MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

The Monsoon Processing Element
Architecture Reference

Computation Structures Group Memo 283

March 1, 1988

Gregory M. Papadopoulos

This re describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for the]zaboratory 1s provided in part by

the Advanced Research Projects Agency of the Department of Defense under the Office
of Naval Research contract N0O0014-84-K-0099.

945 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Contents

1 Scope

2 Basic Data Representations

21
2.2
2.3
24
2.5
2.6

Tokens

Pointers
Floats .,
Integers

Booleans

3 Processing Pipeline

4 Maecro Instructions

5 First Level Decode

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

.............................

.............................

.............................

.............................

.............................

.............................

.............................

Type Propagation Unit

Machine controlunit

Next Address Control

Form Token Section
Form Token Control

Stack Management

............................

............................

.............................

11
12
13
13
15

15
16
18
21
22
23
24
25
25
27

7 Exceptions

8 Statistics

28

29

The Monsoon Processor
Architecture Reference

1 Scope

The Monsoon processing element is an experimental realization of an explicit token
store (ETS) dataflow processor that is especially suited for data scheduled numeric and
symbolic computation. An instruction fetched in the first pipeline stage is decoded
into simple control operations at each subsequent stage. The decode is table-lookup
and conditional execution is possible on the basis of data, type and matching state.
The microcontrols for Monsoon are the contents of the decoding memories and state-
transition tables,

This document describes the Monsoon processing element microarchitecture in
sufficient detail for a programmer to design a new macro instruction set.

2 Basic Data Representations

The Monsoon processor pipeline operates on computation state descriptors called
tokens. An input token is transformed into zero, one or two output tokens. A side-
effect of transforming a token may also be a mutation of the local frame store, a large
directly-addressed memory that also acts as the instruction and token queue store.

2.1 Tokens

A token is a 144 bit quantity comprising a TAG and a VALUE. The TAG and a VALUE
are each 72 bits—8 bits of TYPE and 64 bits of IMMEDIATE, as follows:

I Token]
TAG VALUE
TYPE POINTER TYPE IMMEDIATE
8 64 8 64

2.2 Immediates

There is special hardware support for the following immediate representations:

[Hardware Supported Immediates B
Representation Operations
Pointer Increment, Field Set
IEEE Double Precision Float | Add, Sub, Mult, Compare, Convert
64 Bit Integer Add, Sub, Mult, Shift
64 Bit Boolean 16 ALUs, Bit Rotate

Because there is no predefined meaning to the TYPE fields, the hardware does not
check for the representation validity for any operations!. For example, this allows
instructions to manipulate a pointer using boolean operations. Input operand validity
checking is handled orthogonally by the programmable type checking and propagation
hardware.

2.3 Pointers

The pointer immediate has a structure which is unique to Monsoon. Pointers cannot
be manipulated as integers, as is common on many von Neumann machines. A pointer
has the following format:

I POINTER j

PORT | MAP 1P PE FP
1 7 24 10 22
where,

PORT Indicates the I (= 0) or r (= 1) port of the instruction specified
by PE:IP.

MAP Alias and interleave control. Increments to rp affect PE as spec-
ified by MaPp.

IP Instruction pointer. The absolute address of a 32 bit instruction
on processor number PE.

!'Floating-point operations will produce exceptions codes for invalid operand formats and NaNs,
however.

2.3 Pointers 5

PE Logical processor number. The physical processor is a lookup on
PE. For machines with less than 1024 physical processors, the
LS5Bs of PE can be concatenated with the MSBs of Fp, extending
the physical address space of each PE

FP Frame pointer. The absolute address of a 72 bit location on
processor number PE. PE:FP describes a global address, so a
machine is limited to a maximum of 4000 megawords of physical
memory.

The map field controls updates to the PE number when adding an offset to the
FP or IP fields. The map implements the TTDA concept of subdomains. A subdo-
main is a collection of 2" logical processors starting on modulo 2" processor number
boundary. Thus the lower n bits of PE define the relative processor number within
a subdomain whose base processor PE number is obtained by setting these n bits to
zero. Interleaving (hashing) of Fr or 1P is performed on single word boundaries. The
internal structure of the map field is as follows:

[MAP Il

HASH N

where,

HASH Selects the hash strategy: rp, aliased FP, base FP, or IP.

N Log of the number of processors in the subdomain.

HASH is encoded as follows:

[HASH Field Encoding
HASH | Strategy Use
00 FP Word interleaved data structures
01 | aliased ¥p | Constant data structures
10 | base FP Loop constants
11 |1p Code hashing

Note that the map affects PE only when incrementing (adding an offset to) a
pointer. The base FP mode never affects PE. An example of HASH = FP interleaving
for N = 0,1,2 is shown in figure 1. If HASH = aliased FP then N least significant PE
bits are ignored—any processor in the subdomain can service the token.

TN e NN =S

Figure 1: nasH = FP Interleaving for N = 0,1,2

2.4 Floats

Floating point numbers conform to IEEE Standard 754 for double precision. Ex-
tended precision floats are not directly supported by the hardware.

[Full (Double) Precision Float B
SIGN | EXPONENT MANTISSA
1 11 52

Rounding mode is a bootstrap configuration option and is not accessible from the
microcontrols. Applications programmers should assume “round to nearest” as the
default.

2.5 Integers

Integers are 64 bits, unsigned or signed 2’s complement notation.

2.6 Booleans

Booleans are 64 bits. The complete set of bitwise “ALUs” (all of the sixteen functions
on two bits) are provided as well bit rotates, reversals and shifts,

3 Processing Pipeline

The pipeline pushes tokens. An incoming token either is recirculated from the pipeline
output, is popped from a token stack, or is sourced directly from the network. A
decoded instruction tracks an incoming token through each stage, performing local
operations, ultimately producing a new token(s) that either is directly recirculated,
pushed onto a token stack, or sent over the network.

A token’s trip through the pipe can involve at most one operand from the local
memory. Typically the operand is a slot in an activation frame. Each word in local
mermory is 72 bits wide, lazge enough to hold a tag, a value, or two instructions. In
addition, two presence bits are associated with each local memory word.

The token processing consists of two logical phases: (1) operand generation or
matching, the calculation of the operand address, the manipulation of the associated
presence bits, and the fetch or store of the operand, and (2) token generation, the
calculation of the new token value part (the ALU/FPU), tag part (next address),
and token construction (form token).

The Monsoon processor pipeline consists of six pipeline stages; instruction fetch,
effective address calculation, presence bits, operand fetch/store, Next Address and
FPU/ALU, and form token. A fetched instruction is subsequently decoded into “hori-
zontal” control points for each stage. This decoding is table-driven, the opcode is used
as an address into a memory. The contents of these decoding memories constitute
the Monsoon microcontrols. In addition to these microcontrols there are two other
tables that are involved in the implementation of an instruction set—an incoming
type map and a presence bits state transition table.

The basic functionality of the stages are as follows. Please refer to figure 2.

1. Instruction Fetch. The 1P field of the incoming token is treated as an absolute
address into local memory. A single 32 bit instruction is fetched.

2. Effective Address. An effective operand address is computed by one of several
modes: EA =FP+r,iP+r, or simply ». Simultaneous type analysis is performed
on the VALUE TYPE field. This is accomplished by a table lookup (one of 32
type maps) on the TYPE field (eight bits) concatenated with the incoming PORT
bit, resulting in a two bit type dispatch code, TC.

3. Presence Bits. The two presence bits for location EA are operated upon.
This is accomplished by a table lookup (one of 64 presence state maps) on the
concatenation of the current state (two bits), the incoming PorT bit, and the
type dispatch code TC (two bits). The FSM issues a new state for location EA,
an opcode for the operand fetch/store stage, a four-way microcontrol branch
code, and a force-opcode-to-zero override.

3 PROCESSING PIPELINE

token = [tag. value]

-

Instruction Fetch <—

instructi = de.r, .
st token ¢ instructions = [Opcode.r.port,s]
~£ 8

Effective Address Local Memory

ADD
MUL]
SND | ri6

L2
+7
FIX 3 14
3
+1

muLl 2
0

Code Blocks

el

Hllllﬁ

operands

.................. Activation Frames

__r— 1

Next Address

T

queyed tokens

Token Stacks

Form Token

tok
% Network

+ * microprogram mawmories -

Figure 2: Processing Pipeline Overview

4. Operand Fetch/Store. As directed by the presence bits state table output,
the memory location at EA is either read, written with the VALUE part of the
token, or atomically exchanged with the VALUE part. During either a read or
an exchange, the contents at address EA are passed to the ALU/FPU as temp.

5. ALU/FPU. The ALU/FPU operates upon the VALUE part of the token and
temp, if applicable. In the case of a dyadic operation the hardware sorts out
the left (L) and the right (R) operand from the incoming token and temp and
presents them to the ALU/FPU as | — A and r — B. Additionally, the
microcontrols may call for a “cross-over”,] — B and r — A. Two results are
produced; ¥ = A oP B and B. In those cases where ternp is not generated the
hardware forces A = B. The ALU/FPU also performs type propagation and
exception and condition code masking and generation.

6. Next Address. The next address unit operates in parallel with the ALU/FPU.
It operates on the TAG part of the token whereas the ALU/FPU operates on
the VALUE part. Specifically, the next address unijt operates on the PORT and
1P field (and implicitly the PE field depending upon MAP) to generate two
new tags. The first tag is obtained by adding the s part of the instruction to
the current 1P and substituting the instruction-specified PORT. The second tag
is generated by incrementing the current 1p by either 0,+1,+2 or +3 and by
forcing the output port = 1.

7. Form Token. The two values produced by the ALU/FPU and the two tags
produced by the next address unit are conditionally assembled into zero, one or
two tokens. The form token stage also manages the token stacks and arbitrates
the network connection.

4 Macro Instructions

A macro instruction is 32 bits wide. The local memory is 72 bits wide, large enough
to hold a tag, a value, or two instructions. Thus, the least significant bit of 1P is not
part of the address to local memory but is a selector for the upper or lower halfword,
permitting instructions to be packed two to a word?. The instruction encoding is
simple, consisting of just four fields:

[Instruction j
QOPCODE r PORT]
10 10 1 11

?1f the LSB of IP = 0 then the instruction is obtained from the least significant haliword of location
IP SHR 1.

10 4 MACRO INSTRUCTIONS

where,

OPCODE The instruction opcode. OPCODE is the address for the first level
microcontrol store.

T An unsigned offset used by the effective address generator.

PORT Defines the I (= 0) or r (= 1) port for one of the destination
tags.

8 A 2’s complement offset to 1P for one of the destination tags.

The macro instruction decoding is controlled by the contents of four tables. Please
refer to figure 3.

P

19 10 1 11
l—’ Opcode r 5 Macro Instruction

11 5 6 2
Base | TMap | PMap |EA| First Level Decode (1024 entries)

L

5 2

pert

type TC Type Map (32 x 512 entries}
port
‘ 2 1 2 2
2 BRA|X[FOp|Next| Presence Map (64 x 32 entries)
/ currstate
port
+
N~ l
1 3 14 1% 1 1
Second Level Decode
ALU/FPU Control | NA Control | FT Controt Type Mask Except Mask | Stat (2043 entn'es}

Figure 3: Instruction Decoding Tables and Maps

1. First Level Decode. Specifies the effective address generation mode, the
type and presence maps, and the base address for the second level decode, The

11

macro instruction opcode is the address for the first level decode table, so there
are 2'0 = 1024 entries of 24 bits each.

2. Type Map. A lookup on the TYPE and PORT of the VALUE part of the incoming
token, yielding a two bit type dispatch code, TC. There are 32 type maps each
with 512 two bit entries.

3. Presence Map. Maps the current presence state of address FA into a new
state. The incoming PORT and two-bit type code Tc are additional inputs. The
presence map also specifies the frame store operation (read, write, or exchange)
and one of eight branch points into the second level decode. There are 64 maps
of 32 seven-bit entries.

4. Second Level Decode. Specifies the control points for the next address,
FPU/ALU, and form token stages. The second level decode address is generated
from the logical OR of the base address from the first level decode with the two
branch bits from the presence map. If the presence map asserts force-zero, then
the base is set to zero and the two branch bits specify the absolute second level
decode entries 0, 1, 2 or 3. There are 2048 entries of 56 bits each.

5 First Level Decode

The instruction OPCODE is used as the address for the first level decode. The first
level decode specifies the effective address generation mode, the type and presence
maps, and the base address for the second level decode.

[First Level Decode Entry
BASE TMAP PMAP EA
11 5 6 2

where,

BASE Specifies the base address for the second level decode.
TMAP Specifies one of 32 type maps.
PMAP Specifies one of 64 presence maps.

EA Specifies the effective address generation mode,

12

g

5.1 Effective Address Generation

FIRST LEVEL DECODE

The operand address is calculated by the effective address unit. The effective address
generation always involves adding r to a masked version of FP or [P, Refer to figure

4

The are four encodings of the two EA bits as follows:

|

EA Field Encoding

EA | Expression Use

00 [FP +r Activation frame relative (operands)
10 | 1P 4r Instruction relative (literals)

11 i r Absolute (system)

01 | mask(FP)+r | Active frame base (loop constants)
Mask Zero Map Fp IP r

[T]

Mask Generator

24

10

unsigned

(

2

24

EA

Figure 4: Effective Address Generator

The masking operation aligns Fp (or IP) to a power-of-two boundary by forcing

the lowest N bits

(N is from the MAP field) to zero. For instance, if N = 15 then

5.2 Type Map 13

the lower 15 bits of FP are set to zero, aligning it to a 32KW boundary. Because
r is added after masking this mode allows any frame with an FP within the 32KW
to “reach down” into the base frame. Remember that this masking only takes place
when EA = 01 and N >0 and HASH = 10. So the mask generator in figure 4 simply
sets the lowest N output bits to 0s and remaining to 1s when the above condition is
satisfied.

5.2 Type Map

The type map takes the VALUE TYPE and PORT and maps them into a two bit type
code. The type code is used as input the presence map.

The TMAP field selects one of 32 type maps. A type map is conceptually a two
dimensional array of 256 types X 2 ports. This means that each map has 29 = 512
entries of two bits each. There are no preassigned meanings to the bits, they are
purely programmer convention.

Type Map
TYPE PORT = ! | PORT = r
00000000 | Tcyg TCo,1
006000001 | Tc; o TCy,1
00000010 | Tcag TC2
11111110 TC254,0 TCa54,1
11111111 | TGCys5,6 TC255,1

5.3 Presence Map

The presence map takes the two presence bits at location EA, the incoming PORT,
and the two type code bits TC and maps them into two new presence bits, a frame
store operation, and a second level decode branch point. The PMAP field selects one
of 64 presence maps. A presence map is a state transition table from the current
presence to the new presence state. PORT and type code act as inputs. The frame
store operation and branch code are outputs. Each presence map entry, PENT has
the following fields:

[PENT
BRA | FZ | FOP | NEXT

where,

14

NEXT.

BRA

FOP

5 FIRST LEVEL DECODE

Four-way branch control for the second level decode. The two

BRA bits are ORed into the two least significant BASE bits (BASE

is a first level decode field).

FZ Force-to-zero override. When asserted (1) the BASE field is forced
to zero before the ORing of BRA. This yields four absolute second
level decode entries in addition to the four base relative entries,

or a possible eight-way branch.

Specifies the operand fetch/store operation, defined below.

The new value of the presence bits associated with location EA.

A presence map is consists of 2112+2 = 32 entries as follows:

L Presence Map _|
Inputs Current State
PORT TC 0 01 10 11

I 00 | PENTop | PENTo, PENTg2 { PENTp3
I 01 | PENTyo | PENT; PENT12 | PENT 3
1 10 | PENTgp | PENT,, PENT22 | PENT23
1 11 | PENT3p | PENT3, PENT33 | PENT33
r 00 | PENT4g | PENT4; | PENT42 PENT43
r 01 | PENT5q PENTs5) | PENT52 | PENTs 3
r 10 [PENTep | PENTg, | PENT6, | PENTg
r 11 PENT7 0 PENT71 PENT7 2 PENT7 3

Out of the 64 possible maps defined by PMAP, the first sixteen have reserved
meanings as indicated by the following table,

Special Presence Maps

PMAP Additjonal Functionality

0-3 NoP No frame store operation (FOP ignored)

4-7 Bulk Presence bits of adjacent (modulo 32) words all updated
8-11 | Write-Through | All operand writes update main memory

12-15 | Non-Cacheable | Reads and writes avoid operand cache

The actual value of the presence bits have no hardware significance except 00.
This state is a distinguished empty state, the associated word has an arbitrary (and

irrelevant)

value. This is used in the cache roll-out algorithm-—words in the empty

state are never written back to memory even if they are dirty.

5.4 Operand Fetch/Store 15

5.4 Operand Fetch/Store

The operand fetch/store stage performs a read, write, or exchange on local memory
location E'A. In the case of a write or exchange the quantity written is simply the
72 bit VALUE field of the incoming token. In the case of a read or exchange the
stage produces an additional 72 bit result called temp, which is the contents of [E A].
Otherwise temp = vALUE. The operation performed is determined by For as follows:

l roP Field Encoding]
FoP operation
00 | Read temp — [EA]
01 | Write [EA] « vALUE

10 | Exchange | temp « [EA]; [EA] « VALUE
11 | Enqueue | temp — [EA]; [EA] < (VALUE.IP + 1)

Note that if PMAP = 0,1,2,3 then FoOP is preempted, no memory operation takes
place and temp is set to the incoming token VALUE field.

6 Second Level Decode

The second level decode address is computed as (BASE OR BRA) where BASE is the
base entry point from the first level decode and BRA is the two bit branch code from
the presence map. If the presence map asserts FZ (1) then BASE is forced to zero and
the second level decode address is simply BRA, absolute locations 0,1,2 or 3.

The second level decode specifies the ALU/FPU opcode, controls next address
generation, and specifies the form token mode. In addition, the second level decode
controls type propagation, condition and exception masking, and statistics gathering.

[Second Level Decode Entry]
FUCTL | NACTL | FTCTL | TMASK | EMASK | STATS
11 3 12 16 10 4

where,

FUCTL Selects a function unit and specifies its control.
NACTL Controls the next address generation.

FTCTL Specifies the form token mode.

16 6 SECOND LEVEL DECODE

TMASK Specifies operand type checking and propagation.
EMASK Specifies the exception mask.

STATS Specifies an increment for one of 16 instruction mix counters.

8.1 Function Unit Control

The function units operate on the temp and VALUE fields produced by the operand
fetch/store stage. First, temp and VALUE are resolved into a pair of input operands
A and B in relation to the incoming PORT. The A and B operands are fed to four
function units, only one of which is selected by the current microinstruction. The
active function unit produces a result, Y, a delayed version of B and condition and
exception codes. The ¥ and B outputs are sent to the form token unit. All of this is
under control of FUCTL, which has the following structure:

[FUCTL i

FLIP } UNIT OP

where,

FLIP Specifies the I,r — A, B mapping.

UNIT Selects one of the four function units: FALU, PIU, MCU or
TPU.

OPF Function unit opcode. Interpreted by each function unit.
A schematic of the function unit interconnection is given in figure 5. The FLIP

bit determines how temp and VALUE are to mapped to A and B. This is a function
of the incoming PORT bit as follows:

L Determination of A and B —|

PORT
FLIP 1 r

0 | A« VALUE | A « temp
B —temp | B« VALUE
1 A«—temp | A — VALUE
B — VALUE | B « temp

6.1 Function Unit Control 17

VALUE temp

VALUE temp TYPE TYPE
pori —9 .
rep Crossover .~ Crossover
A B A B
TMASK
(Y | YV /
MCU | TPy Al |Aa
or b
n CN—R eﬂ—j’

Y TYPE B B TYPE

Figure 5: Function Unit Interconnections

18 6 SECOND LEVEL DECODE

So, regardless of how it happens, FLIP specifies the following relationship between
ILirand A, B.

Encoding of FLIP]

FLIP Mapping
0 A]
Ber
1 Aer
B 1

The uNIT field selects one of the four parallel function units:

o Encoding of UNIT |
UNIT Function Unit
00 FALU | Floating point, arithmetic and logic unit
01 PIU Pointer increment unit

10 TPU | Type propagation unit
11 MCU | Machine control unit

6.2 Floating point, arithmetic and logic unit

The floating point, arithmetic and logic unit provides hardware support for floating
point numbers, integers, and booleans. The or field is encoded as follows:

6.2 Floating point, arithmetic and logic unit
l Floating Point Ops uNIT = 00]
0P | Mnemonic Operation Types
FDIV Y=A/B float x float — float
FSQRT Y =+A4 float — float
FMUL Y=A+B float x float — float
FMULAA (Y =1A|*+ B float x float — float
FMULAB [Y = A+ |B| float x float — float
FMULA |Y = |4+ B| float X float — float
FMIN Y = min(A, B) float x float — float
FMAX Y = maz(A, B) float x float — float
FABS Y = [A] float — float
FNEG Y=-4 float — float
FPASS Y=A4 float — float
FADD Y=A+B float x float — float
FADDA Y = |A| +|B| float x float — float
FSUB Y=A-B float x float — float
FSUBR Y=8B-A4 float x float — float
FSUBA Y = |A| - |B| float x float — float
FSUBRA [Y = |B| - |4] float x float — float
L Integer Ops uNIT = 00
OP | Mnemonic Operation Types
IMUL Y=AxB integer X integer — integer
IMULU Y=AxHB unsigned X unsigned — unsigned
IMULUB (Y =AxB integer X unsigned — integer
IADD Y=A+B integer X integer — integer
ISUB Y=A-B integer X integer — integer
ISUBR Y=0B-A4 integer X integer — integer
IABS Y = |4] integer — integer
INEG Y=-4 integer — integer
IMAX Y = maz(A,B) integer X integer — integer
IMIN Y = min(A, B) inleger X integer — integer
IMAXU Y = maz(A, B) unsigned X unsigned — unsigned
IMINT Y = min(A, B) unsigned X unsigned — unsigned
IPASSU Y=4A4 unsigned — unsigned
ISHIFT Y = AShiftB integer X integer — integer

19

20

6 SECOND LEVEL DECODE

Conversion Ops UNIT = (0

OP | Mnemonic Operation Types
FCI Y = fiz(A) float — integer
FCU Y = fiz(A4) float — unsigned
ICF Y = float(A) integer — float
IUCF Y = float(A) unsigned — float
FCTI Y = trune(A) float — integer
FCTU Y = trunc(A) float — unsigned
FCICF Y = float(fiz(A)) | float — float
FCITCF | Y = float(trunc(A)) | float — float

Boolean Ops UNIT = 00

OF | Mnemonic Operation Types
LS Y =AShiftB boolean x integer — boolean
NAND Y=A+B boolean X boolean — boolean
ORNA Y=A4+B boolean x boolean — boolean
ORNB Y=A+R8 boolean X boolean — boolean
OR Y=A4+EB boolean x boolean — boolean
ANDNA |Y = AB boolean x boolean — boolean
ANDNB Y=4A4B boolean x boolean — boolean
AND Y =ARB boolean x boolean — boolean
XNOR Y=A®B boolean x boolean — boolean
XOR Y=-A0 R boolean x boolean — boolean
SET Y=111..-1 * — boolean
NOTA Y=A boolean — boolean
PASSB Y=2B boolean — boolean
PASSA Y=4 boolean — boolean
CLR Y=000-.--0 * — boolean
NOTB Y=Fh boolean — boolean

The boolean comparison operations have integer or float inputs and produce a

boolean output where true is defined as all 1’s and false is all 0’s.

6.3 Pointer increment unit

Comparison Ops UNIT = 00

or Mnemonic Operation Types
00011000 | FEQ? Y=(A=5B) float x float — boolean
00011001 | FLT? Y =(A < B) float x float — boolean
00011010 | FLEQ? Y=(A<B) float x float — boolean
00011100 | FNEQ? Y=(A#B) float x float — boolean
00011101 | FGEQ? Y=(A258) float x float — boolean
00011110 | FGT? Y=(A>B) float x float — boolean
10111000 | IEQ? Y =(A=B) integer X integer — boolean
10111001 | TLT? Y=(4<B) integer X integer — boolean
10111010 | ILEQ? Y=(A<B) integer X integer — boolean
10111100 | INEQ? Y = (A # B) integer X integer — boolean
10111101 | IGEQ? Y=(A>18B) tnieger X integer — boolean
10111110 | IGT? Y = (A > B) integer X integer — boolean

6.3 Pointer increment unit

The pointer increment unit (PIU) computes updates to a pointer’s IP, FP and PORT
fields, and as a side-effect PE as directed by MAP. The PIU assumes that the A
operand is of type POINTER. The B operand is assumed to be a signed integer
when it is involved in the update. The updates to the 1P, FP and PORT fields are
independently controlled by op.

[oP when UNIT = 01 i
UNDEFINED | PORTOP | IPOP | FPOP
2 2 2 2

where,

PORTOP Controls the generation of the PORT field.
1pOoP Controls the generation of the 1P field.

FPOP Controls the generation of the rp field.

Note that the resulting MAP field is identical to the A4 Map field, and that PE may
change as determined by MAP. PORTOP, IPOP and FPOP are encoded as follows:

22 6 SECOND LEVEL DECODE

| PorTOP Field Encoding |

PORTOP | Resulting PORT
00 A PORT
01 instruction PORT
10 [
11 r

1POP Field Encoding |

IPOP | Resulting 1p
00 AP+ R
B |AP 4+ s
10 1 Ar1r
11 $

FPOP Field Encoding1

IPOP | Resulting rP
00 | AFP+ B
01 | AFP + s
10 | AFP
11 8

6.4 Type Propagation Unit

The type propagation unit controls the generation of the Y TYPE field. This involves
two second level decode fields. TMASK is always active and normally used to control
the generation of the Y TYPE. Alternatively, when UNIT = 10 the oP field can control
the generation of the ¥ type.

The propagation of the Y TYPE is specified bit-by-bit for each of the eight type
bits. Each resulting type can be directly specified as 0 or 1, or inherited from a
bit in the same position from either the A or B input types. For each bit position
¢=0,...,7 consider the two controls, m; and v;, encoded as follows:

[Type Propagation Controls |

m; | v Result TYPE;
g 1l0 0
011 1
110 A TYPE;

1 1 B TYPE;

6.5 Machine control unit 23

The TMASK field is a set of eight m; and v; controls as follows:

TMASK j

mM7,..., My [y ST 1y

8 8

TMASK is used to generate the Y TYPE except when otherwise specified by a UNIT
= 10 oP as follows:

[Type Operations uNIT = 10]

OP | Operation | Y TYPE | Y IMMEDIATE
0 | SETTYPE | A A TYPE
1 | GETTYPE { TMaASK | A TYPE

Note that the type specification for SETTYPE, A, is in the same format as TMASK
so SETTYPE can be used to set or reset individual type bits.

6.5 Machine control unit

The machine control unit (MCU) permits program access of machine control settings.
There are three classes of controls, (1) stack control, (2) exception control and (3)
statistics.

[MCU Stack Controls UNIT = 11

oP Operation Description
1 000 0000 | SETBASEOQ stack(base — A
1 000 0001 { SETBASE1 stackl base — A
1 000 06010 | SETTOS0 stack0 TOS — A4
1000 0011 | SETTOS1 stackl TOS «— A
1 000 0100 | SETNOPOPO | NoPoP0 « 4
1 000 0101) SETNOPOP1 | NoroPl «— A
1000 0110 | SETSWAP STACKSWAFP «— A
0 000 0000 | GETBASEOQ Y « stackD base
0 000 0001 | GETBASE1 Y « stackl base
0 000 0010 | GETTOS90 Y — stack0 TOS
0 000 0011 | GETTOS1 Y « stackl TOS
0 000 0100 | GETNOPOQOPO { Y «— NOPOPO
0 000 0101 | GETNOPOP1 | Y «— NoroP1
0 000 0110 [GETSWAP Y «sTACKSWAP

24 6 SECOND LEVEL DECODE

I MCU Exception Controls UNIT = 11 |

oP Operation Description
0 001 0000 | GETA Y « Aezcepﬁon
0 001 0001 GETB Y ~ Bexceptiou
0 001 0010 [GETSTATUS | ¥ « status word
1001 0011 | CLEAR Clear exception flag
[MCU Statistics Controls uNIT = 11]
oP Operation Description
0 010 0000 | ACTIVITY? Y «— activity flag; activity flag — 0

0 010 0001 | GETCOUNTER | Y «— counter(A)
1 010 0001 | SETCOUNTER. | counter(A) « B

Note that the activity flag is automatically set by any instruction that doesn’t
explicitly clear it. Idle instructions should always clear this flag.

6.6 Next Address Control

The next address control field NACTL specifies increments to the current tag IP to
generate two new destination tags, tagl and tag2. NACTL has two subfields:

NACTL

NAl | NA2
2 1

where,

NAl Specifies the tagl 1p increment of 0,1,2, or 3. PORT is always set
to l.

NA2 Specifies the fag2 1P increment of 0 or s. PORT is set to the
instruction PORT or 7.

Encoding of Nal]
NAl tagl 1p tagl PORT
00 IP {
01 IP + 1 i
10 P4+ 2 l
11 | (t1por 1) + 3 [

6.7 Form Token Section 25

| Encoding of NA2 |
NA2 | tag2 1P | tag2 PORT
0 P r
1 IP + s | inst PORT

Note that NA1 = 0, NA2 = 0 produces tags that refer to the left and right ports
of the current instruction.

6.7 Form Token Section

The form token section assembles zero, one, or two output tokens from the function
unit outputs ¥ and B and the next address outputs fagl and tag2. The unit also
controls the token stacks and automatically forwards tokens to the network.

6.8 Form Token Control

The FTCTL field has the following structure:

where,

EN1, EN2
K1, K2
ORD
RECIRC
STACK

ACK

FTCTL
ENl | EN2 | K1 | K2 | ORD | RECIRC | STACK ACK
2 2 2 2 1 2 1 1

Specifies the conditional output predicates for tokenl and token2.
Specifies the assembly of tokenl and token2.

Specifies the relative priority of tokenl and token2.

Controls the recirculation of the higher priority token.

Specifies the stack for the lower priority tokemn.

Controls acknowledgment for network packets,

Two logical tokens tokenl and token2 are generated from EN1, K1 and EN2, K2
specifications. In the case of two tokens being generated OrD designates tokenl or
token?2 as the highest priority token, i.e., the token that will be recirculated. RECIRC
controls the recirculation of this token. In the case that only one token is formed,
or in the case that two are formed and the other is sent over the network, the token
recirculation is controlled by RECIRC In the event that two tokens are formed and
both remain local to PE then lower priority token is stacked on stack STACK.

26 6 SECOND LEVEL DECODE

Encoding of EN1 and EN2 ,

EN; | token; is generated on ALU condition
00 always

01 =9

10 never

11 #40

K1 specifies the construction of tokenl as follows:

] Encoding of k1]
K1 | tokenl TAG | tokenl VALUE
00 tagl Y
01 tagl B
10 Y tagl
11 B Y

K2 specifies the construction of foken2 as follows:

[Encoding of k2 |
K2 | token2 TAG | token2 vALUE
00 tag? Y
01 Y B
10 tagl tag?

11 Y tag2

ORD specifies the relative ranking of tokenl and token2 in the case that hoth are
generated and both remain local to PE.

i Encoding of orD !

ORD [Recirculated | Stacked
0 tokenl token?
1 token2 tokenl

A single token or the higher priority token, as defined by ORD is controlled by
RECIRC.

[Encoding of RECIRC]
RECIRC Action
00 Normal recirculation
01 Uninterruptible recirculation
10 Push on stack0
11 Push on stackl

6.9 Stack Management 27

In the case of two tokens, the lower priority token is always stacked even if RECIRC
designates stacking of the higher priority token. If both RECIRC and STACK specify
the same stack then the lower priority token is pushed first,

L Encoding of STACK_l
STACK Action
0 Push on stack0
1 Push on stackl

Finally, the form token section may demand a positive (i.e., circuit-switched)
acknowledgment for a network-bound token.

[Encoding of ack |

ACK Action
0 | Immediately process local token
1 | Release local token only after network ack

The local token must be designated as low priority stackl. The hardware inhibits
release of a non-acked local token by inhibiting stack1 pops until all outstanding acks
have been received.

6.9 Stack Management
There are two token stacks, stack0 and stackl, where stack has priority over stackl.
That is, stackl will be popped only if stack0 is empty.

In the case of a single processor without a network connection there are three
possible results of the form token section:

[Form Token Results Without Network]
Form Token Qutput Action
no tokens if stack0 not empty then pop stack0

else if stackl not empty then pop stackl
else insert idle token (1P = 0).

k1l or k2 if RECIRC = 0OX then recirculate token
else push on RECIRC stack and insert idle token.
k1 and k2 if RECIRC = O0X then recirculate ORD token, push other

else push non-orRD then push ORD, insert idle,

28 7 EXCEPTIONS

Note that if the MCU control bits NOPOPOQ or NOPOP1 are set then, for purposes of
the above algorithm, the associated stack always tests empty. If the MCU STACKSWAP
bit is set then roles of stack® and steckl are reversed.

When a network is involved things get a little more complex. An incoming message
has priority over everything except an uninterruptible recirculating token. If the form
token section produces no tokens, then the incoming token is recirculated (instead of
either popping a stack or inserting an idle, as above). If one token is produced, and
it is interruptible, then the token is pushed (on stack0 by default) and the incoming
message is recirculated. If two tokens are produced then both are pushed (first the
low priority then the high priority, again the high priority defaulting to stack0) and
the incoming message is recirculated. If a produced token is uninterruptible then the
incoming message is blocked until the next cycle. Incoming network tokens are never
pushed onto a stack and are always processed in FIFOQ order

Outgoing messages are routed directly to the network, but to avoid deadlock, they
will be pushed onto stack0 if the outgoing network connection is presently blocked.
This implies that a token popped from a stack may head for the network rather than
be recirculated.

7 Exceptions

Exceptions can be generated from a masked set of function unit status outputs. When
an exception is detected the current A and B values, along with the status outputs, are
recorded into temporary registers that are accessible through the MCU. An exception
handler is invoked and is passed the TAG of the offending activity. Exception handlers
are entered as critical sections RECIRC = 01 so there is the possibility that there will
be as many exception handlers active simultaneously as there are pipeline stages®.
The hardware sorts this out by maintaining eight distinct contexts for the faulting A
and B values and transparently provides the correct value for each active exception.

Similarly, the system programmer must reserve eight activation frames, one for
each possible pipeline thread. Aside from these contexts there is no hardware vector-
ing for exceptions. So the first thing an exception handler must do is determine the
exception class by fetching the faulting instruction and examining the saved status
bits. The exception mask EMASK has the following structure:

[EMASK
SENSE | ALWAYS | DIVZ | UF [OF | INX | NAN | DEN | 2ERO | NEG
1 1 1 1 1 1 1 1 1 1

%If an exception occurs within an exception handler before it clears the exception flag in the MCU,
an unrecoverable machine check occurs.

29

where,
SENSE Exception occurs when any unmasked bit is asserted (SENSE =
0) or when no unmasked bit is asserted (SENSE = 1).
ALWAYS Always asserted.
DIVZ Asserted when FPU detects divide by zero.
UF Asserted when FPU or PIU detects an underflow.
OF Asserted when FPU or PIU detects an overflow.
INX Asserted when FPU result is inexact.
NAN Asserted when an FPU input is not a number.
DEN Asserted when an FPU input is denormalized.
ZERO Asserted when FPU result is zero,
NEG Asserted when FPU result is negative.
An exception is masked when the corresponding EMASK bit is set to zero. A masked
version of the status word is recorded in the MCU and can be retrieved by a GET-
STATUS operation. Similarly, the associated A and B values can be obtained by
an MCU GETA and GETB. The exception handler is invoked with a TAG that has

FP = 0 and an IP = n + 1 where n is the logical pipeline thread that received the
exception. The VALUE part contains the TAG that caused the exception.

8 Statistics

The hardware monitoring function consists of a set of sixteen 32 bit counters. The
STATS field selects one of the counters and increments it. The host processor or MCU
can read and/or reset any of the counters.

