nuli> 4 UARR
1 WIODAT S WPSEL
2 WIOLAST 6 WOFF
3 UWARL

EC operations (bits 27-24)

8 LCC etc. 4 LVC/LCY
1 SCC etc. S ICC etc.

3 CCC etc.
CC masks {bits 11-8)

00 £ N =
ZMN <)

PC control codes (bits 19-16)

Y RESET 4 {_SETUP 8 LPCT
1 JSR 5 JSRR 9 COUNT
2 YJUP & JCB A RIN
3 JP 7 JMPR B EXIT
conditions (bits 27-24)

B GT 4 NE 8 NCz

1 LE 5 EQ 9 C2

2 ©OE 6 VC A LD

3 LT 7 VS B HIS

Mmoo

Mmoo

LDCT
LGOP
<nul >

Twe

12 OP CODES

