The Programmer’s Apprentice:

Knowledge Based Program Editing
Richard C. Waters

The Artificial intelligence Laboratory
Massachusetts institute of Technology
545 Technology Square
Cambridge MA 02139

The goal of the Programmer’s Apprentice project at the MIT Artificial
Intelligence Laboratory is to develop a theory of how expert
programmers analyze, synthesize, modify, explain, verity, and document
programs. Recognizing that the long-term goal of totally automatic
programming is very far off, we are applying our research towards the
immediate goal of developing an intelligent computer assistant for
programmers, called the Programmer’s Apprentice. As a first
demonstration of how the Programmer’s Apprentice can help a
programmer, we have implemented a new kind of program editor which
understands how a program is composed out of common algorithmic
fragments.

This knowledge based program editor makes it possible to modify a
program by issuing commands which refer directly to the logical
structure of the algorithms being used, rather than commands which
refer to the textual or syntactic structure of the program. For example,
with existing program editors, a single logical change to a program must
often be achieved by many separate changes to different parts of the
program text. With the knowledge based editor, such a change can often
be achieved by using a single command.

In order to support this mode of interaction, the editor maintains a
plan which represents the logical structure of the program. The user
requests specify changes in this plan. In order to be able to
communicate with other parts of the programming environment, the
system maintains a corresponding textual representation for the
program. When the user specifies a change to be made to the plan, the
editor determines what changes this causes in the text. {f the user
directly changes the text, the new text is analyzed in order to determine
what the plan should be.

As our underlying theory develops further, we expect the capabilities
of the Programmer's Apprentice to increase, with a corresponding
reduction in the amount of work the programmer is required to do.

Increasing Programmer Productivity and Program Reliability

* Programming consists of many phases: design, implementation,
testing, debugging, documentation, maintenance, and modification.

* in order to have an order of magnitude effect, you must impact all the
phases.

* The introduction of high level languages may be the only example of
this to date. '

* Knowledge is the key to making another dramatic productivity increase.

* Al technologies can make this possible.

* The ultimate goal of Al in programming is Automatic Programming but
this is decades away.

* Fortunately, there are many intermediate tools possible.

Levels of Knowledge

Deep Understanding

Semantic Structure

Syntactic Structure

Text

Design Decisions

Pieces of Algorithm

Pieces of Parse Trees

Character Strings (Files)

LEVEL

UNIT of ACTION

* No current programming aid exhibits intelligence in any significant way.

The Assisfant Metaphor

[State of the Art]
[Programming Environment]

"Editor

CODE

Interpreter Compiler

USER

ASSISTANT

An Example

Implementing a set as a hash table:

Theset {ABCDEF GHIJLMN} could be stored in a hash table using
buckets with header cells of NIL as:

TR EFOFMY]
N R GEENEET
1-{clHla
TV 1B THL L

The hashing operation selects the bucket corresponding to a symboi.

L

Various other operations such as adding into and deleting from a set
then act on this bucket.

Implementing the DELETE Operation

Define a program DELETE with a parameter SYMBOL.

/* The function HASH maps a symbol into the corresponding
bucket in TBL. */

HASH: PROCEDURE{SYMBOL) RETURNS (POINTER);
DCL SYMBOL POINTER,
SXHASH EXTERNAL ENTRY (POINTER) RETURNS (FIXED),
TBL (*) POINTER EXTERNAL,
TBLSIZE FIXED EXTERNAL;
RETURN (TBL(ABS(MOD(SXHASH(SYMBOL), TBLSIZE))));
END HASH;

/* The function DELETE removes a symbol from TBL. */
DELETE PROCEDURE(SYMBOL) RETURNS (...);

DCL SyMBOL ...,
END DELETE;

ZMACS (LISP) AI: PA; HASH > (1)

Implement the program as a linear search.

/* The function DELETE removes a symbol from TBL.

DELETE PROCEDURE{SYMBOL) RETURNS (...)};
DCL SYMBOL ...,
AGGREGATE ...;
AGGREGATE = arg-of-enumerator;
LP: IF empty-test-of-enumerator(AGGREGATE)
THEN RETURN (NULL{));
IF test() THEN RETURN (action());
AGGREGATE = step-of-enumerator(AGGREGATE);
GOTO LP;
END DELETE;

*/

ZMACS (LISP) AI: PA; HASH > (1)

Implement the enumerator as a list enumeration of
"HASH(SYMBOL)->NEXT".

/* The function DELETE removes a symbol from TBL.

DELETE: PROCEDURE(SYMBOL) RETURNS (...);
DCL SYMBOL POINTER,
LIST POINTER,

NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
LIST = HASH(SYMBOL)->NEXT;
LP: IF LIST=NULL() THEN RETURN (NULL());
item = LIST->VALUE;
IF test() THEN RETURN (action());
LIST = LIST->NEXT;
GOTO LP;
END DELETE;

*/

HASH EXTERNAL ENTRY (POINTER) RETURNS (POINTER),

ZMACS (LISP) AL: PA; HASH > (1)

Implement the test as "ITEM=SYMBOL".

/* The function DELETE removes a symbol from TBL.

DELETE: PROCEDURE(SYMBOL) RETURNS (...):
DCL SYMBOL POINTER,
LIST POINTER,

NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
LIST = HASH(SYMBOL)->NEXT;
LP: IF LIST=NULL{) THEN RETURN (NULL());

LIST = LIST->NEXT;
GOTO LP;
END DELETE;

IF LIST->VALUE=SYMBOL THEN RETURN (action());:

*/

HASH EXTERNAL ENTRY (POINTER) RETURNS (POINTER),

ZMACS (LISP) AI: PA; HASH > (1)

Implement the action as a splice out of the previous value
of 'LIST.

/* The function DELETE removes a symbol from TBL. */

DELETE: PROCEDURE(SYMBOL);
DCL SYMBOL POINTER,
LIST POINTER,
PREV POINTER,
HASH EXTERNAL ENTRY (POINTER) RETURNS (POINTER),
'NODE_PTR POINTER,
1 NODE BASED (NODE_PTR},
2 VALUE ...,
2 NEXT POINTER;
LIST HASH{SYMBOL)->NEXT;
PREV initial-value;
LP: IF LIST=NULL{) THEN RETURN;
IF LIST->VALUE=SYMBOL
THEN DO: PREV->NEXT = PREV->NEXT->NEXT;
RETURN; END;

PREV = LIST;
LIST = LIST->NEXT;
GOTO LP;

END DELETE;

IMACS (LISP) AI: PA; HASH > (1)

10

Impiement the initial value as "HASH(SYMBOL)".

/* The function DELETE removes a symbol from TBL. */

DELETE: PROCEDURE(SYMBOL);
DCL SYMBOL POINTER,
LIST POINTER,
PREV POINTER,
HASH EXTERNAL ENTRY (POINTER) RETURNS (POINTER),
NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
LIST = HASH(SYMBOL)->NEXT;
PREV = HASH(SYMBOL):
LP: IF LIST=NULL() THEN RETURN;
IF LIST->VALUE=SYMBOL
THEN DO; PREV-D>NEXT = PREV-D>NEXT->NEXT;
RETURN; END;
PREV = LIST;
LIST = LIST-D>NEXT;
GOTO LP;
END DELETE;

IMACS (LISP) AI: PA; HASH > (1)

1

Share the first HASH and the second HASH.

/* The function DELETE removes a symbol from TBL.

DELETE: PROCEDURE(SYMBOL);
DCL SYMBOL POINTER,
LIST POINTER,
PREV POINTER,
HASH EXTERNAL ENTRY (POINTER) RETURNS
NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
PREV = HASH{SYMBOL);
LIST = PREV->NEXT;
LP: IF LIST=NULL() THEN RETURN;
IF LIST->VALUE=SYMBOL
THEN DO; PREV-D>NEXT = PREV->NEXT->NEXT;
RETURN; END;
PREV = LIST;
LIST = LIST->NEXT;
GOTO LP;
END DELETE;

*/

(POINTER),

ZMACS (LISP) AI: PA; HASH > (1)

12

Describe the ports of the program.
Display the source of the TBL output.

/* The function DELETE removes a symbol from TBL.

DELETE: PROCEDURE{SYMBOL);
DCL SYMBOL POINTER,
LIST POINTER,
PREV POINTER,
HASH EXTERNAL ENTRY (POINTER) RETURNS
'NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
PREV = HASH(SYMBOL);
LIST = PREV->NEXT;
LP: IF LIST=NULL() THEN RETURN;
IF LIST->VALUE=SYMBOL
THEN DO; PREV->NEXT = PREV-DNEXT-DNEXT;
RETURN; END;

PREV = LIST;
LIST = LIST->NEXT;
GOTO LP;

END DELETE;

*/

(POINTER),

The ports of the program DELETE:
The SYMBOL parameter
The TBL free variable input
The TBLSIZE free variable input
The return value
The TBL side-effect output

IMACS (LISP) AI: PA; HASH > (1)

S

Create a comment for the program.

/* The function DELETE removes a symbol from TBL. */

/* Searches a list enumeration of the NEXT of the HASH of
SYMBOL for an element which satisfies the = comparison of
the VALUE of the sublist under examination and SYMBOL.

IF found, splices out the successor of the previous value

of the sublist under examination.

DELETE: PROCEDURE(SYMBOL);
DCL SYMBOL POINTER,
LIST POINTER,
PREV POINTER,

NODE_PTR POINTER,
1 NODE BASED (NODE_PTR),
2 VALUE ...,
2 NEXT POINTER;
PREV = HASH(SYMBOL);
LIST = PREV->NEXT;
LP: IF LIST=NULL() THEN RETURN;
If LIST->VALUE=SYMBOL
THEN DO; PREV-DNEXT = PREV->NEXT->NEXT;
RETURN; END;
PREV = LIST;
LIST = LIST->NEXT;
GOTO LP;
END DELETE;

*/

HASH EXTERNAL ENTRY (POINTER) RETURNS (POINTER},

ZMACS (LISP) AL: PA; HASH > (1)

-4

Use language LISP.

i:: The function DELETE removes a symbol from TBL.

:3; Searches a list enumeration of the CDR of the HASH of

1:: SYMBOL for an element which satisfies the = comparison of
i3: the CAR of the sublist under examination and SYMBOL.

:3: IF found, splices out the successor of the previous value
;33 of the sublist under examination.

(DEFUN DELETE (SYMBOL &AUX LIST PREV)
(PROG ()
(SETQ PREV (HASH SYMBOL))
(SETQ LIST (CDR PREV))
LP (COND ((NULL LIST) (RETURN NIL)))
(COND ((EQ (CAR LIST) SYMBOL)
(RPLACD PREV (CDDR PREV))
(RETURN NIL)))
(PSETQ PREV LIST
LIST (CDR LIST))
(GO LP)))

ZMACS (LISP) AI: PA; HASH > (1)

14

The Key Features of the System
* Supports Editing of algorithmic structures.
- Has a library of algorithmic fragments.
* Records and can display a variety of information about a program.
* Supports implementation and modification.

* Supports the intermixing of text editing and knowledge based editing.

- Can operate on programs not created by the system.

* Language independence.

15

Architecture of the knowledge Based Editor

CODER

ANALYZER

TEXT
EDITOR

PLAN
EDITOR

|e——)[LIBRARY

CODER - Works for LISP, PLI, and HIBOL.

ANALYZER - Works for LISP, FORTRAN, and COBOL.
Does not yet recognize library fragments.

TEXT EDITOR - The standard Lisp Machine editor.

PLAN EDITOR - Supports direct modification of plans.

LIBRARY - Plans for common algorithmic fragments.

Currently, only a few are defined.

.16

PLANS: The Underlying Representation Used by the Editor

Enable the editor’s actions to be small and local.
Explicit data flow and control flow simplify deduction.
Does not need to be expressible on paper.

Provides programming language independence.
Focuses on features of the algorithm rather than the language.

Used to represent the algorithmic fragments in the library.

| Loops are represented as compositions of loop fragments.

Z =10;
DO I=1 70 10;
IF A(I)>0 THEN
Z = Z+A(1);
END;
enumerate integers filter positive summation
DO I=1 TO 10; |9 Ay M z-o0
END; Z = Z+A(I)

o

The PLAN For Linear Search

arq- of- enumerator
77

N

emtmem{‘or

i

N &st

NIL

<

action

=

.18

The Depth of Understanding of the Editor

In order to construct DELETE the user had to say:

Define a program DELETE with a parameter SYMBOL.
Implement the program as a linear search.

Implement the enumerator as a 1ist enumeration of
"HASH({SYMBOL)->NEXT".

Implement the test as "ITEM=SYMBOL"

Implement the action as a splice out of the previous value
of 'LIST.

Implement the initial value as the value of the HASH.

* It does not understand data structures.
* It does not understand specifications.
* It does not understand any interrelationships between fragments.

* 1t uses the fragments only in very simple ways.

19

The Second Version of the PA: User Guided Synthesis

Before creating the function HASH, the user would say:

TBL is a global vector of size TBLSIZE implementing a set as a
hash table whose buckets are 1ists with header cells of NIL.

Define a program HASH which maps a given SYMBOL into the
corresponding bucket in TBL.

In order to construct DELETE he would then say.

Define a program DELETE which removes a given SYMBOL from TBL.

Implement the program as a search for an occurrence of SYMBOL
in TBL.

Implement the action as a splice out of this occurrence.

20

Future Goals of the Programmer’s Apprentice Project

|

Automatic |

programming + + + +
I
I
|
I

Simple |

Assistant + + + +
I
I
I

User Guided |

Synthesis + + + +
|
I
f

Knowledge |

Based Editor + + + +
I
f
------ R el e i bl DRl b
Demonstration Prototype Full Scale System

Now
1 year

3 years

