MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

PROJECT DATAFLOW

A Parallel Computing System
based on
The Monsoon Architecture and the Id Programming Language

(Extracts from March 1988 DARPA Proposal)

Computation Structures Group Memo 285

March 25, 1988

Arvind
Michael L. Dertouzos
Rishiyur S. Nikhil
Gregory M. Papadopoulos

\)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Proposal to DARPA

Executive Summary

The Laboratory for Computer Science at the Massachusetts Institute of Technology proposes
to prototype a Parallel Dataflow Computer System for high-performance, general-purpose
computing, based on the following system components and development path.

1.

System Components

Processing Elements (PEs) with a new dataflow architecture called Monsoon.

- A 6-MIPS Monsoon accelerator board (single PE) for Sun workstations.

- A 48-64 MIPS accelerator board (4 PEs in ASICs) for Sun workstations.

- A 256-PE multiprocessor (with the help of an Industrial Partner).
A high-speed multistage interconnection network, based on 4 x 4 network routing chips.
A high-level, declarative, parallel language 1d, with a compiler.
Resource Managers (basic operating system) for the multiprocessor.
A programming environment for preparing, compiling, running and debugging Id pro-
grams on the multiprocessor.

The system is designed to be scalable in performance, both by using more aggressive tech-
nology as well as by increasing its size.

2.

Development Path

Following discussions with DARPA, we have chosen a development path that facilitates
dissemination of this new technology to the manufacturing and user communities, and is
characterized by:

Staged Contruction: Single-PE Monsoon accelerator boards will be built by 12/88 and
will be distributed to users. A sixteen-PE system with Monsoon in ASICs will be built
by 12/89. The 256-PE system should be functioning by 1990. Throughout, the software
will be ahead of the hardware development.

Industrial Participation and Transfer of Technology: The first two stages (up to the
16-PE system) will be done by MIT LGS, subcontracting to industry for production of
pc boards, design and production of ASICs. The hardware for the third stage (256-PE
system) will be done in direct collaboration with an Industrial Partner chosen through
an open “bidding” process, who will be responsible for packaging and producing the large
system and subsequent copies.

Development of User Community: The single PE accelerator and the 16 PE multipro-
cessor will be available to users with Sun workstations. Id World, the programming
environment, is written in Common Lisp and the first version has already been dis-
tributed for Lisp machine use. A Unix version of Id World for Sun workstations will be
available soon. The Id graph-interpreter is being re-written in C to run on other ma-
chines, including supercomputers. Preliminary manuals for Id and Id World have been
produced. A book on Id programming and the dataflow approach to parallelism is under
way.

Direct funds are requested for the completion of the first two stages, t.., through the con-
struction of the 16-PE multiprocessor. Funding options are provided for the third stage, i.e.,

the 256 PE system which will also be funded by our Industrial Partner. Some initial funds
are already available under the existing multiprocessor contract. A meeting with prospective
Industrial Partners is being organized in early 1988 to launch the selection process.

3. Background

Two major goals of the proposed project are very ambitious, but are supported by many
years of careful research at our laboratory:

1. At the hardware level, to demonstrate that data-driven instruction scheduling exploits
significantly more parallelism than other methods, and is essential for scalable perfor-
mance.

2. At the software level, to demonstrate that declarative languages with implicit parallelisim
are as great a prospective step (and as unquestionably essential) in paralle] computing,
as was the step from assembly languages to FORTRAN in sequential computing,.

For an application to run on a multiprocessor, it must be divided into multiple concurrent
threads. For more processors, the division must be into more, and smaller threads. Except
for a few applications with regular structure, threads must communicate with each other in
complex ways. For scalable performance, therefore, a) the overhead of switching between
threads must be low, and) the synchronization cost (for matching communicated infor-
mation with waiting threads) must be low. The proposed Monsoon architecture uniquely
addresses these issues, in hardware.

Augmenting an existing language with a set of concurrency primitives is a good interim
solution to the programming question, and can lead to effective results. The proposed
dataflow system is certainly programmable from concurrent extensions of F ORTRAN, C or
Lisp. However, a future programmer of parallel machines should not be preoccupied with
handling all the tedious details of concurrency and architecture. The proposed Id language
offers a unique solution to this problem, because of its implicit, fine-grained parallelism.

We believe that the Monsoon architecture is a good target for, say, concurrent FOR-
TRAN, and that Id is an appropriate language for non-dataflow parallel machines. However,
we are focusing on implementing Id on Monsoon because it offers maximum parallelism, and
because we have a deeper understanding of the compilation problem. The ultimate success
of this approach can only be determined if there is a total system with enough high per-
formance and adequate programmability to be used practically and effectively by a broad
community. This is precisely the goal of the MIT’s Pro ject Dataflow.

Section B: Innovative Claims

The prototype Dataflow Computer System will comprise: a high-performance, MIMD
machine based on a new dataflow processor architecture called Monsoon; a high-level,
general-purpose parallel programming language called Id; basic resource managers for man-
aging parallelism, and a program development environment for Id. The system will be
general-purpose, supporting numeric and symbolic computing simultaneously (the expected
norm in the future). With parallel 1/0, it will also support high-performance databases.

Architecture

The proposed machine has an asynchronous model of parallelism, in contrast to synchronous
models such as SIMD and systolic arrays, which exhibit high performance on a smaller class
of applications. Compared to other asynchronous MIMD approaches, the proposed machine
offers the following advantages:

e A more general, flexible and configuration-independent programming model than MIMD
machines based on message-passing.

* Better scalability than MIMD machines based on von Neumann processors. Unlike those
machines, the prototype is based on data-driven (dataflow) instruction-scheduling, with
support for cheap hardware synchronization. This is necessary to tolerate increased
memory and communication latencies, and for full exploitation of dynamic producer-
consumer parallelism.

® A significant dataflow innovation— directly-addressed Wait-Match memory. Previous
dataflow architectures have proposed or used a large associative mermory implemented
using hashing. The new solution is now feasible due to techniques we have developed
recently in controlling parallelism. It also permits unifying Wait-Match memory and
I-structure memory, resulting in easier resource-management and lower production cost.

Performance of Monsoon will scale with implementation technology, since processor and
communication components are balanced under “constant” technology.

Language

Id i1s a practical language today, with a compiler largely developed and in place. While
our approach requires programmers to learn and use a new language, it has the following
advantages over those that add parallel constructs to an existing language:

o I[mplicit parallelism and determinate semantics, relieving the programmer from managing
parallelism explicitly and of concerns about specifics of machine configuration and timing.
Debugging is therefore relatively straightforward.

¢ Greater expressiveness, due to higher-order procedures and non-strict data structures.
We believe that an experienced programmer can write significantly shorter programs in
Id than is possible in current high-level languages like Common Lisp.

¢ Greater applicability across parallel architectures, in the same sense that FORTRAN

became a general language for von Neumann machines, though it was developed for the
IBM 650.

In short, we believe that Id will mitigate, not aggravate, the software crisis in the move to
parallelism.

Resource Management

Very little is known today about the significant problem of resource management in large,
general-purpose parallel computers. We expect preliminary solutions through our proposed
work. Further, the system will be one of the first adequate testbeds for more experimental
study of these pivotal issues.

Relation To Other Approaches

Though there are numerous multiprocessor projects worldwide exploring architectures,
programming languages and applications, very little is known, in a scientific sense, about
“best” approaches and “ultimate” limits. An increasing number of computer architects are
striving for high-performance multiprocessor hardware, while deferring the software ques-
tion. Japan is close to realizing a parallel dataflow machine, but without the architectural
innovations of our proposed machine, and without a general software solution.

While we too have much to learn, we believe that our proposal stems from perhaps the
longest background of careful multiprocessor studies and experiments (over ten years), re-
sulting in a total (i.e., hardware and software) solution based on a solid technical foundation.

Experience has shown that advertised peak instruction and floating-point operation rates
are often misleading measures of a machine. A more realistic (and often quite different)
characterization emerges by examining the range of applications for which it is suitable, the
ease of programming such applications, and the typical sustained rates on such programs.

It is our long history of dataflow research that gives technical support (elaborated in
Section G) to our claims that the proposed dataflow system:

(1} is as general-purpose as current sequential machines,

(2) is at least as easy to program as current sequential machines, and

(3) will consistently demonstrate sustained performance that truly attains the promise of
multiprocessors.

Section C: Deliverables

The results from this project will be a significant increase in understanding fundamental
principles of parallel computing, as well as a set of concrete high-performance parallel hard-
ware and software systems. We expect much leverage by distributing the proposed system
in stages to a large external user community.

Expected Results:

e We hope to demonstrate that the dataflow approach provides mechanisms:
- for efficient synchronization of parallel activities, and
- that tolerate increased memory and communication latencies.
Both are necessary for any successful MIMD machine.
e We hope to show that in moving to parallel computing:
- 1t is possible to raise the level of programming without sacrificing efficiency, and
- it is necessary to use higher-level declarative languages like Id to be able to compile
good parallel code.
This is crucial in any parallel machine, since increased performance will inspire larger
and more complex applications.
e We hope to show significant solutions to some of the basic resource-management problems
of MIMD machines, about which almost nothing is known today.

Expected Deliverables:

A prototype of a complete Parallel Dataflow Computer System, built in three stages. By
such staging, we immediately begin building a large external user community, giving them
progressively improved systems to experiment with. We describe here mainly the deliverables
as seen by such external users. A more detailed internal schedule is described in Section D:

Stage 1: 2/89. Hardware: A 6 MIPS dataflow accclerator board on VME bus for Sun
workstations. The board will implement a single Monsoon PE . Software: 1d language
manuals, compiler, Id World programming environment to edit /compile/debug /study
parallelism behavior.

6/89. Hardware: 16-PE multiprocessor for internal use.

Stage 2: 10/89. Hardware: A 48-64 MIPS dataflow accelerator board on VME bus for Sun
workstations. The board will implement four Monsoon PEs and an I/O subsystem in
ASICs. Software: Resource managers for small number of PEs.

2/90. Hardware: 16 x 16 Network Board (VME/Sun) based on 4 x 4 routing chip.
With 4 PE boards, makes a 16 PE system. Software: same.

Stage 3: 8/90-2/91. Hardware: 256-PE machine, designed and built in collaboration with
an Industrial Partner. Over 2000 MIPS peak, 1000 MIPS sustained. Software: Re-
source managers to run on large number of PEs.

The hardware will be easily reproducible and distributable. Both hardware and software will
be distributed at cost under license.

Section D: Schedule and Milestones

The prototype system will be built in three overlapping stages:

I. Single PE (processing element) accelerator board for VME bus on Sun workstations,
2. 16 PE system (PEs in Integrated Circuits), and
3. Full 256 PE system.

where each PE is a complete dataflow computer including processor and memory.

In early 1988, we plan to hold a meeting for the purpose of identifying an Industrial
Partner who will help fund and cooperate in building the third stage of the system. QOptions
to that end are included in the budget section.

Stage 1: “Single-board Single PE dataflow accelerator”

6/88 Hardware: Wire-wrap Monsoon PE prototype on NuBus /Explorer. 4 x 4 Network
Router Chip. Software: Monsoon Code Generator for Id compiler. Single-processor
resource-managers. Id World ported to Suns.

8/88 Hardware: Network link chip and 4 x 4 network card (for VME).

11/88 Hardware: VME/Sun printed-circuit version of PE.

2/89: Production version of pc-board and software, distributed to erternal users.

Basic I/O drivers for internal use.

6/89 Hardware: Internal use of 16 PE, multiprocessor with four Suns, four PE cards and
two 4 x 4 network cards per Sun. Software: I/O drivers, Resource managers for small
multiprocessor.

Qur initial wire-wrap prototype is on the NuBus because all our software currently runs
on TI Explorers, and we have already begun prototyping components on the NuBus. We
are targeting all subsequent development to the VME bus because we believe that the Sun
workstation will be a better host for widespread distribution.

Stage 2: “5-board 16 PE (ASIC) Dataflow Small Multiprocessor”

8/88 Hardware: Begin development of ASIC version of Monsoon PE,

10/89 Hardware: ASIC Monsoon card ready (VME/Sun). 16 x 16 network card ready
(VME/Sun).

2/90 Hardware: 16 PE multiprocessor, distributed to ezternal users. 4 cards (4 PEs
each) and one 16 x 16 network in a Sun. Software: 1d compiler, Id World programining
environment on Suns, small multiprocessor resource managers.

Stage 3: “256-PE Dataflow Large Multiprocessor”.

11/88 Hardware: Begin development with external industrial partner on 256-PE dataflow
system. Software: Study large-multiprocessor resource-management problems.

2/90: Primitive large-multiprocessor resource managers ready.

2/91 Hardware: 256-PE system. Improved large-multiprocessor resource managers.

Section E: Proprietary Claims

There are no proprietary claims by any external party on the ideas or products of this
project— MIT and the principal researchers named in this proposal have full control over
all intellectual and material rights.

Section F: Statement of Work

The MIT Laboratory for Computer Science will design and construct a prototype Parallel
Dataflow Computer System in three stages, simultaneously building a substantial external
user community. The following is a statement of work for all three stages, with the third
stage being based on exercise of associated options.

In general, we are resisting the temptation to scale performance through faster tech-
nology (such as very high-speed integrated circuits), in favor of architectural innovation.
Such scaling is always possible later. However, even though the machine is a prototype, its
size demands precision and professional manufacturing standards. Thus, it will be easily
reproducible and distributable to external users.

Stage 1: “Single-board Single PE dataflow accelerator”

e 6/88. Hardware: We will build a wire-wrap Monsoon PE prototype on a NuBus card
(for TI Explorer workstation), with the following characteristics: 6 MIPS, 128KW
Token Store, 128 KW Instruction Store, 128 K-entries Token Queue, floating point, no
caches. Completely micro-programmable, with microcode in RAMs. We will complete
the 4 x 4 Network Router Chip, which is already under development.

Software: We will implement extensions to the existing Id language to include non-
deterministic and imperative constructs necessary for resource-managers, making it a
complete systems language. We are already experimenting along these lines.

We will incorporate extensions to the existing Id compiler to support the above ex-
tensions. We will incorporate several known optimizations, and develop new optimiza-
tions.

We will implement a Monsoon Code Generator for the Id compiler (which currently
generates code for the MIT Tagged-Token Dataflow Architecture).

We will implement single-processor resource-managers.

We will port the Id World programming environment (currently running on Lisp ma-
chines) to Sun workstations. This work is already in progress.

We will extend Id World to handle the new language extensions, the new Monsoon
instruction set, and control of resource manager parameters.

e 8/88. Hardware: We will design and implement the network link chip and a 4 x 4
network card.

o 11/88. Hardware: We will produce the VME/Sun printed-circuit version of the Mon-
soon PE accelerator board. Its characteristics: 6 MIPS, 2 MW Token Store and In-
struction Store, 128 K-entries Token Queue, floating point, caches, 1/0 subsystem,
no network interface. Still completely micro-programmable. PC-board construction
will be sub-contracted out. Manufacturing the cards will be set up as a turnkey line,
due to the number of processors required. This involves full assembly documentation,
qualified component vendor bill of materials, and in-circuit and functional test fixtures.

Section F: Statement of Work 9

o 2/89. The production version of the pc-hboard PE and its software will be distributed
to external users.

e 2/89. Software: Internally, we will complete basic I/0 drivers. We do not want to
spend time writing I/O services such as file systems. Thus, we will exploit the host
SUN services as much as possible.

e 6/89. Hardware: For internal use, we will construct a 16 PE multiprocessor with four
Suns, each with four PE cards and two 4 x 4 network cards.

Software: We will write resource managers for the small multiprocessor in Id. The
emphasis is on single programs, not multi-programming. The main issues: controlling
program unfolding, load balancing, and heap storage management.

Stage 2: “5-board 16 PE (ASIC) Small Dataflow Multiprocessor”

e 8/88. Hardware: We will begin development of an ASIC version of the Monsoon PE.
This will either be subcontracted out, or we will hire a designer.

» 10/89. Hardware: We will produce the ASIC version of the Monsoon PE card. Its
characteristics: 12-16 MIPS per PE, with 4 PEs, an I/O system, and a network interface
on each card. The design will be reproducible, for Stage 3.

We will produce the 16 x 16 network card (VME/Sun). It will be implemented in
impedance-controlled printed circuit technology, due to the high-speed nature of the
digital and analog circuitry. Cable assemblies will be manufactured by a quality full-
capability commercial outfit.

e 2/90. We will distribute a 16 PE multiprocessor system to external users. It will
consist of Hardware: 4 cards to plug into a Sun workstation: 4 cards with 4 PEs each
and one 16 x 16 network card, and Software: the Id compiler, Id World programming
environment on Suns, small multiprocessor resource managers.

Stage 3: “256-PE Large Dataflow Multiprocessor”. This will be built in cooperation with
an Industrial Partner.

o 3/88. We will hold a meeting in which we will invite several potential Industrial Part-
ners and present our plans. The objectiveis to attract active, competitive participation
in contruction of the large dataflow multiprocessor.

o 8/88. We prepare and submit a joint funding proposal for Stage 3 with the Industrial
Partner.

e 11/88. Hardware: Begin development with industrial partner on hardware of 256-PE

dataflow system. Software: Study large-multiprocessor resource-management prob-
lems,

Section F: Statement of Work 3

® 2/90. Software: Primitive large-multiprocessor resource managers ready.

e 2/91. Hardware: 256-PE system. Improved large-multiprocessor resource managers.

For resouce-management efforts, the emphasis is on single programs, not multi-programming.
The main issues: controlling program unfolding, load balancing, and heap storage manage-
ment.

The Industrial Partner will be involved only in the hardware effort. MIT will be respon-
sible for the entire software effort.

Section G: Technical Rationale

Dataflow graphs were invented over a decade ago by Professor Jack Dennis at MIT as
a radical, but exciting parallel computation model. Dataflow graphs may be regarded as a
parallel machine language, because they can be executed directly by hardware. Many issues
required exploration:

e What conditions are required for a parallel machine Janguage to be well-behaved (deter-
minate)?

e What are the characteristics of a general-purpose, high-level language for parallel com-
putation?

e How should such high-level languages be compiled to parallel machine code?

e What are the architectural requirements for efficient execution of a parallel machine
language?

e What are the architectural requirements for scalable performance?

e What is the dynamic behavior of realistic applications written in such high-level languages
and executed on such architectures?

In the MIT Tagged-Token Dataflow Project, our research approach has been first to obtain a
substantial understanding of these issues before declaring ourselves ready to build hardware.
Based on extensive and careful experimentation, today we have solid answers to many of
these questions. Some of our results are recent (within the last few years), because prior to
that we did not have adequate computing power to simulate realistic applications.

We believe that we are unique in the extent to which we have built technical foundations
to support our proposed system. For example, instead of under-estimating programming
issues and predicting performance on the basis of clock speeds and number of processors,
we base our claims on detailed study of a tofal system-— a programming language that has
undergone substantial development and has been learned easily by non-specialists, a wide
range of applications, extensive experience with dataflow compilers, and simulations that
incorporate accurate and realistic accounts of latency and synchronization costs.

In Section 1 we present results from this substantial research history (this is a greatly
condensed version of References [1, 8, 15, 16]). Then, in Section 2, we present the proposed
Dataflow System, which is based on these results.

1 MIT Tagged-Token Dataflow Project Results

We first describe our research tools, and go on to show three unportant results:

e Id is an expressive and compilable language for parallel programming.

¢ There is sufficient parallelism in typical programs for machines comparable to the pro-
posed one to be utilized effectively.

e The Tagged-Token Dataflow Architecture (of which Monsoon is a realization) is effective
in exploiting this parallelism and tolerating communication latencies.

Section G 2

1.1 Research Tools

For 6 to 8 years our studies of parallel computing have focused on:

e Id, a high-level language which is a superset of a full, higher-order, non-strict functional
language,

¢ Dynamic Dataflow Graphs— a parallel machine language, and

e The MIT Tagged-Token Dataflow Architecture {TTDA) that executes dataflow graphs

directly.

We have studied them extensively using these tools:

e Compilers: For over 5 years we have had a compiler to translate Id into dataflow graphs.
It has gone through three major versions, in step with advances in the language and the
architecture. The structure of the current compiler is extremely modular to facilitate
experiments in language design and compilation techniques{24].

All our simulation and emulation tools (see below) execute identical object code.

o Simulator: For over 2 years we have had a detailed event-driven simulator for the
TTDA, allowing us to study the relative speed and capacity required for various TTDA
components[12].

e Emulators: For about 2 years we have had a heavily instrumented emulator for the
TTDA called GITA (Graph Interpreter for the Tagged-Token Architecture). It can be
run in two modes: emulating multiple TTDA processors on a single physical worksta-
tion, or on the MEF (Multi-Processor Emulation Facility), an actual multi-processor[5).
The MEF consists of 32 TI Explorer Lisp Machines connected by a multistage high-
bandwidth communication network. We constructed the MEF under DARPA funding
specifically to facilitate dataflow and other parallel processing research.

o Programming Environment: For over a year we have had a complete programming
environment called Id World, including an Id editor, the Id compiler, a symbolic,
parallel debugger, GITA, and facilities to collect and display emulation statistics [23].

(In response to several requests, Id World was released for external use in April 1987.
It is available under license from MIT.)

Our confidence in the proposed system stems from the deeper understanding of the strengths
and weaknesses of the TTDA and Id. As we shall show, our studies have both confirmed
their basic viability as well as revealed remaining implementation issues.

1.2 1Id is a Good Language for Parallel Programming

In any parallel programming language, the programmer should be able to express parallelism
without undue burden, and the compiler should be able to compile code with sufficient

Section G 3

parallelism. Ideally, none of the available parallelism should be obscured in going from
abstract algorithm to program to machine code.!

1.2.1 1d is Expressive

Id [22] is a higher-order, non-strict, functional language, augmented with dynamically-
allocated, parallel data structures called I-structures. These features elevate coding to a
level much higher than, say, in Common Lisp. We have written and studied both scientific
and symbolic applications in Id.

The Id programmer does not have to partition a program into parallel tasks and manage
their synchronization, because the parallelism is implicit in the operational semantics of Id.
The programmer is insulated from details of the architecture such as number of processors
and component speeds. Id programs are determinate— outputs depend only on inputs, and
not on runtime scheduling. This is invaluable in debugging— the programmer has a simple,
time-independent model of computation.

I-structures, used as arrays, are essential for scientific computing [11]. The codes we have
written include SIMPLE, a hydrodynamics and heat-conduction code, and PIC (Particle in
a Cell), an electro-dynamics code. To support these, we have written libraries of scientific
utilities, such as matrix multiplication, LU decomposition, and various transcendental func-
tions. We have been able to demonstrate that Id permits coding scientific applications at a
very high level [6]. For example, SIMPLE is expressed succinctly in 550 lines of Id (including
libraries), compared to 1500 lines of FORTRAN. Further, the Id code has an almost 1-to-1
correspondence with the mathematical description of the problem.

For symbolic computing, Id has symbols and flexible data structures such as lists and
generic types. We have written a polynomial algebra package, DNA sequence matching,
various search and sort routines, etc. in Id.

1.2.2 Id is Compilable

Unlike imperative languages, translating Id code into dataflow graphs is straightforward [24).2
Functional, determinate semantics also enables several powerful optimizations, such as loop-
constant detection, constant folding, inline substitutions and fast function calls. Compiling
is simplified because the object code is independent of machine characteristics such as size
(number of processors) and speed of components (memories, networks, ete.).

1.2.3 1Id Does Not Obscure Parallelism

Parallelism Profiles Before we can determine whether a language obscures parallelism
or not, or whether an architecture exploits parallelism or not, we need a reference point, a

10f course, it is always possible to change the algorithm itself to increase parallelism. The focus here is
on coding issues only.

#This does not mean that Id can be executed easily on any parallel machine. Executing dataflow graphs
efficiently requires architectural support, such as I-structure storage[3].

Section G 4

way to judge how much parallelism there is to begin with in an algorithm. For this, we use
a Parallelism Profile, a graph showing the number of instructions that could be executed at
each time step.

To obtain this profile, we first code it in Id and compile it into dataflow graphs. Then,
we execute it on GITA, our graph interpreter, under the following (ideal) assumptions:

¢ Each node (instruction) in the dataflow graph takes one time unit to execute,

* The results produced by a node are available at the destination nodes (successors in the
graph) instantaneously, and

¢ Each node fires (is executed) as soon as it has the required input operands.

The parallelism profile, constructed by GITA, is the function pp(t) which gives the number
of nodes fired at each time step. The time step beyond which pp(t) is uniformly zero is
called the critical path, i.e., the length of the longest chain of data-dependencies in the
program. The area under the curve pp(t) gives the total number of operations executed
(in our dataflow model, this number does not vary with machine configuration, e.g., the
number of processors). Many details such as number of processors, locality, contention, and
distribution of work are abstracted away entirely. Thus, these profiles capture the parallelism
inherent in the program.

Figure 1 gives the parallelism profile for matrix multiplication of two 16 x 16 matrices
using the traditional algorithm. The upper profile counts all operations, while the lower
profile counts only the floating point operations. The critical path is 295 and the total
number of operations is 72,513, out of which 8,192 are floating point operations. The bell-
shape arises because the unfolding of loops is staggered slightly, and the summation in the
innermost loop is done sequentially.

1.2.4 Id Also Exploits Parallelism Adaptively

Dataflow scheduling reveals additional parallelism in subtle ways. Consider two programs:

vsum to compute the vector sum, and ip to compute the inner-product of two vectors. Then,
consider composing them together, e.q.,

Def ip vsum A B = ip (vsum A A) (vsum B B) ;

With most conventional languages, the best one could expect is that the critical path for
ip.vsum would be the sum of the critical paths of ip and vsum.

In Id, however, functions and data structures are non-strict, so that each vsum can return
the descriptor of its result vector as soon as it is allocated, even before it has written all
its components. Thus, ip can begin work immediately. Because of I-structure semantics,
there is no race between the writes in vsum and the reads in ip. Thus, vsum and ip are
automatically pipelined, working in tandem as producer and consumer respectively,

Experiments on GITA confirm this, as shown in Figure 2. The parallelism profile of the
ip_vsum is not obtained by stringing out the profiles of vsum and ip-—— instead, they are

Section G 5

% : Ik
g 500 | h Lh }JL
g L
; : . Floating-Point Opera.tio
. AR A

Time Step

Figure 1: Parallelism Profile for Matrix Multiply (16 x 16)

overlapped. On vectors of size 10, the critical paths for vsum and ip alone are 63 and 59
respectively, while the critical path for ip_vsum is only 76 (much less than 63 + 59).

It is important to note that this behavior is achieved automatically, without any opti-
mizations (like loop-jamming). In fact, there was no change in the source or ob ject codes of
vsum and ip.

1.3 There Is Suflicient Parallelism in Existing Programs

An important question is whether or not there is sufficient parallelism in typical programs to
keep (say) 256 processors busy. Interpreting the literature is difficult because of variations
in the “unit” of parallelism (granularity), the language, the compiler algorithms, the number
of processors, and the size of the problem itself.

We have studied this issue systematically. In the following sections, we look at one
application— the SIMPLE code, a hydrodynamics and heat flow code kernel that has been
studied extensively both analytically [13] and by experimentation. We first show the paral-
lelism profile under idealized assumptions (infinite number of processors, zero communication
latency), and then under realistic assumptions.

1.3.1 Inherent Parallelism in SIMPLE

Figure 3 shows the parallelism profile of 3 iterations of STMPLE on a 20 x 20 mesh (an actual
simulation typically performs 100,000 iterations on 100 x 100 mesh). The critical path is

Section G 6

i
LN
[
1
0
10 20 30 0 80 60
ALU operations profile in IP
£
K
g 5
e
o
E 2
g
g 14
o
0
10 20 %) B0 0
ALU operations profile in VSUM
11
10 |
9 J
8
7
6
5
i
s
2
1
0
10 20 30 ry 50 60 70
ALU operations profile in IPVSUM
Figure 2: Parallelism Profiles for Vector Sum, Inner Product and Their Composition (size
10).

Section G 7

1,976 and the instruction count is 1,471,374. Note that there is no significant parallelism
between outer loop iterations. The potential parallelism varies tremendously within each
iteration (typical of even the most highly parallel programs, in our experience).

4000 | A

f000 _

2000

Concurrent Operations

1000

[

T] 1 T L T L] L] 1 L) Ll

200 400 600 800 1000 1200 1400 = 1600 = 1800
Figure 3: Parallelism Profile for SIMPLE (3 iterations, 20 x 20).

The shape of the profile for SIMPLE does not change significantly with the size of the
problem.

1.3.2 Parallelism on a Finite Number of Processors

The critical path of a computation with tot operations on n processors can vary between [igi.l ,

if there are no data dependencies and 1, if there is a completely sequential data dependency.?
Thus, data dependencies limit parallelism.

Figure 4 shows the profile for SIMPLE on 1,000 processors, generated by constraining
GITA to execute no more than 1,000 operations at each step. The critical path is 2,763
(compared to 1,976 for infinite processors). Of course, finite-processor profiles are also sen-
sitive to the choice of the particular n operations at each step, but our experiments indicate
that except in pathological cases, this variation is negligible.

The parallelism in a program can be summarized in terms of

speedup(n) = 4 and utilization(n) = 0L

where t(n) is the time to execute on n processors. (1) is simply the total number of
operations executed, i.e., the area under the parallelism profile.

3We use the term “processors” loosely here; all we mean is that no more than n ALU operations can be
performed at each step.

Section GG 8

1000

900

800

o

600

500

Concurrent Operations

400

200

200

100

T T
1000 2000

Figure 4: Parallelism Profile for SIMPLE (1000 processors, 3 iterations, 20 x 20).

Figure 5 shows the speedup and utilization curves for SIMPLE.* The curves show the
limits to improved performance imposed by data dependencies in the algorithm itself. For
example, even on an ideal machine, SIMPLE (20 x 20) exhibits speedup(100) = 97 only
(utilization(100) = 97%).

1.3.3 Parallelism with Non-Zero Latencies

In a realistic machine, n processors and memories would be interconnected by a network with
non-zero average latency ! (typically O(log(n))). We can model this latency by assuming
that the output of every instruction takes ! time steps to reach its destination (thus, the
parallelism profiles so far had { = 0). Figure 6 shows two profiles for 3 iterations of SIMPLE
(20 x 20), assuming no more than 100 processors. One profile assumes [= 0, and the other
assumes { = 10.

Despite the enormous increase in latency, the critical path lengthens by hardly a factor of
2 (from about 15,000 to about 30,000). This shows that SIMPLE has enough dependency-
free parallelism to absorb much of the latency (up to 10) on 100 processors.

Figure 7 shows the speedup curves for SIMPLE (taking latency into account).® The
points in the figure are from GITA runs for various settings of n and I, while the curves are
derived analytically from the ideal parallelism profile. One way to interpret these curves is

*These are estimated from the ideal parallelism profile; we have shown that our estimates come within a
small factor of actual runs.

5The data for this figure was generated using an earlier version of the compiler (with fewer optimiz ations).

Section G 9

ideal
90 |
600
80
o 500 J 70 4
= =
so | B
300 =
40
200 30 |
20 |
100
10 |
0
80 180 240 320 400 430 560 640
Maximum Operations per Time-step (n)
Figure 5: Speedup and Utilization for SIMPLE (3 iterations, 20 x 20).

1002 | I 1=p

50 -
n -
= -
g 3
] i
8 o0
OQ' 10000 20000 30000
-~
=
:
[5)
g 100 =
S

50

0

10000 20000 30000

Figure 6: Effect of Latency on Parallelism Profile for SIMPLE (100 processors, 3 iterations,
20 x 20).

Section G 10

300

Speed Up

200

100

0 %0 200 300 400 500 N

Figure 7: Speedup in the Presence of Latency for SIMPLE (1 iteration, 32 x 32).

that if we do not get a near-linear speedup on a machine with, say, 50 processors and latency
10, then the fault lies with the machine, not the program. On the other hand, the program
does not have sufficient parallelism to utilize a machine with 500 processors effectively.

1.3.4 Larger Granularities May Have Inadequate Parallelism

The absence of speedup on an application can sometimes be traced to the lack of support
for sufficiently fine-grained parallelism in a machine architecture.

Many proposed parallel architectures are based on von Neuman processors. Because
of the high cost context-switching, researchers often advocate parallelism only at a coarser
grain:

e Procedure-level: procedures may execute in parallel, but procedure bodies execute se-
quentially.

¢ licration-level: in addition, iterations of a loop may execute in parallel, but loop bodies
execute sequentially.

Using a modified GITA, the parallelism profiles for SIMPLE (32 x 32, 1 iteration, infinite
processors, zero-latency) are shown in Figure 8 for instruction, iteration and code-block
parallelism.® Note the dramatic drop in available parallelism with grain size, both in the
number of concurrent operations and in the critical paths. It is also possible to plot these with

8The data for this figure was generated using an earlier version of the compiler (with fewer optimizations).

Section G

11

Concurrent Operations Concurrent Operations

Concurrent Operations

5000 Instruction

4000

8000 4

2000 J

1000

2000 T

Iteration
200
160 |
0 v . .
5000 10000 15000 T

80 Code-Block
70 J
60 |
50 |
40
L/
20

10

10000 20000 30000 40000 50000 60000 70000 T

Figure 8: Effect of Granularity on Parallelism in SIMPLE (1 iteration, 32 x 32).

Section G 12

finite-processors and non-zero latency. The results show that instruction-level parallelism can
keep many more processors busy.

1.4 The TTDA Can Exploit Parallelism in Programs

The MIT Tagged-Token Dataflow Architecture (TTDA) executes dataflow graphs directly.
An overview of the TTDA may be found in [9]. Throughout this section we describe the
TTDA as if it exists. However, it should be clear that only “soft implementations” exist,
i.e., emulators and the simulator.

1.4.1 Dataflow and von Neumann Instructions are Comparable

We compared SIMPLE written in FORTRAN and in Id. The FORTRAN version was the
original one from Livermore. Dr. Ekanadham of IBM Research compiled it (for sequential
execution) using the IBM 370 FORTRAN compiler, at the maximum optimization level
(Level 3). Our Id version was compiled and executed on GITA. The measured dynamic
instruction counts for 1 iteration of a 32 x 32 run (not counting I/Q) are:

FORTRAN/IBM 370 Id/TTDA

Type Count % Count %
Floating point 349,646 26 354,848 25
Fixed point 179,888 13 61,452 4
Load,store,move 602,081 45 313,565 22
Identity 340,004 24
Branch/Switch 142,502 11 90,341 6
Subroutine linkage, etc. 70,084 5 132,325 9
Misc. 153,943 10
Total 1,344,201 100% || 1,446,478 | 100%
Critical Path: 1,083

The dataflow instruction count is within 7% of the FORTRAN version, but the following
facts must be kept in mind:

¢ Both compilers use optimizations such as common subexpression elimination, inline sub-
stitution, constant folding, etc. The Id compiler does not yet do subscript analysis of
array references.

¢ The dataflow code is already parallel. Parallelizing the FORTRAN code will increase the
number of instructions due to task creation management. The precise significance of this
factor is not yet known.

o Neither the Id nor the FORTRAN code counts instructions inside resource managers.
Id’s dynamic view of resources may cost it more.

Based on this experiment, on smaller experiments on a Cray, and on hand analysis of code, we

are confident that dataflow instruction counts are comparable to von Neumann instruction
counts.

Section G 13
1.4.2 TTDA Storage Requirements are Reasonable

What is Token Storage? On sequential machines, the storage for a procedure activation
is a “frame”. Loops cause no allocation. At each step, the storage in use equals the frames
in the current call chain. Data structures may be in frames, or in a separate area called the
heap. Most modern languages (including Common Lisp and Id) require heap allocation.

In parallel machines, concurrent invocations require a tree of frames in place of a stack.
Since loop iterations can execute in parallel, even loops can require allocation of frames.

It is now clear to us that in the TTDA, token storage in the Wait-Match Unit corresponds
to the traditional stack-based storage for frames, and I-structure storage corresponds to the
traditional heap.

Storage Requirements Due to Uncontrolled Unfolding Consider a loop executing
a 1000 iterations on 10 processors. With no constraints, we may soon execute instructions
from every iteration, causing 1000 frames (and perhaps 1000 local arrays) to be allocated.
But the frames and arrays for the later iterations are likely to be idle for a long time, and
so the allocation is premature. Worse, the program may deadlock for lack of storage. Thus,
estimates of storage requirements must be predicated on the strategy for unfolding.

Controlling Unfolding by Loop Throttling We have developed a compilation tech-
nique [14] that limits the unfolding of loops to no more than k iterations, where k for each
loop can be specified as late as loop invocation time. Throttling can decrease token storage
requirements dramatically without increasing the critical path. The upper curve in Figure 9
shows the Wait-Match store required for 3 iterations of a 20 x 20 SIMPLE run, assuming no
throttling. The lower curve assumes k& = 1 for the outermost loop. The storage requirements
decrease dramatically, even though the critical path is almost unaffected.

1.4.3 The TTDA Tolerates Communication Latencies

We studied SIMPLE on our TTDA simulator[20]. Because of the level of simulation detail,
the practical upper limit for the simulated system size is around 16 TTDA processors, and

the biggest SIMPLE problem we can run is about one iteration on a 10 x 10 grid (just over
200,000 dataflow instructions).

The results are presented as speed-up curves in Figure 10. The curves confirm that the
TTDA can indeed sustain an extraordinary amount of latency while still retaining much of
its speed. In contrast, a single von Neumann processor would slow down = 50 times given
a similar arrangement. The reason is that in a dataflow processor, a memory-fetch does not
cause the processor to idle at all— other instructions follow immediately in the pipeline,
whereas a von Neumann processor must idle during an entire memory reference.

The same experiments, run on GITA modified as before for code-block level parallelism
with round-robin scheduling, confirm these results.

Section G 14

100000
90000]
80000
70000 J
60000
s0000 |

40000 _

Wait-Match Storage

20006 4

20000

10000

o

T I
1000 2000

Figure 9: Effect of Loop Throttling on Token Storage for SIMPLE (3 iterations, 20 x 20).

1.4.4 Simple Code-Block Distribution is Robust

For each code block invocation, the system must decide where (on which processor) to
allocate its frame, the objective being to balance load. We implemented several code-block
allocation policies on the simulator, including static allocation, round-robin, hashed, load-
leveling efc. Our results show that a simple round-robin strategy does almost as well as the
more complex schemes.

1.4.5 Lessons from Experimental Results

1. Instruction Set: Dataflow MIPS are comparable to von Neumann MIPS.

2. Directly-Addressed Wait-Match Storage: Wait-Match store can be implemented as: A)
An associative memory for tokens, keyed on token tags, or B) a collection of frames,
one for each code block activation.

In A the size of the memory required is the maximum number of concurrently active
tokens. Our studies show that this is large, so the only feasible implementation is a
hash memory. Because of collisions, accesses can take several cycles, thus degrading
performance. This approach has been used in both the Manchester and the Sigma-1
dataflow machines [17, 19].

The attraction of B is that the store is directly addressed using the tag. This suggests
a very simple, fast implementation. The problem is that with uncontrolled program

Section G

15

Speed-Up

Speed-Up

k=20
Simulator
k=40
- k=60
k=80
k=100

. Note: L=k/2

1 2 3 4 b 6 7 8 9 10 11 12 13 14 15 16 PEs

L=0

=

L=30
L=40
L=50

. Code-Block Level GITA

1 2 3 4 5 8 T 8] 10 11 12 13 14 15 18 PEs

Figure 10: Effect of Latency on Speedup for SIMPLE (1 iteration, 10 x 10).

Section G 16

unfolding, few locations in each frame hold active tokens. Thus, much space is wasted
due to fragmentation and the total memory required is too large.

We have shown that loop bounding makes B viable. It limits the number of active
frames, and decreases fragmentation by concentrating activities in fewer frames. The
Monsoon architecture adopts this approach.

3. Unification of Wait-Match and I-structure Memory: Wait-Match store and I-structure
storage both implement synchronization in the TTDA. When Wait-Match store is
implemented as a directly addressed memory, the similarity is greater, suggesting a
unification of the two.

4. Completeness: An issue not addressed seriously is that of completeness— the ability
to code and execute all support software, notably resource managers, on the TTDA
itself. Resource management actions were performed by an unspecified “Control Sec-
tion”, which could even be a conventional von Neumann processor. This approach was
deliberate: we wanted to understand the resource management requirements before
implementing such managers.

We have now begun addressing this issue. We are looking at clean extensions to Id
for coding managers, including non-deterministic constructs. We are exploring archi-
tectural support for managers, such as instructions for atomic queue management and
sequential entry into managers.

2 The Proposed Dataflow System

We are greatly encouraged by the results of our research— we are confident that Id is
suitable as a high-level parallel programming language, that dataflow graphs constitute an
ideal parallel machine language, that Id can be compiled easily into dataflow graphs, and
that a multiprocessor that can execute dataflow graphs directly will be efficient and scalable.
We can show that it is not enough to interpret dataflow graphs on, say, von Neumann
processors— direct hardware support for data-driven scheduling is essential to realize the
benefits of the dataflow model. Qur deeper understanding has also led to new and significant
ideas on how practically (and economically) to implement dataflow processing elements. We
are now no longer hesitant to build an actual dataflow computer.

A major question remains— effective resource management. This is still poorly under-
stood for all parallel architectures, not just dataflow. Unfortunately, simulations of parallel
architectures are just not able to run large enough problems to shed light on the resource-
management problems— real machines must be built to run such large programs.

We propose to build a machine that balances this need for adequate performance with
conservative engineering discipline.

Section G 17
2.1 System Overview

A block diagram of the proposed Dataflow Computing System is shown in Figure 11. It will
comprise 256 dataflow processing elements/structure controllers, a high performance two-
stage packet switched interprocessor network, and an off-the-shelf Input/Qutput subsystem.

The dataflow Processing Elements (PEs) have a new architecture which we call “Mon-
soon”. It will be capable of over 10 million instructions per second, any fraction of which
may be 64-bit floating point operations. A Monsoon PE can also behave as an I-Structure
Controller, yielding over 10 million structure operations per second. Each PE will have
two million words of primary store. The network will provide 100 megabytes per second
interprocessor bandwidth per PE.

The raw performance of the entire dataflow system will be in excess of 2000 million
instructions and/or structure operations per second. The total primary memory will be
512 million words. The primary memory of all PEs are uniformly addressed using a single,
global addressing mechanism. On a wide variety of scientific codes we expect a sustained
performance of about 200 MFLOPS (about 8 times the average throughput of a Cray-1),
making the proposed system competitive with contemporary von Neumann supercomputers.

2.2 The Monsoon Processing Element/Structure Controller

Monsoon is a new architecture for dataflow processing elements. The Monsoon PE may
be regarded as a concrete hardware realization of the TTDA. Thus, it addresses the two
fundamental issues of multiprocessing [7]— latency and synchronization— by (1)providing
non-blocking, split-transaction, remote memory references, (2) providing efficient hardware
synchronization on a per instruction basis, and (3) interleaving threads on a per instruction
basis.

The major innovation in a Monsoon PE is the implementation of Wait-Match store as
a directly addressed memory. Previous dataflow architectures (Manchester, ETL Sigma-1)
used a large associative memory implemented as a hash table. Not only are large, fast
hardware hash tables difficult to design, they are also slow because resolution of collisions
can take several cycles. In contrast, Monsoon’s Wait-Match operations involve simple RAM
reads and writes.

A second innovation is that the identical Monsoon PE can serve as an Lstructure con-
troller. This unification leads to considerably simplified engineering of the hardware. It also
simplifies resource management; since the same memory is now used for program code, token
store and I-structures, the partitioning can be done dynamically.

Monsoon also supports the execution of imperative and non-deterministic code. This
permits coding resource managers, and supports other programming languages.

The block diagram of a Monsoon PE is shown in Figure 12. The primary stores (DRAMs)
of all the PEs in the system are collectively addressed in a uniform, global address space.
Thus, a global memory address can be viewed as the concatenation of a PE number and an
address within that PE. Unlike the TTDA, which had separate memories for program code,
waiting tokens, and data structures, Monsoon’s DRAM serves all purposes.

Section G 18

I/SJ :’ 1S Monsoon Processor
Tocessor 10 MFLOPS (64 bit)
R 2 MWords RAM 100 Megabytes/sec

Local Area Network AN ' N-E:-"Work port

-~ [N]

~ 10P :

1 GByte 1

Disk —PE 1|]
-

-
VME or NuBus .
40 Mbytes/sec
~
~

1of 16
I/O Groups

Interprocessor
Network

Console

6

Gateway

Pt e dadated sl

InterNet IOP

Sryee
s 120
—{ 24 [

Figure 11: Block Diagram of The Proposed Dataflow System.

Section G

19

Thread = (PE, Map, Port, IP, FP, A)

ry

+‘T

D Net

Instruction
Cache
Imr— r
A 4
Effective FP
Decode Address [€¢——

Nano-Instruction Data Address
A 4 ‘ l

DRAM
2M x 72

Instruction and Frame Store

Thread

Queved Thread

Direct Thread

Quene

—

NuBus

P Net

Figure 12: Block Diagram of Monsoon Processor Architecture

Section G 20
2.3 Executing Dataflow Graphs on Monsoon

The compiler plans the layout of a frame for each code block. Each time the code block is
invoked, such a frame is allocated for that activation. A frame contains a rendezous location

for every diadic operator in the code block. Thus, a frame pointer is the analog of the contezt
identifier in TTDA tags.

A token has the form ({PE,IP, F P}, A) (see Figure 13). The tag of a token consists of
a Processing Element number PE, an instruction pointer I P, and a frame pointer FP.” IP
and FP are addresses in processor PE’s memory. It is also possible to view a token as a
thread descriptor, where IP plays the role of program counter, FP the role of stack frame
pointer, and A the role of the classical “accumulator”.

Each processor may typically support thousands of tokens (simultaneous threads) in the
thread queue, which feeds the main processor pipe.

A
PE IP FP > r0
Thread Descriptor rl
T2
r3
— | OpCode r sl 82
Instruction
r1028
EA = FP
FP 41, IP +1, 1, Base(FP) +r Activation Frame
new [EA| = A
new A = A op [EA]
IP = IP + cond(sl, s2)
Figure 13: Representation of a Thread on Monsoon

The following actions take place as a token passes through the pipe:

1. Instruction Fetch: An instruction of the form (Opcode,r,s) is fetched from location
IP. Opcode specifies a “frame operation” and an ALU operation, r specifies an offset

in the frame, and s specifies an increment to IP that locates the destination instruction
(there may be two destinations s, and s;).

“In more detail, it is actually (Map, PE, 1P, port, FP). Map defines the subdomain size for structure
interleaving, and port indicates the left or right port to a diadic instruction.

Section G 21

2. Effective Address Computation: A local memory effective address EA is computed
depending on the addressing mode (part of the instruction). Examples: FP +r (frame
relative), I P + r (instruction relative), r (absolute), or F Py, + r (loop constant).

3. Frame Operation: The normal frame operation is a “wait-match” operation (see Figure
14). Every memory word has extra bits called “presence bits”. If data in location EA
is absent, A is stored there. If some data B is present, it is extracted. The wait-match
operation can also be viewed as the join or rendezvous of two threads.

Other frame operations include simple reads, writes (with A), exchanges (read B, write
A), ete.

4. ALU operation: A and B are sent to the ALU, which applies the specified ALU op-
eration, yielding a new A’. The ALU has parallel function units for floating point,
bit-manipulation, and pointer arithmetic, permitting generic (type independent) op-
codes.

5. Next Address Computation: A new destination (PE’, IP') is computed using (PE,IP)
and s. Finally, an output token emerges with ({(PE’,IP’, FP), A’). The old frame
pointer is retained. If there are two destinations s; and 82, two output tokens are
produced. This corresponds to a fork yielding two threads within the same frame.

1.53 -3.8
/ P 1.58
read
A. No operands, slot is initially empiy C. Second operand arrives, read slot
1.53 write
P 1.53 /
-5.508

B, First operand arrives, write into slot D. Execute instruction, clear presence flag

Figure 14: Executing a Dyadic Dataflow Operator on Monsoon

A very important optimization in the TTDA is the loop constant, which permits sharing of
values across iterations without repeatedly copying (circulating) them. A special addressing

Section G 22

mode (loop constant) in Monsoon provides most of the efficiency of TTDA loops without
introducing a special ¢ field on tags.

The tag (PE,IP,FP) and the data A on a token are of the same size. Thus, tags
can be carried and manipulated as data. This is used to implement resource managers that
allocate/deallocate tags, and by the diadic SEND instruction which takes a tag (as data) and
some data, and produces a token with that tag and data. This is the TTDA CHANGE-TAG
instruction, and, as we shall see, subsumes the TTDA’s [FETCH and I-STORE instructions
as well.

2.4 I-Structure Operations on the Monsoon Processor

The Monsoon processor can also behave as an I-structure controller.

To write value A into location [of processor PE, we construct the following token using
the SEND instruction: ({PFE,IPyrie,1), A). The token arrives at processor PE, where it is
processed by the “I-structure Write” instruction at reserved location IP,,;;., whose effect is
simply to write A into location I.

To read a location ! from PE; such that the result A should go to instruction IP in PE,
with context (frame) F'P, we construct the following token using the SEND instruction:
({PEy, I Preaa, 1}, (PE,, IP, FP)). The token arrives at PE;, where it is processed by the
“I-Structure Read” instruction at reserved location 7 P,..q, whose effect is simply to read the

value A there, and construct the token: ({PE,, IP, FP), A)

Note that memory reads are split into two transactions— one that sends a read request,
and another that replies with the value. In the interim, the pipeline is not blocked— other
instructions are free to execute.

Impiementing a single deferred read for I-structures is easy. When a read request arrives
at an empty I-structure location, it simply stores its destination there. When the write
arrives, it reads out the waiting destination, writes the value, and sends the value to the
waiting destination. Implementing multiple deferred reads is a little trickier, but possible.

In general, tags (PE,IP, FP}) can be viewed as pointers. Unlike conventional machines
however, every pointer carries with it an instruction address that specifies what to do with
the pointer.

One significant departure from the TTDA is that atomic values are of a single fixed size.
This means that compound objects that used to be carried on tokens, like array descriptors
and closures, must instead be references to regions in memory where the information is
maintained. For example, an I-structure descriptor will simply become a pointer to an array
header that contains its bounds and type information.

2.5 Support for Other Programming Languages

Monsoon is more general than a TTDA graph interpreter. In fact, one can view it as a
processor analogous to the Denelcor HEP, supporting multiple concurrent threads efficiently.

Section G 23

Each traversal through the pipe is potentially a join of two threads, an operation, and a fork
into two threads. Threads are interleaved on every cycle from a hardware-managed task
queue, without any context-switching overhead.

Thus, Monsoon can also support existing languages like FORTRAN, C and Lisp. Of
course, Monsoon is unlikely to compete with a von Neumann processor on a single thread—
whereas the latter may be able to pipeline a sequential thread, successive instructions in
a thread must pay the full latency of the pipe in Monsoon. However, if we generalize the
problem to deal with multiple threads, Monsoon’s efficient interleaving of threads begins to
pay off. We conjecture that on multi-threaded applications, even a single Monsoon processor
will be competitive with a single von Neumann machine.

One language that we are examining closely for the Monsoon processor is Multilisp {18],
which subsumes conventional languages like FORTRAN, C and Lisp. This has also influenced
the architecture, leading to some changes in the repertoire of Monsoon'’s Frame Operations
for efficient support of Multilisp’s FUTURE construct.

2.6 Technology Considerations for the Monsoon Processing El-
ement

Major considerations in designing the Monsoon Processing Element are:

¢ Technological realizability. Every component should have a feasible implementation us-
ing current technology. For example, it is not feasible to implement a very large, fast
associative memory.

® Technological scalability. Every component should be able to benefit automatically from
normal improvements in technology. For example, improved circuit speeds should result
in higher performance— there should be no critical “hot component” that limits speed.

We believe that the processor pipeline is well-balanced and thus technologically scalable: an
individual processor can be sped up by employing a faster implementation technology.

We can obtain competitive performance with simple technologies. We expect an initial
implementation of PEs in field-programmable CMOS gate arrays and TTL, and later in
ASICs with a cycle time of 100 nanoseconds or less. The datapaths will be 64-bit values with
8 bits of type and GC information. Double precision (64 bit) IEEE arithmetic is employed
yielding over 10 Megaflops/10 MIPS peak rate per processor. Each processor will have 2
MWords (18 Mbytes) of local storage implemented with 1Mbit DRAMS (error correcting)
with a 128 KWord static RAM cache. We will use a single double-height (9U) VME card
for the discrete PE. Later, four ASIC PEs will fit on the same card. We envision four VME
cards per VME host (Sun workstation).

2.7 Interprocessor Communication

The memories on each PE are collectively organized into a global address space. Experi-
mental results indicate the need to spread out loops and data structures across the machine,

Section G 24

rather than trying to exploit locality within a processor. Hardware mapping functions permit
the interleaving of structures on a word-by-word basis across processors. This randomizes
structure references, and has the positive effect of statistically averaging processor and net-
work loading on a fine-grain basis. The disadvantage is that it can cause extra network
traffic.

The network load is relatively easy to estimate. Structure references account for about 30
percent of the instructions executed in the SIMPLE code. If all references require a network
transaction then each processor will, on average, send and receive a message once every
three instructions. For a 10 MIPS processor this is three million messages per second. All
messages are the same size, 18 bytes, yielding an average message rate of about 60 megabytes
per second per processor.

To meet these requirements, interprocessor communication is accomplished through a
network with a per-port bandwidth of 100 megabytes per second, organized as a two-stage
exchange network with 16 x 16 routers. The network is not multipath, but it is pipelined and
packet-switched. A packet switch of this size can deliver about twice the useful bandwidth
as a circuit switch with an equal raw per-link bandwidth.

We believe that the network is readily realizable with compositions of CMOS 4 x 4 routers
(about 30,000 gates each) and nibble-wide ECL links over low-loss coaxial cable.

2.8 Input/Output System Architecture

Dataflow machines offer a truly unique possibility for well integrated I/O systems, by at-
taching I/O devices as nodes in the interprocessor communication network. For example,
to read a disk block, we send it a read-request token containing a pointer to an I-structure.
The device simply sends the data as tokens to be written into that I-structure. A consumer
can begin reading contents of the I-structure even as it is being filled. The device could send
a “completion token” to a waiting manager (analogous to a I/O completion interrupt). This
overlapped processing, synchronization, etc. fits naturally into the dataflow model.

However, the engineering effort required for even a simple disk controller is non-trivial.
We have tried to minimize our development effort for Monsoon I/O in two ways. First, a
large main store (512 Megawords) mitigates the need for high-speed temporary or swapping
store. Second, we are employing, wherever possible, off-the-shelf I/O components, including
commercially available processors, device controllers and LANs.

An 1/0 Group is a collection of four Monsoon PE cards and an off-the-shelf host processor
for I/O (workstation). In the discrete implementation, a processor occupies an entire card,
so there are four PEs per I/O host. In the ASIC version, there will be four PEs per card,
or sixteen per host. The bus is used for power, I/O transfers between devices and Monsoon
PEs, and for maintenance and monitoring. The memory in each Monsoon PE will be dual-
ported, with one port used for DMA transfers to and from the bus, initiated by special I/0
instructions. We will rely on the file system and LAN interface of the host processor.

Each 1/O processor will have local disk capacity of at least one gigabyte, and all I/O
processors will be networked under a single file system. ldeally, disks should be of super-
computer-class performance: 2-3 millisecond seek times and transfer rates in the range of 10

Section G 25

megabytes per second. Alternatively, high performance and less expensive mainframe drives
could be employed. These have competitive seek times but support only about one-quarter
of the transfer bandwidth.

The 1/0 processor should be robust, have rapid I/O responsiveness, an open and well-
understood operating system interface, an integrated network file system, and host an in-
dustry standard, high-performance multi-master bus. The candidates under consideration
include: the TI Explorer II Lisp Machine, the Sun 4, Apollo DN4000, and MIPS. At this
time a Sun 4 running UNIX (or, preferably, a robust, real-time derivative) appears to meet
most of these goals.

2.9 Software Plans

2.9.1 1Id as a Layered Language

The Id language is unique in its structured approach to parallelism.

The core of Id is a purely functional programming language with higher-order procedures
and non-strict operations, the benefits of which include:

¢ A level of programming much higher than current programming languages such as Com-
mon Lisp.

o Abundant implicit parallelism, freeing the programmer from the tedious details of de-
composing an algorithm into concurrent parts.

¢ Guaranteed determinacy, freeing the programmer from the difficult issues of synchroniza-
tion, and making debugging straightforward.

But functional languages do not support data structures such as arrays efficiently, nor are
they appropriate for expressing concurrent programs with shared resources (such as In-
put/Output). Thus, we need to go beyond functional languages.

Conventional wisdom equates “non-functional languages” with “languages with side-
effects”. Side-effects in a parallel language immediately destroy determinacy and therefore
complicate the language and the compiler significantly.

In contrast, Id is a layered language, with many stages between the purely functional
core and full side-effects, so that the programmer does not have to concede indeterminacy
immediately if he has to go outside the functional core:

1) Functional Language.

2) Layer (1) + I-structures.

3) Layer (2) + other determinate constructs, such as “accumulators”.

4) Layer (3) + non-deterministic constructs, such as “managers” (which includes some forms
of Input/Output).

(5) Layer (4) + arbitrary side-effects (including other forms of Input/ Output).

(
(
(
(

We already have much experience with I-structures (layer 2), which solve most of the effi-
ciency problems of data structures in functional languages. We have implemented and are
experimenting with a construct called “accumulators” in layer 3, which are a further gener-
alization of parallel, determinate data structures. We have a proposed design for resource

Section G 26

managers in layer 4, which introduce non-determinacy without serious synchronization is-
sues.

Each layer adds some “power” to Id, but at the expense of some desirable property such
as referential transparency, determinacy, etc. One should always use the least power that will
suffice for an application. This requires a programming methodology that allows constructs
from level j to be packaged into abstractions at level j — 1. We have already developed such
a methodology for layer 2. We need to extend this to higher layers.

2.9.2 Types and Type-checking in Id

Current programming languages have a wide variety of data-type disciplines, ranging from
statically type-checked, non-polymorphic Pascal to dynamically type-checked (and there-
fore polymorphic) Lisp. A rich type system, along with static type-checking can result in
significantly better (and early) error-checking, and significantly more efficient code. How-
ever, a lack of polymorphism (generics) and/or a requirement for detailed type declarations
can seriously hinder ease of programming. A type system due to Milner [21] strikes an
excellent balance— it permits the convenience of Lisp in its polymorphism and lack of type-
declarations, while checking types statically, thus enabling the compiler to catch errors early
and to generate very efficient code.

We have already incorporated a first version of such a Milner-style type system in Id.
QOur future plans include:

* Extensions for incremental type-checking,

¢ Extensions for a limited form of sub-typing,

¢ A methodology to turn off type-checking selectively when the expressive power of the
typed language is inadequate, and

Use of type information for generating better code.

2.9.3 Id Compiler

The back end of our Id compiler currently generates dataflow graphs in terms of TTDA
machine instructions. Conversion to the Monsoon instruction set is very easy because of the
close relationship between the two machines. We have already begun this work.

The Id compiler already incorporates several major optimizations. Almost all these
optimizations precede the machine-level dataflow graphs, and thus carry over directly to the
Monsoon version. The work on optimization will continue to be a very important component
of our software effort.

The compiler will continue to evolve in step with the language extensions.
2.9.4 Resource Management

Several issues in resource management (described below) are likely to dominate our software
efforts. Common to all of them is an extension to Id to express non-deterministic managers.

Section G 27

We have already designed such an experimental extension and are currently incorporating it
in the Id compiler.

Controlling Program Unfolding. We have seen that loop bounding has a dramatic effect
on storage requirements. We need to extend these techniques to control the general recursive
unfolding of programs. The problem is to achieve a balance— rapid unfolding can swamp
the machine; slow unfolding may underutilize the machine. Further, the rate of unfolding
can affect the deadlock behavior of a program.

Storage Management. Id has dynamic storage allocation both for expressiveness® as
well as for parallelism. But this requires automatic storage reclamation, which is a difficult
problem in parallel machines. Our general approach is to use reference counting. We are
investigating several optimizations based on type-checking and abstract interpretation to
minimize the overhead of reference counting operations. Abstract interpretation can also
sometimes predict that the lifetime of a structure coincides with the context in which it was
allocated, in which case we can compile code so that it is frame allocated instead of heap
allocated. Deallocation is then automatic along with the frame. Frame allocation, when
combined with loop bounding, can further reduce this overhead by pre-allocating all the

arrays for k iterations, reusing them during the loop, and deallocating them all at once at
the end.

Load Balancing. Our studies so far have shown that simple round-robin allocation strate-
gies, together with interleaving, are quite effective in balancing load. We will study this
problem in more detail when we can run large programs on the proposed system.

Input/Output. We will use the host processors’ low-level I/O drivers as far as possible.
Our activities will, instead, concentrate on the Id interface for I/0. We have already begun
experimenting with parallel I/O constructs for Id, together with their compilation strategies.

¥No modern programming language, even a sequential one, can afford not to have dynamic allocation.

Contents 1

Contents
1 MIT Tagged-Token Dataflow Project Results 1
11 ResearchTools | 2
1.2 Id is a Good Language for Parallel Programming 2
12.1 IdisExpressive | 3
122 Idis Compilable 3
1.2.3 Id Does Not Obscure Parallelism _ . 3
1.2.4 Id Also Exploits Parallelism Adaptively. 4
1.3 There Is Sufficient Parallelism in Existing Programs 5
1.3.1 Inherent Parallelismin SIMPLE 5
1.3.2 Parallelism on a Finite Number of Processors 7
1.3.3 Parallelism with Non-Zero Latencies 8
1.3.4 Larger Granularities May Have Inadequate Parallelism 10
1.4 The TTDA Can Exploit Parallelism in Programs 12
1.4.1 Dataflow and von Neumann Instructions are Comparable 12
142 TTDA Storage Requirements are Reasonable 13
14.3 The TTDA Tolerates Communication Latencies 13
144 Simple Code-Block Distribution is Robust 14
1.4.5 Lessons from Experimental Results 14
2 The Proposed Dataflow System 16
21 SystemOverview 17
2.2 The Monsoon Processing Element [Structure Controller 17
2.3 Executing Dataflow Graphs on Monsoon 20
2.4 I-Structure Operations on the Monsoon Processor 22
2.5 Support for Other Programming Languages 22
2.6 Technology Considerations for the Monsoon Processing Element 23
2.7 Interprocessor Communication 23
2.8 Input/Output System Architecture 24
2.9 Software Plans 25
291 1d as a Layered Language 25
2.9.2 Types and Type-checkingin1d 26
293 M Compiler 26

2.9.4 Resource Management

Section H: Products and Transferable Technology

There are two kinds of prospective users: applications programmers who would like to
use our machine, and manufacturers who would like to produce a machine based on our
prototype.

Applications Programmers

Applications programmers may already begin experimenting with Id and dataflow by ac-
quiring the existing Id World software which is currently available on Lisp machines and
is soon to be available on Suns and other workstations such as MicroVaxes. The system is
available at no cost under license from MIT, and has already been installed at several sites
in the U.S. The system includes an editor, the Id compiler, an Id debugger, and a dataflow
machine emulator on which one can run Id programs and study their parallel behavior.

We expect that users will be able to learn Id and begin to use it on the proposed sys-
tem with minimum training (we have been quite successful in training even FORTRAN
programmers to use Id World in just a few days).

Subsequently, users can acquire a succession of progressively more powerful dataflow
machines that permit larger applications and/or increased performance. Simultaneously,
users can expect software upgrades that will keep pace with the hardware. These machines
are:

® From 2/89: the 6 MIPS single-PE dataflow accelerator board for Sun workstations.

¢ From 10/89: a 48-64 MIPS four-PE dataflow accelerator board for Suns, including basic
I/O capabilities.

¢ From 2/90: a four-board, sixteen-PE dataflow subsystem for Suns, including small-scale
resource-managers,

¢ From 2/91: a complete, 256-PE dataflow system based on Sun chassis, including large-
scale resource managers (hardware built by Industrial Partner).

We expect the final system to have a peak performance of over 2000 MIPS, and to be
capable of sustaining 1000 MIPS over a wide range of applications, making it competitive
with the fastest contemporary general-purpose von Neumann machines. Any proportion of
the instructions may be floating-point operations,

Manufacture

The single-board accelerators and sixteen-PE system will be designed by MIT with de-
tailed design documents, and the construction will be subcontracted to industry. Thus,
replication by interested manufacturers will be straightforward.

The 256-PE machine will be designed and constructed by an Industrial Partner, thereby
resulting in straightforward replication.

References 1

References

[1] Arvind, S. A. Brobst, and G. K. Maa. Evaluation of the MIT Tagged-Token Dataflow
Project. In Submitted to the Fifteenth Annual International Symposium on Computer
Architecture, Honolulu, Hawaii, May 30-June 2 1087,

[2] Arvind and J. D. Brock. Resource Managers in Functional Programming. Journal of
Parallel and Distributed Computing, 1(1), June 1984.

(3] Arvind and D. E. Culler. Dataflow Architectures, pages 225-253. Volume 1, Annual
Reviews Inc., Palo Alto, CA, 1986.

[4] Arvind and D. E. Culler. Managing Resources in a Parallel Machine. In Proceedings of
IFIP TC-10 Working Conference on Fifth Generation Computer Architecture, Manch-
ester, England, North-Holland Publishing Company, July 15-18 1985.

[5] Arvind, M. L. Dertouzos, and R. A. Iannucd. A Multiprocessor Emulation Facility.
Technical Report TR 302, MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, October 1983.

[6] Arvind and K. Ekanadham. Future Scientific Programming on Parallel Machines. In
Proceedings of the International Conference on Supercomputing (ICS), Athens, Greece,
June 8-12 1987.

[7] Arvind and R. A. Jannucci. Two Fundamental Issues in Multiprocessing. In Proceedings
of DFVLR - Conference 1987 on Parallel Processing in Science and Engineering, Bonn-
Bad Godesberg, W. Germany, June 25-29 1987.

[8] Arvind, G. K. Maa, and D. E. Culler. Parallelism in Dataflow Programs. In Submitted
to the Fifteenth Annual International Symposium on Computer Architecture, Honolulu,
Hawaii, May 30-June 2 1987.

[9] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow
Architecture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands.
(LNCS Volume 259), Springer-Verlag, June 15-19 1987.

[10] Arvind, R. S. Nikhil, and K. K. Pingali. Id Nouveau Reference Manual, Part IT: Seman-
tics. Technical Report, Computation Structures Group, MIT Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139, April 1987.

[11] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel
Computing. In Proceedings of the Workshop on Graph Reduction, Santa Fe, New Mez-
ico, USA, (Springer-Verlag LNCS 279)., September/QOctober 1986. (also Computation
Structures Group Memo 269, MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139).

[12] S. Brobst. Instruction Scheduling and Token Storage Requirements in a Dataflow Su-
percomputer. Technical Report, MIT Laboratory for Computer Science, 545 Technology

References 9

[13]

[14]

[13]

[16]

[17]

(18]

[19]

[21]

[22]

[23]

[24]

Square, Cambridge, MA 02139, May 1986. (Master’s Thesis, Dept. of Electrical Engi-
neering and Computer Science, MIT).

W. Crowley, C. Hendrickson, and T. Rudy. The SIMPLE Code. Technical Report UCID
17715, Lawrence Livermore Laboratory, February 1978.

D. E. Culler. Effective Dataflow Execution of Scientific Programs. PhD thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, June 1988 (expected).

D. E. Culler and Arvind. Resource Requirements of Dataflow Programs. In Submitted
to the Fifteenth Annual International Symposium on Computer Architecture, Honolulu,
Hawaii, May 30-June 2 1987.

K. Ekanadham, Arvind, and D. E. Culler. The Price of Parallelism. In Submitted to
the Fifteenth Annual International Symposium on Computer Architecture, Honolul,
Hawaii, May 30-June 2 1987.

J. R. Gurd, C. Kirkham, and I. Watson. The Manchester Prototype Dataflow Computer.
Communications of the ACM, 28(1):34-52, January 1985.

R. H. Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems, 7(4):501-539, October 1985.

K. Hiraki, S. Sekiguchi, and T. Shimada. System Architecture of a Dataflow Super-
computer. Technical Report, Computer Systems Division, Electrotechnical Laboratory,
1-1-4 Umezono, Sakura-mura, Niihari-gun, Ibaraki, 305, Japan, 1987.

G. Maa. Code-Mapping Policies for the TTDA. Technical Report, MIT Laboratory
for Computer Science, 545 Technology Square, Cambridge, MA 02139, December 1987

(expected). (Master’s Thesis, Dept. of Electrical Engineering and Computer Science,
MIT).

R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

R. 5. Nikhil. Id Nouveau Reference Manvual, Part I: Syntaz. Technical Report, Com-
putation Structures Group, MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, April 1987,

R. S. Nikhil. Id World Reference Manual. Technical Report, Computation Structures
Group, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, April 1987.

K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture. Technical
Report L.CS TR-370, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, August 1986. (Master’s Thesis, Dept. of Electrical Engineering
and Computer Science, MIT).

