LABORATORY FOR
COMPUTER SCIENCE

TECHNOLOGY

MASSACHUSETTS
INSTITUTE OF

/

Compilation of Id™: a subset of Id

Computation Structures Group Memo 315
24 July 1990
Revised 1 November 1990

Zena M. Ariola
Arvind

This report describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for this work has been provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988 (MIT) and N0039-
88-C-0163 (Harvard).

\

/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

1

Compilation of Id™: A Subset of Id

Zena M. Ariola Arvind
Aiken Computational Laboratory Laboratory for Computer Science
Harvard University Massachusetts Institute of Technology

November 1, 1990

Abstract

Compilation of Id, a higher-order non-strict functional language augmented with I-
structures, is described in terms of two languages. The first language is called Kid, which is
a Kernel language for Id. Kid is further translated into a language where all Kid data struc-
tures and functions are represented using only one data structure. This second language is
called P-TAC for Parallel Three Address Code. The operational semantics of both Kid and
P-TAC are presented in terms of two conteztual reduction systems. Formalization of many

commonly known optimizations is also presented in the contextual reduction framework.

Keywords and phrases: Term Rewriting Systems, Contextual Reduction Systems,

Dataflow, Functional Languages, I-structures, Compiler Optimizations.
Introduction

We describe the compilation of Id=, a subset of the Id language, in terms of successive

translations into different languages. Each of the successive languages has a precise operational

semantics, which is given in terms of rewrite rules. The compilation scheme is shown in Figure 1.

Id™ does not contain the following features of 1d:

abstract types and algebraic types except lists;
overloading;

mutable structures.

Parsing, eliminate multi-clause functions
and comprehensions

desugared Id’

|
i

l Choose representations

Figure 1: Compilation scheme

Elliminate complex patterns and
complex expressions

Id~ is first parsed into de-sugared Id~, where enough parentheses are inserted to make opera-
tor associativity and precedence irrelevant. Desugared Id ™ also does not contain patterns in func-
tion definitions. During the de-sugaring phase list-comprehensions and array-comprehensions

are transformed into nested loops. We will informally describe this phase in the next Section.

In the next phase de-sugared Id~ is translated into Kid, the Kernel language for Id. Kid
is a subset of Id except for the notion of multiple values which have been inspired by dataflow
graphs. Essentially a Kid program contains only primitive patterns and simple expressions. The
Kid syntax and operational semantics are given in Section 3. The translation from de-sugared
Id~ to Kid, including the compilation of complex patterns into primitive patterns, is described

in Section 4.

Kid serves several purposes. Since Id is too complex to be given direct operational seman-
tics, it is preferable first to give a translation of Id into a smaller language such as Kid. Thus,
Id is defined indirectly in terms of the rewrite rule semantics of Kid. Kid is also the inter-
mediate language in which a large number of architecture independent compiler optimizations
are performed. These optimizations are described in Section 5. We think that many other
types of analyses such as Milner style type checking, or abstract interpretation for storage recla-

mation should be performed at the Kid level. These analyses are not described in this document.

An implementation method that is preferred by many researchers eliminates explicit envi-
ronments containing the value of free variables of a function. This requires applying a program
transformation known as lambda-lifting. Lambda-lifting involves two steps: first, all nested
function definitions (A-expressions) of a Kid program are “closed” by turning their free variables
into parameters. In the second step, all closed definitions are lifted to the top level. Lambda-
lifting should be done after optimizations have been performed on Kid programs. There are
many algorithms for doing lambda-lifting and we do not describe any of them in this document.

Interested reader is referred to Johnsson’s paper [7].

The next step is to translate a lambda-lifted Kid program into P-TAC [1], which is a much
smaller language than Kid. This translation calls for choosing a machine representation for each
type of Kid value and thus, involves many low level efficiency issues. P-TAC and its operational
semantics are given in Section 6. A translation from Kid into P-TAC is given in Section 7. We
end the document by showing in Section 8 how a P-TAC program is extended with Signals [2]

which are needed to detect termination and for resource management.

Our compiling approach allows the formalization of questions related to correctness [1]. For
example, it will make sense to talk about the correctness of lambda-lifting, or the correctness
of the translation from Kid to P-TAC. Moreover, since there exists an independent operational
semantics of Id™ in terms of a even smaller subset of kernel Id [5], it may be possible to prove
the correctness of the translation between de-sugared Id™ and Kid. Another advantage of our
approach is that we are able to delay the introduction of concepts tied to specific machines or
even to the dataflow computation model until we actually generate machine code. However, in

this document we do not go below the P-TAC level.

2 Desugared Id™

The syntax of de-sugared Id™ is described in Figure 2. As can be seen from the grammar, de-
sugared Id is fully parenthesized and thus has no operator precedence. Thus, an Id expression

like

(f x) : map f xs

Mm M M M

Variable
onstant

vopr

BOP

E

Block

Statement

Binding
ommand
lause

P

Program

Unary Operator

Binary Operator

Expression
Pattern
= zlylz|-lalb|-[f]-Jar|---[F] |-
:= Integer | Boolean | () | Nil | (Not) | --- | (4) | (=) | - - - | Make_nD_array
= Negate | Not | nD_Bounds | |_.nD_array | Open_cons
= +|—|*x|--|==|Eq?7|<|---|And |:

Variable | Next Variable | onstant

| (UOP E) | (E BOP E) | (E E)| E|E] | E.cons_1 | E.cons_2

| (B,E) | (B,B,B)| -

| (If E then E else) | {Case E of lause [| lause]* }

| {While E do [Statement;]* Finally E'}

| {For Variable < FE to E step E do [Statement;]* Finally E'}
| {Fun [Variables]* = E} | {Fun [Variables|* = E}

| Block

{[Statement;]* In £}

Binding | ommand

P=Fr

E[E|=E|FE.cons.1=F | FE.cons2=FE

P=Fr

Nil | Variable | Next Variable | (P, P) | (P,P,P)|---| (P : P)
Block

Figure 2: Grammar of de-sugared Id~

becomes

((f x):((map £) xs))

Id has curried versions of infix binary operators which are written by enclosing the operator
in parenthesis. Thus, (+) represents the curried +, and it makes sense to write ((+) 2) in Id. In
de-sugared Id™ we treat the curried version of an operator as a constant, which has a standard
function definition associated with it. For the sake of symmetry we have also included curried

versions of all unary operators in de-sugared Id~.

During the de-sugaring phase multi-clause functions, are turned into equivalent case expres-

sions, as shown in the example below

Def map f Nil = Nil

| map f x:xs = (f x) : map f xs;

becomes

Def map t1 t2

{ Case (t1, t2) of
| (£, Nil) = Nil
| (£, =x:xs)

(f x) : map f xs }

where t1 and t2 are new variables. Furthermore, all function definitions are turned into A -

expressions.

map = { Fun t1 t2 = { Case (t1, t2) of
| (£, Nil) = Nil
| (£, x:xs) = (f x) : map £ xs } }

If the Id function is defined as substitutable (Defsubst) then the corresponding A-expression
(Fun) is underlined. The “underlined” A-expressions are then expanded in line during optimiza-

tions (see Section 5).

The most complex part of the de-sugaring phase is the transformation of comprehensions
into loops. This is described in detail in [3]. Here we only illustrate the idea using the following

example:

{: e |l x<-xs ; y <~ ys}

A typical translation of this list-comprehension is given in terms of nested map-list operations
followed by a list flattening operation. In Id we make use of “open lists” to generate a tail
recursive program. Basically, in the following program, a open list (signified by h in the inner
loop) is generated for each element of xs and then these open lists are “glued” together in the

outer loop.

{ h1 = Open_cons ();
hn = { For x <- xs do
Next hl =
{ Case ys of
| Nil = h1
| y:yss =

{ h = Open_cons ();
hl.cons_2 = h.cons_2;
In { For y <- ys do
t = Open_cons ();
t.cons_1 = e;
h.cons_2
Next h = t;
Finally h }}3};

1]
ot

Finally hl };
hn.cons_2 = Nil;

In hl.cons_2 }

The above translation is correct if we treat open lists and lists as the same type. However, there

are several subtle issues regarding type checking that are still not resolved.

3 Kid : The Kernel Id Language

3.1 Kid

Kid has only uncurried operators and no complex expressions. A major subset of Kid is simply
the A-calculus with constants and let blocks. However, unlike other functional languages, let -
blocks play a fundamental role in the operational semantics of Kid. The syntax of Kid is given
in Figure 3. Every expression, except a block or A-expression, consists of a combinator followed
by the corresponding number of arguments. The translation from Id~ to Kid also has the flavor

of turning an applicative TRS into a functional one.

An important feature of Kid is the concept of multiple values. The expression
z,y={2a=--;b=--;1Ina, b}

is a well-formed-expression, where “z, y” indicates multiple variables, not to be confused with

a 2-tuple. The 2 after the curly brace indicates that two values are to be returned by this block

-~

MV

SE

PFipy,

Ap_FEp,
ase_I/,,

Loop_E,,

lambda_E

E.m

Variable
MV,

onstant

SE
SEm

Pr1,
P11,
PF24

PFN,
Ap_F.,

ase_FE,,
Loop_E,
lambda_E
Ey

Ey
Block,,
Statement
Binding

ommand

Program

mM M M M M M M M

Multiple Variable

Simple Expression

Primitive Function with i arguments and m outputs
Applicative Expression with m outputs

Case Expression with m outputs

Loop Expression with m outputs

Lambda Expression

Expression with m outputs

lylz|-lalbl-|f|Tfa] -
Variable, - - - Variable

m
Integer | Boolean | () | (Not) |-+ | (4+) | (=) |-~

| Nil | Make_nD_array | Error | T

Variable | onstant

SE,---,SE | SE,SEpm-1 | SE,SE,SEm—2 | - -
————’

m

Negate | Not | nD_Bounds | |_.nD_array | Open_cons | Cons_1 | Cons_2
Detuplem
+|—1]*|---|Equal? | Eq? | <|---| And | Cons | Apply

| P_nD_select | Make_tupley

Make_tuplen

APn,m (SEn-[-l)

Bool_casem (SE, En, En) | List.casem (SE, Enm, Em)
WLoopm (SEm+3) | FLoopm (SEm+4)

Anm (MVy) . (Em) | Anm (MVa) . (Em)

SE, | PF1, (SE) | PF'2, (SEy) | PF'N, (SE,) | Ap-E,

| ase_Ey | Loop_E; | lambda_E | Block;

SEpm | PPl (SE) | Ap-Em | ase_Ey, | Loop_Ep, | Blockm
{m [Statement;]* In SE,}

Binding | ommand

MV, = Ep

P_nD_store (SE, SE, SE) | Cons_store_1 (SE, SE)

| Cons_store_2 (SE, SE) | Store_error | T

Block,

Figure 3: Grammar of Kid

8

expression. Multiple values avoid packaging values in a data structure, and they are useful in
expressing some optimizations. Thus, in Kid a binding has the form MV = F, where MV stands
for multiple variable. Suppose we have m variables on the left-hand-side, then the expression E
on the right-hand-side must return m values. In the sequel we capture the number of values that
an expression produces by subscripting the corresponding syntactic category. Thus, to express
the above binding we will write MV, = E,,. Note that the combinator “Apply” appears as a
PF2; in the grammar because all Id~ procedures return only one result. We also use subscripted
combinators to express a family of combinators. For example, Make_tuplen stands for Make_tuples,
Make_tupleg, elc. . Subscripts in a combinator do not necessarily represent the number of values

to be returned by the application of the combinator.

We will use the following conventions to minimize the use of subscripts.

{ is the same as {;
Bool_case 1is the same as Bool_case;
List_case is the same as List_case;

WlLoop is the same as WLoopq

FlLoop is the same as FLoopj
Apn is the same as Ap, 1
An is the same as A 1

3.2 The Rewrite Rules of Kid

We now present a set of rewrite rules, Rg;q, to define the operational semantics for Kid. Rgjq
is a Contextual Rewrite System described in [8]. We assume that a primitive function is only

applied to arguments of appropriate types, i.e., the type checking has been done statically.

All the variables that appear on the left-hand-side of the rules are meta-variables that range
over appropriate syntactic categories. By convention, we use capital letters for meta-variables
and small letters for Kid variables. All variables that appear on the right-hand-side of the rules

are either meta-variables or “new” Kid variables. We will make use of the following convention

regarding meta-variables:

Xi, Zi, Yy, Fy, P, B, U, D € Variable and onstant

onstant
Si, SS; € Statement
S, s € [Statement]*
FE; € FEazpression

It should be noted that in contextual rewriting, the statement above the line must be in the
context (lexical scope) of the expression below the line. This raises some subtle free variable
capture possibilities in case of function application. To avoid these problems, we will assume
that all bound variables in a Kid program have been assigned unique names to begin with.
When the possibility of free variable capture arises during rewriting, we will rename all bound
variables of an expression to completely new variables explicitly, by applying the function RB to

the expression. For example,
RB[{z=+4(a,)Inz}]={2"=+ (a, 1) Inz'}

The notation F [Y/X] means the substitution of ¥ for X in E. Usually this implies avoiding
capture of free variables. However, due to our assumption that all variables occurring in a term
to be reduced are unique, F [Y/X] will simply indicate naive substitution, that is, substitution
where no danger of free variable capture exists and where X can be replaced by Y without regards
to scope. Moreover, we will use the notation sz to stand for (X,, -, Xm), X_:n for Xim, and

E Y, | Xa] for E [Yi/X1,--,Ya/Xn], which is the same as (- (E [Yi/X1]) [Ya/Xa]) -+) [Ya/Xn]).

In the following, n represents a numeral.

6 rules

+ (m, n) — +(m, n)

Equal? (n, n) — True

Equal? (m, n) — False (if m # n)

10

Case rules
Bool_casem (True, Eq, E2) — Ej
Bool_casem (False, F1, E3) — Ej

X = Nil
List_casem (X, F1, E2) — E

X = Open_cons ()
List_casem (X, E1, E3) — Es

Arity Detection rule

—
F =X(Zn).E
Apply (F, X) — Apply; (F, n, X)

— \2).E
Apply (F, X) — Ap (F, X)

F; = Apply; (F, n, X;) i< (n—1)

— —
Apply (Fi, Xiv1) — Applyi,1 (F, n, Xit1)

—
Foa= Applyn_]_ (Fa n, Xﬂ—l) i = (n_l)

— —
Apply (Fp1, Xn) —> Ap (F, Xn)
Similar rules apply for Ap.

Application rule

F=nm (Zy) . (E)
Apnm (F, Xn) — (RBE]) [Xp / Zn]

A similar rule applies for Apm.

11

Loop rules

— . —
WLoopn (P, B, X,, True) — {n tn = Apnn (B, X»);
—

tp = Apn (P, tn);

- —

t, = WdLoopn (P, B, t,, tp)

-
In ¢}

—

—
WLloopn (P, B, X,, False) — X,

%
In the following two rules we assume that the index variable is the first variable in X,.

— . —
FLoopn (U, D, B, X, True) — {n tan = Apppn_1 (B, Xn);
t1 = 4+ (X1, D);
tp = < (tl, U),
— —
t, = Floopn (U, D, B, t,, tp)
—
In ¢}
— —
FLoopn (U, D, B, X,, False) — X,
Tuple rule
—

X = Make_tuplen (X,)
—
Detuplen (X) — X,

List rules

Cons (X, Y) — {t = Open_cons ();
Cons_store_1 (t, X);
Cons_store 2 (t, Y)
Int}

Cons_store_1 (X, Y)
Cons 1 (X) — Y

12

Cons_store 2 (X, Y)
Cons2(X) — Y

Cons_store_1 (X, Y)
Consstore 1l (X, Y') — T,

Cons_store 2 (X, Y)
Consstore 2 (X, V') — T,

Array rules

X = I.nD_array (X3)
nD_Bounds (X) — X,

P_nD_store (X, Y, 7)
P_nD_select (X, Y) — Z

P_nD_store (X, Y, 7)

P.nD.store (X, Y, Z') — T,

Multivariable rule

Substitution rules

X=Y
X —Y

X —

13

Block Flattening rule

— — —
{m Xn = {n 551; SS; --- {m Xn =Y,
—
In Yn} — S51; 88, -+
S1; Sh S1; Sh
— —
In Z,} In Zn}

Propagation of T
{mX=T; S5 --Suln Z_:n} — T

—
{m Ts; S15---Spln Zpy } — T

14

4 Translating Desugared Id™ into Kid

4.1 Simplification of Expressions

We give the translation in terms of the following functions:

Translate Expression, TE: Id~ Expression —» Kid Expression
Translate Statement, TS: Id~ Statement — list (Kid Statement)
Translate Binding, TB: Id~ Binding — list (Kid Binding)
Translate Operator, TO: Id~ Operator — Kid Operator

Pattern Matching, PM: Case_expression — Kid Expression

The exact syntax of Case_expression is given in Section 4.3.

We will write TE[E,] = E», where the expression enclosed in double brackets represents an
Id~ expression and FE, is the corresponding Kid expression. The whole translation is given
in terms of syntactic categories. The proper way of reading a translation function such as
“TE[(UOP E1)] = {t1 = TE[E1]; t = TO[UOP] (¢t1); In ¢t} ” is that “TE” when applied to a unary

expression in Id~ produces the Kid expression on the right-hand-side.

Throughout, the emphasis is on clarity of Id™ to Kid translation rather than its efficiency.
We will use the same conventions introduced in Section 3.2, with the addition of meta-variable
F; that ranges over Patterns. As before)?n indicates multiple meta-variables. The lower case
variables, such as t;, z;, that appear in the translated expression represent new Kid variables.
The translation procedure given below does not require lexical scope analysis for variables. How-
ever, after the translation is complete a procedure to make all bound variables unique has to be

applied before any rewriting can be done.
A common situation in the translation procedure is the need to replace variable X by a new

variable ¢ in some Id expression E. This idea can be expressed by addding another block around

Easin { X =t t' = F; Int' }. To avoid clutter, we will write E [t/X]p as a shortand for

15

{X =t t¢=F; Int'}. (As an aside, it should be noted that since we do not assume unicity of

variables during translation, we can not use the notion for naive substitution. Conversely, the use

— —
of E [X, / Z,]p in the application rewrite rule, given earlier, would have been incorrect, because

-
it could lead to duplication of bound variables Z,, while expanding two different applications of

the same function).

TE: Id~ Expression — Kid Expression

TE[X] = X

TE[Next X| = next(X)

Where “nezt” is a function on identifiers that keeps the association between a variable and

its corresponding nextified version during the loop translation phase. After the translation is

complete, next(X) is treated like an ordinary identifier which is different from X.

TE[]=
TE[(UOP E)] = {t = TE[E];
t = TO[UOP] (t,)
In ¢}
TElI(El BOP Eg)]] = { tl = TE[[El]];
t2 = TE[[EZ]];
t = TO[BOP] (ty, t2)
In ¢}
TElI(El EQ)]] = { tl = TE[[El]];
tg = TE[[EQ]];
t = Apply (i1, t2)
In ¢}
TEﬂEl[EQ]]] = { tl = TE[[El]];
t2 = TE[[EQ]];
t = Apy (Select, ty, t2)
In ¢}

16

where Select is a standard function definition in Kid (see Section 4.2).

TE[E.cons_.1]] = {t1 = TE[E];
t = Listcase (t1, Error, Cons_1 (#1))
In ¢}

Similarly for E.cons_2.

TElI(El, ey En)]] = { tl = TE|IE1]];
t, = TE[[En]];
t = Make_tuplep (t_,:)
In ¢}
TE[(If E; then Egelse E3)] = {1 = TE[E1];
t = Boolcase (t1, TE[E3], TE[Es])
In ¢}
TE[{ Case E of = {ti = TE[E];
| A = E t = PM[{ Case (t1) of
: | P = TE[E]
| Pn = Ex}] :
| Pn = TE[ER] }]
In ¢}
Where PM is described in the Section 4.3.
TE[{ While E do = TSLE[{ While TE[E] do
51; TS[[Sl]];
S TS[Sn];
Finally E; }] Finally TE[E/] }]

Note that TE uses an auxiliary function TSLE which stands for “Translate simple loop expression”.
However this is only done for clarity of exposition. In fact, we are slightly abusing our notation

because the expression inside TSLE[] is a mixture of Id~ and Kid syntax.

17

—
TSLE[{ While £ do = {pr = MX)). (E);
—
next(X;) = Ey; b = Xn (Xn) o ({n next(Xy) = Ey;
next(Xy,) = En; next(Xy,) = En;
leEyl; Yl :Ey1:
Finally E; }] In next(Xy), -, next(Xy) });
—
tp = Apn (p, Xn);
— —
tn = WlLoopn (p, b, X», tp);
- =
|n tf}

Notice that the correspondence between the formal parameters of the procedure “b” and the
multiple value returned is not accidental. It will be wrong to have (X, -, X,) as input and
(next(Xn), - -,next(X;)) as output, because the values of the nextified variables come either from
the surrounding scope or from the previous iteration. The A-expressions corresponding to the

predicate and loop body are underlined indicating the fact that they can be inlined at compile

time.
TE[{ For X « F;to Eystep Esdo = TSLE[{ For X « TE[E;] to TE[E}] step TE[E;] do
51; TS[[Sl]];
Shn; TS[S,];
Finally E; }] Finally TE[E] }]

18

—
TSLE[{For X1 + Ejto Epstep Esdo = {b = A o1 (Xn).

nert(Xg) = Ez; ({n_l nemt(Xg) = EQ,
next(Xy,) = En; next(X,) = Ep;
Y1 = Ly,; Y= By
Finally E; }] In next(Xz), -, next(Xn) });
i = Ej
ty = Eb;
ts = Es;
t, = < (i, t);
— —
tn = FLOOPn (tb; ts; ba ti; X2,n; tp);
5 =
ty = Efltn/ XalB
|n tf}

TE[{Fun X, = E}] = An (Xa). (TE[E])

TE[{Fun X, = E}] = An(X.).(TE[E])

TE[{Sy;--Su; In BY] = {TS[Su];

T:S[[Sn]];
t = TE[[E]]
In ¢t}

TS: Id~ Statement — list (Kid Statement)

Often an Id~ statement translates into a group of Kid statements. We will enclose the translated
statement or statements within parenthesis even though parenthesis are not part of Kid syntax.

These parenthesis do not introduce a new lexical scope.

TS[P=E] = (t=TE[E]; TB[P =t])

19

TSlIEl[EZ] = Eg]] = (tl = TE[[El]];

tg = TE[[EQ]];
t3 = TE[[E3]];
t = Apjz (Store, t1, ta, t3))

where Store is a standard function defined in Kid (see Section 4.2).

TS[Ej.cons.1 = Es] = (t1 = TE[E];
tz = TElIEz]];
t = List_case (t1, { Store_error In ()}, { Cons_store_1 (t1, t2) In () }))

Similarly for cons_2.

TB: Id~ Bindings — list (Kid Binding)

TB[(P1,---, Pa) = X] = (in= Detuplen (X);
TB[[Pl = tl]];
Tl.3[[Pn =1t,])
TB[(P1 : P») =X] = (t1, ty = List_casey (X, (Error, Error), (Cons_1 (X), Cons_2 (X)));
TB|IP1 = tl]];
TB[P> = t3])
TBHY:X]] = (Y :X)
TB[Next Y = X] = (nezt(Y) = X)

TO: Id~ Operator — Kid Operator

TO[UOP] = the corresponding Kid PF'1

TO[BOP] = the corresponding Kid PF2

The Kid operator corresponding to Id= “” is Cons and for “==" is Equal?.

20

4.2 Definition of Standard Functions

In our translation from Id~ to Kid we have introduced two new functions Select and Store.
These are not primitive operators in Kid, therefore we give their definitions. Similarly we give
a definition for Make_1D_array. For the sake of brevity we give these definitions in Id™. These

definitions and Make_1D_array can be written as follows

Make_1D_array = { Fun b £ = { (1,u) = b ;

a = I_array b;

i=1;

d = { While i < u do
ali]l = £ i;
Next i = i+l
Finally () }

Inal}

Like lists we are treating I-arrays and functional arrays as the same type. However, functional
arrays have a different degree of polymorphism than I.nD_array. We are ignoring these subtle

issues in the above translation.

Select = { Fun x 1 = { (1,u) = 1D_Bounds x;
In
If (i >uOr i< 1) then
Error
else

P_1D_select x i } }

Store = { Fun x i y = { (1,u) = 1D_Bounds x;
In
If (i >uOr i <1) then
{ Store_error In () }
else

{P_1D_storex iyIn O }} }

The above Id~ definitions can be translated into Kid by adding the following rules:

TE[P_nD_select # i] = P_nD_select (2, i)

TS[P_nD_store z i y]| = P_nD_store (z, i, y)

21

TE[Error] = Error

TE[Store_error] = Store_error

4.3 Pattern Matching: Elimination of Complex Patterns

Pattern matching in Id follows a different philosophy than other functional languages such as
Miranda and Haskell. In both these languages clauses in patterns are examined from top to
bottom and patterns in a clause are examined from left to right. Within the limitations of the
above rule, pattern matching does not force the evaluation of a pattern whose type is irrefutable
(tuples are examples of irrefutable patterns) [6]. Miranda in addition allows repeated occur-

rences of a variable in a clause.

Id pattern matching is designed to be order-insensitive and is maximally non-strict for se-
quential implementations. In Id, patterns must not overlap to allow order-insensitivity. Id also

does not permit repeated variables.

Determination of which variables are necessary to evaluate to resolve patterns is quite tricky

as illustrated by the following example (due to Lennart Augustsson):

{ Case (x, y, z) of
I (1, 0, w) =1
I (0, w, 1) =2
I (w, 1, 0) =3}

First of all notice that the patterns are non-overlapping, i.e., only one can be true for a given
x, y and z. Second, notice that top-to-bottom and left-to-right rule will evaluate x and then
evaluate y or z depending upon the value of x. Thus, if x does not terminate no answer will
ever be produced. Notice if y = 1 and z = 0 one could demand the answer 3 regardless of the

x. Traversal of patterns in a different order will force evaluation of different variable.
Id pattern matching rules will force the evaluation of all three variables in this example
because no unique sequential order exists. (In Miranda and Haskell, all three variables will be

evaluated only if y turns out to be 1 or z turns out to be 0).

Now we informally describe a simplified version of the pattern matching algorithm used by

22

the Id compiler [4]. For Id~ we take into consideration lists and tuples only. In the following we
describe various cases that arise during pattern matching.
The signature of the pattern matching function is
PM : Case_expression — Kid Expression

where Case-expression is defined as follows

Case_expression 1= {Case SE of [| Clause]*}

Clause == P = Kid_Expression

p = Nil | Variable | () | (P, P) | (P, P, P)[---] (P : P)
SE = ()| (Variable, - -, Variable)

If the pattern is a variable, say “X”, then “X” is equivalent to “(X)”.

As was stated earlier, no scope analysis of variable names is required for the translation
from Id to Kid. Thus, we will not assume that all bound variable names are unique in the Kid

program that is generated by the translation process.

Variable rule

The column of patterns corresponding to a case variable consists only of variables.
—

—
PM[{Case (X1,-1, Xi, Xit1n) of
Z -
| (Plij-1, Y1, Pliqi,) =k

— —

| (Pmyi—1, Ym, Pmit1,) =Epl]=

{t=X;
- -
ty =PM[{Case (X1,-1, Xit1n) of
— —
| (Pli;-1, Plijan) = Ei[t/YalB

- -
| (Pmyi—1, Pmiy1n) = En(t/Ynlsll

In tf}

Note that meta-variables Y7 - - -Y,, may be distinct.

23

Irrefutable pattern rule

The column of patterns corresponding to a case variable consists of at least one tuple and zero

or more variables. Without loss of generality in the following rule we assume the tuple to be a

2-tuple.
- -
PM[{Case (X1i-1, Xi, Xig1n) of
- -
| (Pll,i—la Yl ; P1i+17n) :El
- -
| (Pkl,i—l 3 Yk ; Pki+1yn) = Ek
- —
| (Plii—i, (Y, Yl), Pliy1,) =L
- . —

| (Pmyi—1i, (Ymi,Ymy), Pmypi,) =En}]=

{t1,t2 = Detupley (X;);
t = X
- -
tf = PM[[{Case (Xl,i—l , t1, ta Xi+1,n) of

- -
| (Plyi—i, tin, tia, Pliyin) = Eit/Y1]B

- -
| (Pkii—1, te1, ko, Pkit1,) = Ex[t/Yi]B
— —
| (Plij=n, YL, Y, Plitin) =E
— . —
| (Pmii—1, Ymi, Yms, Pmipi,) = Eny}]
|n tf}

24

Refutable pattern rule

The column of patterns corresponding to a case variable consists of only Nil’s and (Y7 : Y2)’s.

— —
PM[{Case (Xi,-1, X, Xigin) of

- . —

| (Ply;—1, Nil, Pliyi.) =E
— i -

| (Pkyi—1, Nil, Pkit1n) = Eg
- -

| (Pliioi, YlL:Yly, Pliyin) =L

— -

| (Pmyi—1, Ymi:Ymy, Pmit1n) = En}]=
List_case (Xj,
5

-
PH[{Case (Xi-1, Xit1,,) of
— -
| (Plii-1, Pliyin) =Eu

- -
| (Pkii—1, Pkiyin) = Ex}],

{ tn,ts = Cons_1 (X;), Cons_2 (X;);

- -
tf = PM[[{Case (th , t: Xl,i—l , Xi+1,n) of
= -
| (Yl,, Ylo, Pli.1, Plun,) =E

N —
| (Ymi, Ymy, Pmii_1, Pmit1,) = Enl]
Intr})

Note that if the case expression is not exhaustive then an alternative that will raise a run-time

error is generated. As, for example:

PM[{Case X of = PM[{Case X of
| Y1 . Y2 = E}]] | Y1 . Y2 =F
| Nil = Error}]
PM[{Case X of = PM[{Case X of
| Nil = E}] | Nil =K

| ty 1ty = Error}]

25

Mixed variable-refutable patterns

The column of patterns corresponding to a case variable consists of at least one refutable pat-

tern. In such a case each variable is replaced by all the possible alternatives, as shown below:

PM[{Case (X1, X, X3) of

| (N, Yii:Via, Y) =B

| (Yo, :Yee, Y, Nil) =,

| (Ys, Nil | Ys1:Y352) Es}] =

- —
{ts = Xs;
ty = PM[{Case (X, X, X3) of

(Nl Yii:Yis, Nil) = Eits/Yi]s
| (Nil , Yii:Yia, tiittia) =Ei[ts/YilB
| (Yap:Yes, Nil, il) = Bafts) Yol
| (Ya1:Ye2, ta1:tan, Nil) = Esfta/Ya]B
| (Nil, Nil | Ys1:Y32) = Es[t1/Y3]s
| (ts1:ts2, Nil, Ys1:Y30) = Es[ti/Ys]p}]

In tf}

This rule can be applied only after checking that none of other rules apply. It should be noted
that patterns can be tested in many different orders, each giving rise to a correct program though
non necessarily the same program. The above rules cover all legal cases. If we ever get tuple

and list patterns in one column, the compiler will flag it as a type violation.

Empty variable rule

PM[{Case () of = Compiler Error “overlapping patterns”
0 =&
|0 =Enl]

PM[{Case () of = E
0 =£}

26

5 Optimizations of Kid Programs

Following is a partial list of optimizations rules for Kid. Optimizations include all Ry ;4 rules,
except the application rule. Optimizations should be performed after type checking and after all
bound variables have been assigned unique names. Applicability of certain optimization rules
requires some semantic check such as “m > 07. We write such semantic predicates above the

line but following an “&”.

It is believed that all optimizations to be presented in this section preserve at least partial

correctness. So far this has been proven for only a small subset of them [1].

Kid Rewrite rules

All Kid rewrite rules can be applied at compile time except for the Application rule, which can

cause non-termination.

Inline Substitution

F=)nm (Z) - (B)

Apnm (F, Xn) —> (RB [E]) [X, / Zu]

Partial Evaluation

F = am (Zy) - (E)
Apply (F,X) — {f =Ay_1m (zart) - (RB [E]) [2n01 / Zan, X/7))
In £}

A similar rule applies for Apm.

Fetch Elimination

X = Cons (X1, X3)
Cons_1(X) — Xy

27

X = Cons (X1, X3)
Cons2 (X) — Xi

Algebraic Identities

And (True, X) — X

Or (False, X) — X
+(X,0) — X

« (X, 1) — X

The above rules preserve total correctness, while the following rules preserve only partial cor-
rectness. Any algebraic rule that does not have a precondition can be included in the following

rules.

And (False, X) — False

Or (True, X) — True
¥ (X,0) — 0
-(X,X) — 0

Equal? (X, X) — True

The following rules are also partially correct but are not confluent.

X:+(X1,m) &m>0
Less (X1, X) — True

X =+ (X1,m) & m>0
Less (X, X1) — False

28

X:‘i'(Xl,m) &m>0
Greater (X;1,X) — False

X:+(X1,m) &m>0
Equal? (X;, X) — False

Common Subexpression Elimination

— —
Y,n= PFN,, (X,)
—

—
PFN,, (X,) — Y

Primitive functions |_nD_array, Open_cons, Apply and Apn m are excluded from this optimization

because they (may) cause side-effects.
Lift Free Expressions

& FE(E, Anm (Z) . (ImY = E: Sln X }))
Anm (Zn) (ImY =E; Shh Xp}) — {m ti = E;
t = Am(Za).(ImY =t1; SIn Xp })
Int}

Where FE(e,€') return true if the expression e is free in €’. This optimization allows us to deal
with loop invariants, that is, expressions that do not depend on the nextified variables. A similar

rule applies for Apm. (See the restrictions in the common subexpression elimination rule).
Hoisting Code out of a Conditional

— —
& FE(E, (Boolcasen (X, {nY=E;S In X, }, {(nY' =E;,5 In X })))
— =
Boolcasen (X, {(nY=E;S In X, }, {(nY' =E;5 In X/ }) —
in i = L
—
t, = Bool casen (X,
—
hY=1t;5Ih X, }
—
{n Y/Itl;S/ In X }
In ¢, }

29

Eliminating Circulating Variables

Suppose in the loop body of an Id program there exists an expression like “Next x = x” , then
the variable x can be made into a free variable of the loop and its circulation can be avoided.

Without loss of generality we assume that the nextified variable to be eliminated is the last one.

—_
P =X (X,) . (E) |
— —
B=Xnn (X)) .({nSIn Z,_1, X1}
—_
Wloopn (P, B, Yy, Y,) —

- - =
{p=2An_1 (@aZ1) - RB[E] [2n1 / Xnoa, Ya/Xn]);
;+ i ;+ - ;

b=A_1n-1@5_1) BB[{n_1 S Zn_a}] [2f_y / Xnoy, Yo /X))

- -
thn—1= Wloop, 1 (p, b, Ya_1, Yp)

—
In tn—l; Yn}

A similar optimization applies to for-loops.

Eliminating Circulating Constants

? where the variable

Suppose in the loop body there exists an expression like “Next x = t
t is a [ree variable of the loop body then its circulation can be avoided. Such situations may
arise as a consequence of lifting invariants from a loop. The following example illustrates this

transformation:

{ While (p x y) do

Next x t;
Next y = £ x y;

Finally vy}

This may be transformed as follows:

If (p x y) then
{yl=1£fxy;
In
{ While (p t y1) do
Next y1 = £ t yi;
Finally yi1} }

30

else

Notice that it is only after the first iteration that the value of “x” is t. Thus, to avoid the
circulation of the nextified variable “x”, the loop has to be peeled once. This rule can be

expressed as follows. Please note that we could have also written 7, instead of ¢,, on the right-

hand-side.

- —

=Ann (X2) . (4n S'In Zo}) & FE(Z,,p)

)

4

—
Wloopn (P, B, Yy, Y,) —

Bool_casen (Y,

- - -
{n p = An_l(mn—l)~(RBHEH[$n—1/<Xﬁ—1atn/X%]%
o - o 7 /
b = Ap_1n (@nog) - RB[{_1 S In Zna}] &y / Xpoos ta/ X))
— - —
ty = Apnn (B, Ya);
—
tp = App_1 (P ta-1);
— —
thor = Wloop_1 (p, b, ta-1, tp);
—
In t%—latn};
—
Yn)
Peeling the Loop once
— — —
FlLoopn (U, D, B, X,, X) — Boolcasen (X, {n t2n, = APn n_1 (B, X,);
t1 = + (X1, D);
tp = < (tl, U),
— —
t,, = Floopn (U, D, B, t,, tp)
-
In 27},
—
X5)

31

Loop Body Unrolling K times

& remainder ((U—X1)/D,k) =0

- —

Floopn (U, D, B, Xn, X;) — f{n b = Xyp_1(zn) - ({no1 85y = Apnn_t (B, #n);
— —
thn = Apnn-1 (B, tn);
tt = +(t, D)

— —
té,n = Appn_1 (B, tﬁ_l)
-
In 25});
. :
t, = Floopn (U, D, b, X,, X,);
—
In t,}

Suppose r = remainder((U — X1)/D, k) , and r is not zero. We can still apply the above trans-

formation by first peeling the loop r times.

6 P-TAC: Parallel Three Address Code

6.1 P-TAC

The syntax of P-TAC is given in Figure 4. In P-TAC, [-structure Storage is modelled in greater
detail which requires the notion of Labels. All composite objects, that is, data structures and
closures are stored in I-structure store and assigned unique labels, which are treated as constants

that can be substituted freely.

6.2 Rewrite rules of P-TAC

In the following V stands for a ground value.

6 rules

+(m, n) — +(m, n)

32

UDF € User Defined Function
V € Ground Value

Integer
Boolean
Variable
MV,

Label
PF'1
PF2
PF3
UDF
SE
SEm

£y

Block,,
Statement
ommand

Binding

112]-[n| -
True | False
elylzlolalbl | fl o o]
Variable, - - - Variable

L|L1|--| L]

Negate | Not | Allocate

+ | —|*]|---|Less | Equal? | P_select
Ack_store

F| |-

Variable |UDF | V

SE,---,SE

N

m

Integer | Boolean | () | Label | Error | T
SE | PF1(SE) | PF2 (SEs) | PF3 (SEs) | Apn (SEn41)
| Dispatchp (SE, E,-- -, E) | WLoop; (SE4) | FLoopy (SEs) | Block

SEm | Apnym (SEn+1) | DiSpatChnym (SE,Em, . ,Em)
—— —

n

| WLoopm (SEm+3) | FLoopm (SEm+4) | Blockm,
{m [Statement;]* In SE,,}

Binding | ommand | Store_Error

P_store (SE3) | T,

MV, = Ep

Figure 4: Grammar of P-TAC

33

Conditional rule

-

-
Dispatchn m (¢, Ei-1, Ei, Eiy1n) — LK

I_structure rules

Allocate (n) — L

where L is a brand new label.

Pstore (L, ¢, V)
Pselect (L, i) — V

P_store (L, i, V)
Pstore (L, i, V') — Ts

where V is either an Integer or a Boolean or a Label or Error.

The following rules are the same as the corresponding rules in Kid.

Application rule

F = Anm (Zn) - (E)
Apnm (F, Xn) — (RBE]) [X, / Z]

A similar rule applies for Apm.

Loop rules

— . —
Wloopn (P, B, X,, True) — {n tn = Apnn (B, X»);
—

tp = Apn (P tn);

— —

t, = WdLoopn (P, B, t,, t,)

—
In ¢}

—

-
WLoopn (P, B, X,, False) — X,

34

— = —
FLoopn (U, D, B, X, True) — {n t2n = Apppn_1 (B, Xn);

t1 = + (X1, D);

tp = < (tl, U),

— —

t FLoopn (U, D, B, ty, tp)

5
sty
—

1

—
FLoopn (U, D, B, X,, False) — X

3

Multivariable rule

Substitution rules

X=Y
X —Y
X=V
X —V

where V is either an Integer or a Boolean or a Label or Error.

Block Flattening rule

— — —
{an: {n SS1; SS2; -+ {an: n;
-
In Yn} — S51; 88,5 -
S1; Sh S1; Sh
— —
In Zm} In Zm}

Propagation of T

35

7 Translation of Kid into P-TAC

Prior to translating Kid to P-TAC, Alifting is performed. A Kid program after A -lifting only
contains closed A-expressions. The translator, given a Kid program, produces the corresponding
P-TAC program and a set, “D” , of definitions. The set D is initialized with constants that are

introduced by the translator.

7.1 Simple Kid Expressions

TE[X] = X

TE[]=

where ranges over Integers and Booleans.

TE[Negate (X)] = Negate (X)

The same holds for Not.

(X, V)] = +(X, V)
— -
TE[WLoopm (P, B, Xm, Xp)] = WLloopm (P, B, Xm, Xp)

The same holds for FLoop.

TE[Bool_casem (X, E1, E2)] = {m ¢ = BooltoInt (X);
t_,; = Dispatchy ., (¢, E1, Eb);
In tjn}

Booltolnt is a coercion function which converts True to 0 and False to 1.

36

—
TE[{m X1 =E1; - Xn=Epn; S1; - SmIn Y }] = {m Xi = TE[E];

X, = TE[E.];
TS[S4];

TS[Sn.];
—
In Y, }

7.2 Data Structure Representations

There are usually several reasonable ways to represent each data structure in terms of a P-TAC
array. For each type we present one representation, though not necessarily the most efficient one.
We have included a “type” tag field for all composite objects, even though it is not needed by
the P-TAC interpreter since Id is a statically typed language. We might need types information

for other reasons, such as, garbage collection, and printing values in a partially executed program.

Tuples

All n-tuple data types may be represented as follows:

Type

—
TE[Make_tuplen (X,)] = {t = Allocate (n+ 1);
P_store (¢, Type, “n_tuple”);
P_store (¢, 1, X1);

P_store (¢, n, X,);
Int}

TE[Detuplem (X)] = {m t1 = Pselect (X,1);

tm

In t,}

P_select (X, m);

37

1D-Arrays
1D-arrays “Array (I, u)” may be represented as follows:

0 1 2 u—14 2

Bounds
Type *

Type

Lower

Upper

The constant definition Headersize = 2 should be included in the set “D”.

TE[nD_Bounds (X)] = P_select (X, Bounds)

TE[l.array (X)] = {! = P.select (X, Lower);
u = P.select (X, Upper);
s = —(u, l);
size = 4+ (s, 3);
t = Allocate (size);
P_store (¢, Type, “Array”);
P_store (¢, Bounds, X);
Int}
TE[P_1D_select (X1, X2)] = { t» = Pselect (X1, Bounds);
I = Pselect (¢, Lower);
1 = —(Xg,);
ta = + (t1, Headersize);
t = Pselect (X1, t5)
Int}
TE[P_1D_store (X1, X2, X3)] = { t» = P_select (X1, Bounds);
I = P.select (¢, Lower);
t1 = —(Xg, l);
ta = + (t1, Headersize);
t = P._store (X1, ta, X3)
Int}

38

A representation that will be more efficient for computing the slot address may want to store [

and u values redundantly in two additional fields.

2D-Arrays

The translation given below assumes that the matrix is stored in the row major order. The

following constant definitions should be included in the set “D”.

First dm = 1 Second dim = 2
Firstindex = 1 Second.index = 2
TE[I2D_array (X)] = { d1 = Pselect (X, Firstdim);

ds = P_select (X, Second_dim);

Il = P_select (dq, Lower);

Uy = P_select (d1, Upper);

ls = P_select (da, Lower);

U = P_select (dz2, Upper);

51 = — (u1, h);

s2 = — (uz, la);

sh = 4+ (s1, 1);

sh = 4+ (82, 1);

s = x(s], sh);

size = + (s, Headersize);

t = Allocate (size);

P_store (¢, Type, “Array”);
P_store (¢, Bounds, X);
Int}

Translation for I_nD_array can be given in a similar fashion.

39

TE[P2D_select (X1, X2)] = { b = P_select (X;, Bounds);
dy = P.select (b, First_dim);
dy = P_select (b, Second_dim);
ly = P_select (d;, Lower);
u; = P_select (d1, Upper);
ly, = P_select (d2, Lower);
uz = P_select (d2, Upper);
r = — (uz, 12),
ro= 4+ (r 1)
1 = P_select (X3, First_index);
J = P_select (X3, Second_index);
i — (4, Lh);
o= =0 k)
0 * (¢, r');
o = + (o, 1);
ad = + (o, §');
ad’ = + (ad, Headersize);
t = P_select (X, ad’)
Int}

A similar rule applies for P_2D _store, and higher dimensional arrays.

Lists

The list data type can be represented as follows:

Cons :
0 1 2 3
Type Tag Hd Tl
Nil :
0 1
Type Tag

~N

It is often possible to store niladic constructors using much less space by combining them with

pointers. We won’t discuss such machine dependent representations in this paper.

40

The following constant definitions should be included in the set “D”.

Nil_size = 2
Conssize = 4
Nil_Tag =0
Cons_.Tag = 1
TE[Nil] = {t = Allocate (Nilsize);
P_store (¢, Type, “List”);
P_store (t, Tag, Nil_Tag);
Int}
TE[Open_cons ()] = { t = Allocate (Cons_size);
P_store (¢, Type, “List”);
P_store (¢, Tag, Cons_Tag);
Int}
TE[Cons_1 (X)] = Pselect (X, Hd)

TE[Cons_2 (X)] P_select (X, TI)

TE[Cons (X1, X2)] = { t = Allocate (Cons_size);
P_store (t, Type, “List”);
P_store (¢, Tag, Cons_Tag);
P_store (¢, Hd, X1);
P_store (¢, Tl, X3);

Int}
TS[Consstore_1 (X1, X3)] = P.store (X1, Hd, X3);
TS[Cons_store 2 (X1, X2)] = Pstore (X1, Tl, X5);
TE[List_casem (X, E1, E2)] = {mt = Pselect (X, Tag);
t;; = Dispatchy ., (¢, E1, Ea);
In t;;}

41

7.8 Function Calls and Closures

At the machine level, the apply operator checks if the arity of the function has been satisfied
or not, and in case the arity has not been satisfied, it stores the argument in a data stucture
called a closure. There is great choice in representing closures and associated function calling
conventions. In fact, a function can be compiled using several different calling conventions and
the compiler can pick up the most appropriate one for a given application. As an illustration

we chose the following representation for the closure data type:

Type Functi on Fast call Arity Chai n
name name
Arg Rest —_— —a ... —»

The constant definition Closure_size = 5 should be included in the set “D”.

We begin by describing a procedure that builds a closure given an old closure and an argument.

Make_closure = A (el, X) . ({ f = Pselect (¢!, Funcname);
fre = Pselect (¢, Fastcallname);
n = P.select (cl, Arity);
ch = Pselect (cl, Chain);
e’ = Allocate (Closure_size);

P_store (cl’, Type, “ losure”);
P_store (cl’, Functionname, f);
!, Fastcallname, f¢.);

P_store (cl’, Arity, n');

3

(

(
P_store (cl

(

(

P_store (cl’, Chain, ch');

n = —(n, 1);

ch’ = Apy (Argchain, X, ch);
Inel'})

where the function to build argument chains is defined as follows:

42

Argchain = A (X, Xs) . ({zs = Allocate (2);
P_store (zs', Arg, X);
P_store (zs, Rest, X's);
Inzs'})

The argument chain can be destructured using the following function:

Argsn = A (X) . ({n @ = P.select (X, hain);
G, = P_select (t1, Arg);
ta = P.select (t1, Rest);
an—1 = P_select (t2, Arg);
i3 = P_select (t2, Rest);
ay = P.select (t,—1, Arg);

In an})

These three definitions must be included in the “D” set.

Now we can give the translation for the apply operator. As stated earlier, the apply basically

checks to see if the arity is satisfied and either makes a new closure or calls Ap.

TE[Apply (F, X)] = { n = P_select (F, Arity);
firey, = Equal? (n, 1);
fire; = BooltolInt(firey);
res = Dispatchy (fire;,
{ fun = P_select (F, Functioname);
as = Pselect (F, Chain);
as’ = Apoy (Argchain, X, as);
res' = Ap (fun, as');
In res’},

Apy (Make_closure, F, X))

In res}
TE[Apn,m (F,)?)]] = {m f' = Pselect (F, Fastcallname);
— —
tm = Apnm (f', X);
—
In ¢, }

The only thing that remains to be described is the creation of the first closure for a function. It

is built as a consequence of translating a A-expression.

43

-

TE[An (X»n) . (E)] = {cl = Allocate (Closure_size);
P_store (cl, Type, “ losure”);

P_store (¢l, Functioname, ‘T¢);
P_store (cl, Fastcallname, ‘T¥.);
P_store (cl, Arity, n);
P_store (¢/, Chain, “End”);
In ¢l}

The following two function definitions are included in the set D.

—
Te=X (Xs) . { Xn = ApP1 n (Argsn, Xs);
t = TE[E];
Int}
—
Ty = An (X,) . TE[E]

‘T, indicates the name T, and not the value associated to T.. Note that TE[E] can be computed
once and shared between the curried aabd the fastcall version of the function. The same trans-

lation rule applies for An.

8 Signals

Before introducing signals, the P-TAC program is canonicalized, that is, all blocks are flattened
and variables and values are substituted. Furthermore, dead code should be eliminated. We
add signals only to non-strict combinators, and to combinators that produce side-effect, such
as P_store. The output of a strict operator can be interpreted as the signal that the instruction
has indeed fired. We give the signal transformation using the translation functions S, SE and

SC. The transformation is applied also to each constant definition in “D” .

44

—

S[[)\nym (Xn){m Y1 = 561
Y. = Se,
Yn+1 = NS€1
Yo+m = Nsep

1

k

—
In R}l

-

=)‘n,m+1 (Xn)
({m+1 Y =

Y, =
Yot1, 51 =

Yn+m; Sm ==
Sm-l-l =

Sm+k =

SI

-
In R, S'})

561

Sen,
SE[Nse1]

SE[Nsem]
sc[s

sc «;

—
Sync Deadvariables, Spyr)

M+k+i (

Where Se; stands for an expression involving strict operators, whilst N se; stands for either an

applicative or a loop expression. Deadvariables are the parameters that are not being used in

the body of the function.

— —
SE[WLoopn (P, B,Y,,Y)] = WLoop}, (P, B,Y,,S,,Y)

Where S, is the signal associated with the invocation of the predicate.

-

—
SE[Apn,m (F, Xn)] = AF’n,m-{-l (F, Xn)

SC[Pstore (X, I Z)] = Ack_store (X, I Z)

Where Ack_store is a new P-TAC function symbol of arity 3, which generates a Signal when the

store actually takes place.

The new rewrite rules are:

45

— . —
Wloopy (P, B, Xy, S, True) — {11 ta, S = APn 4l (B_; Xn);
tp,Sp = Apn,? (P, tn);
S’ = Sync3 (S, Sp, Sp);
— —
t,S1 = Wloopy (P, B, tn, S, tp)
—

In ¢, Si}

— —
WLoopy, (P, B, X,, S, False) — X,, S

Ackstore (L, i, V) — {t = Signal;
P_store (L, i, V);
Int}

Synen (V) — ()

Sync produces a void value when all the signals are received.

Acknowledgments

We would like to thank Shail Aditya for reading several earlier drafts of this paper and suggesting
changes for better readability. This paper has benefitted a lot by informal discussions with the

members of Computation Structures Group.

References

[1] Z. M. Ariola and Arvind. P-TAC: A parallel intermediate language. In Proc. ACM Con-
ference on Functional Programming Languages and Computer Architecture, London, 1989.
Also: CSG Memo 295, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, USA.

[2] T. Kenneth R. A Compiler for the MIT Tagged-Token Dataflow Architecture. Techni-
cal Report LCS TR-370, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, August 1986.

[3] R. S. Nikhil. Notes on Translating List Comprehensions in Id. Technical report, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA,
January 1988.

46

[4] R. S. Nikhil and Arvind. Notes on Pattern Matching Algorithm. Technical report, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA,
February 1988.

[5] R.S. Nikhil and Arvind. Programming in Id: a parallel programming language. 1990. (book

in preparation).

[6] P. J. Simon L. The implementation of Functional Programming Languages. Prentice-Hall

International, Englewood Cliffs, N.J., 1987.

[7] J. Thomas. Lambda lifting: Transforming programs to recursive equations. In Springer-
Verlag LNCS 201 (Proc. Functional Programming Languages and Computer Architecture,
Nancy, France), September 1985.

[8] A. Zena Matilde and Arvind. Contextual Rewriting. 545 Technology Square, Cambridge,
MA 02139, USA, 1990. In preparation.

47

Contents
1 Introduction
2 Desugared Id~

3 Kid : The Kernel Id Language

4 Translating Desugared Id~ into Kid
4.1 Simplification of Expressions 0 oo
4.2 Definition of Standard Functions o oo
4.3 Pattern Matching: Elimination of Complex Patterns

5 Optimizations of Kid Programs

6 P-TAC: Parallel Three Address Code
6.1 P-TAC . . . e e,
6.2 Rewrite rules of P-TAC e

7 Translation of Kid into P-TAC
7.1 Simple Kid Expressions o o
7.2 Data Structure Representations L L oL

7.3 Function Calls and Closures 0 . e e e

8 Signals

48

-~

15
15
21
22

27

32
32
32

36
36
37
42

44

