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In this document we will prove the Church-Rosser theorem for both Regular! Term Rewriting
Systems (TRS’s) and the A-caleulus. There are many ways to prove the Church-Rosser theorem.

1 Basic Definition and Properties

1.1 Order

Definition 1.1 Let R be ¢ binary relation on a set X. We say
- B is reflezive if V2 € X [z R 2]
- R is antisymmetric Ve, ye X[z Ry A yRz — z = y]
- R is transitive fVe,y,z€X[zRy A YRz = z R
- Ris trichotomousisz,yeX[zRy VyRz Vz=y

Definition 1.2 (Partial Order) A pertial order in a set X is a reflezive, antisymmetric, and
transitive relation in X,

It is customary to use the symbol “<” for a partial order. The reason for the qualification
“partial” is that some questions about order may be left unanswered.

Definition 1.8 (Linear Order) A linear (total) order in a set X is q trichotomous partial
order in X .

'Researchers have coined the word “Orthogonal for this subclass of TRS%. However, in this document we
will play conservative and still use the widely known term “Regular”.




A linear order is frequently called a chain.

Example: The most natural example of a partial (and not total) order is the inclusion relation,
C, on the power set, P(X), of a set X. C is a total order iff X is either empty or is a singleton
set. An example of a total order is the relation “less than or equal t0” in the set of natural

numbes.

" Definition 1.4 (Partially Ordered Set) A partially order set X is an ordered pair (X, <),
where X is a set and < i3 a partial order in X.

In the following we will not make the distinction between a partially ordered set and the domain
of the partial order, that is, we will use X and X interchangeably.

Definition 1.5 (Minimal element) A minimal element of o partially order set (X, <) is ay

in X such that
Aze X[z < y

A minimal element need not be unique (contrast wiiith the definition of a least element, given

in the appendix).
Exercise: Does the set of all non-empty subsets of a non-empty set X have either a minimum
element or a least element or both?

Definition 1.8 (Initial segment) et X be o partially order set, if 2 € X, then
veX|y < 2}
is called the initial segment of z; we shall denote it by s{z).

Note that in the above definition we used the symbol < and not <. For this reason the above
is usually called the “strict” initial segment of z.

Definition 1.7 (Minimum condition) A pertially ordered set X satisfies the minimum con-
dition if each non-empty subset of X has a minimal element.

We now state the following theorem without proof,

Theorem 1.8 (Noetherian induction) Given S, a subset of a partially ordered set X with
minimum condition,

VzeX, s(z) C § = ze€f] = S§=X

Notice that in the above we didn’t make any assumption about a starting element. This is
so because all the minimal elements of X are included in § by definition. Indeed, if z is the
minimun element of X, s(z} is empty and therefore 8(z) C &, then z ¢ §.



At this point the reader may feel confused about the difference among the various kind of
“induction principles” he may have come across. In the following we will try to trow some Light
on these differences, if any. We will consider mathematical induction, structural induction and
transfinite induction (defined in the appendix}).

Let’s first say that Noetherian induction is the general version of “structural induction”. Struc-
tural induction, as the name may recall, consists in reasoning on the structure of a term or a
formula. For example, most of the proofs in propositional logic, goes like this

suppose ¢ and 1 are true, then prove that ¢ A 3 is true

We clearly have a partial order set (tte. $< ¢ A ¥ and ¥ < ¢ A ), which satisfy the
minimum condition, where the minimum elements are the atomic terms or formulae.

While, the main difference beween Noetherian induction and both mathematical induction
and transfinite induction, is that the first is defined on partially order sets, while both mathemat-
ical induction and transfinite induction are defined on well-orders. This means that, noetherian
iinduction only requires that each chain in X has a least element, and not an arbitrary subset
of X. Moreover, Noetherian induction, like transfinite induction, passes to each element from
the set of its predeccesors, and, as said before, does not make any assumption about a starting
element.

- For a definition of both transfinite induction and least element the reader may refer to the
appendix. '

1.2 Application of Noetherian Induction
We can think of the reduction relation as extablishing an ordering between terms. For example,
you can read “z —» y” as saying “y < z”. It is left to the reader to check that the relation “Lm

is a partial order. We would like to have a tool that allows us to reason about terms. In order
to do that we have to require that the reduction relation be SN, otherwise, we would not have
the minimun element property.

Definition 1.9 (Complete) Let P be a predicate defined on a partially order set X. We say
that P is complete iff

VzeX, Vye{y|z sy}, P(y) = P(=)

We introduce a property of a predicate which says that a predicate is complete if it holds for an
arbitrary element z of X whenever P holds for all the elements less defined than z.

Theorem 1.10 Given TRS (X, R), if R is noetherian and P is q complete predicate then
Vze X, P(z)

Proof: Suppose, by contradiction, that P does not hold in each element of X, therefore, the set,
S, of all element which do not satisfy P is non-empty, and by the minimum condition

dmesS, Vze 8, m<z



This means that s(m) ¢ § (otherwise m would not be a minimum). We then have
s(m) Z S AmeS
This contradicts the hypothesis that P is a complete predicate. ]
Lemma 1.11 (Newman’s Lemma) SNA WRC = CR .
Proof: We want to prove that the predicate P(z) defined below is complete
P(z): Vy,z,(2—y A 2 —»z2 =— Jssuchthaty —» s A z—» 4

Without loss of generality assume that

/Yy ATz —»z

By WCR:

Ju, s —» u A 2y —» u
By induction hypothesis P holds in 1 (since y; < z),

v,y — v A u —» p

By induction hypothesis P holds in z1 (since 2 < z),

Jt, v —>t A 2z —» ¢

Thus proving P(z). See the diagram below:
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1.3 Reduction Properties

Hereon we will not make the distinction between a set of rules R and the induced binary relation

— .
R

Definition 1.12 (Diamond Property) Let R be a binary relation on a set X. Then R has
the diamond property (notation R o )if

Vi, tq, tzEX[t—>t1 Alt—t, = 3t3[t1 —r iz At —--—)t3]]



See diagram below:
t

121 / \tz
\./

Remark: R =0 =3 R*|=o.
Remark: R |=¢ = R |= CR.

Definition 1.13 (Underlining) Let R be a binary relation in X, define R and X as follows
- R is the binary relation in X, obtained by underlining all the leftmost function symbols in
the left-hand-side of the reduction rules in R.
- X is the set containing all terms in X ; plus terms with some function symbols underlined.

There are operations that allow to go from the structure (X,R) to (X,R) and vice-versa. One

~can convert a term ¢ in X to #' in X by possibly underlining some function symbols (lifting).

Conversely, a term t' in X can be converted to ¢ in X by erasing all underlinings ( i.e. ¢t =| ¢ M.
More formally:

Lemma 1.14 (i)

¢ -->t t.tieXx
Hl ||
14
t——s tLbheX
(1) ’ ! Y
t—a thtieX
ul lu
t -->1 t,ty e X

Definition 1.15 (Development with respect to F) Given a termt € X, and a set, F, of
redezez occurrence in t, let ¢! ¢ X be the term obtained by underlining the redezez in F , then
the reduction sequence o : t' — 8y = . >t in R is called a development of t with respect
to F . A development of a term t is a development of t with respect to the set, ¥, of all redex
occurrences in t.

Informally the previous definition says that a development of a term ¢ is a reduction in which
only “old” redexex (i.e. , redexex already present in t), are rewritten.



Definition 1.16 (Complete Development with respect to F) Given a term t € X, and
a set, F, of redezez occurrence int, let t' € X be the term obigined by underlining the redezez
in F, then the reduction sequence o : t' — > ...=t inRis called a complete development
of t, with respect to F, if t!, does not contain any more underline. A complete development of a
term t is a complete development of t with respect to set, F, of all redez occurrences in t.

The notions of “developments” and “complete developments” are very important because as
we will see, they will allow us to prove confluence for both Regular TRS’s and the A-calculus,

2 Confluence for Regular TRS’s

The proof of CR for Regular TRS’s follows the steps below:
(i) R Regular = R is Regular (lemma 2.1)
(ii) R = WCR ( lemma 2.1 and lemma 2.3)
(iii) R |= SN (lemma 2.4)
(iv) (i A i) = R = CR (by Newman’s lemma)
(v) R |= CR (because R* = R*)

The main point to grasp here is that in order to show that a reduction relation R is CR, we define
a new reduction relation R, for which it’s easier to show that is CR. We reduce the problem
to something more tractable and the translation between the two different problems is given
by showing that the two reduction relations have the same transitive closure. Therefore, once
proved that R is CR, it follows that R is CR also.

Lemma 2.1 R Regular — R Regular.

Proof: Left to the reader. ]

Fact 2.2 Given a Regular TRS (X,R),Vt € X,t-%¢t, A t-L, ty then the (a) B-reduction
does not modify the (8) a-redez.

At the first look it seems that the above is only due to non-overlapping patterns. Instead also
non-left linearity can cause problems. As an example, given the rules

Dzz — 2z

lz — =z

consider the term
D{z)(1
u( z)

[+

e
8

the a-reduction modify the B-redex.



Lemma 2.3° Given a Regular TRS (X,R), R is WCR.
Proof: We want to show the following:

VieX,t St Bty = a5t —» 15 andty — 4
We do the proof by case analysis.

Case 1: Redexes a and § are disjoint

Trivial. See diagram below:
t
N
14 i2
V‘ y
t3

Case 2: Without loss of generality assume that o is nested inside B
Since R is regular, by the previous fact, only two cases are possible
(2.1) B-reduction destroys the a-redex;
(2.2) B-reduction duplicates the a-redex;

We consider the two cases above separately.

SubCase 2.1: B-reduction destroys the a-redex
This means that
B Ct

Suppose by contradiction that the above is not true, then the a-reduction
must have erased 8. The only way this can happen is if 8 C . In
conclusion:

@« CAABCa=a=234

We reached a contradiction, since R is not ambigous.

Therefore,



SubCase 2.2: B-reduction duplicates o
For the same reasons as before 8 C 13, therefore

B
t —> 1y

4

:

ty —> 25

Lemma 2.4 For any TRS (X,R), R is SN.

Proof: The proof strategy is similar to the one given in ithe next section. [ |
With these lemmas and definitions in our pocket, we can now state and prove the main theorem
of this discussion.

Theorem 2.5 Given a Regular TRS (X,R), R is CR.

Proof: Left to the reader. | [ |

3 The M-calculus

Hereon A indicates the set of A-terms and B indicates a reduction relation on A.

Fact 3.1 8 [£ o.

For an example, consider:

(a (A2.2 2)(5 ID) —Z5 (g, IT) (s, II)

g B
I (g, II)
g
(« A2z 2) I — 2 s

In the above example the a-reduction duplicates the S-redex, the two copies are named 3, and
B1 respectively. For this reason the A-calculus has the so called duplicative property. This r..1-rs

8



many issues regarding efficient implementations (say something about Vinod thesis).

Proof strategy of CR for A-calculus:
(i) Define a new type of reduction relation, &’
(i) &' |- CR
(i) B° = B.
By remark 1.3 it follows that 8* = ¢ and then by remark 1.3 we have proven that 3 is CR.

3.1 Marked A-calculus ( A?)

In order to formalize the ideas of development and complete development, we introduce the new
calculus A’. The A’ terms are given by the following production:

E=z|Xz.E|EE|(A=z.E)E

The rules of A’ are:

Bo: (A2.M)N — M [N/z]

B: (Az.M)N — M [N/z]
Notice that we do not underly arbitrary A’s, only the ones that constitute the operator part of a
redex. Thus, given the well-know term (A z.z z) (Az.z z), you can certainly underline the first
A, obtaining (A z.z 2) (A 2.z z). However, you should convince yourself that (A z.z 2) (A 2.z z)
is not a term in A’.

Lemma 3.2 Let M € A and F a set of redezez occurrences in M, then o is a development of M
relative to F iff the lifted reduction o’, starting with M, is a By-reduction. Where M is M with
all the redezez in F underlined,

Definition 8.3 Let M c A and F a set of redexzex occurrences in M, theno : M — M, ... M,
18 a complete development of M relative to F iff the lifted reduction o' : M — My---M,, isa
Bo-reduction and M, is in normal form.

As an example, consider:

(« A 2.2 2)(g L(I a))) —> (g, L (I a)) (5, L (I a))
i) Bo l
(I a) (5, L(I a))

|

(«(Azz2)(Ia) —*—5 (Ia) (T )



3.2 Confluence for A-calculus

Lemma 3.4 (Substitution lemma) Ifz # y and =z & FV(L), then
M [N/z|[L/y] = M [L/y][N [L/y]/=]
Proof:[By structural induction]

Case 1: M is a variable

SubCase 1.1: M = x
Perform the substitution in both sides and you obtain

N[L/y]= N L]y}

SubCase 1.2: M = y
Perform the substitution in both sides and you obtain

L=L[N[L/yl/el=L =z¢ FV(L)

SubCase 1.3: M=z FzZy
In both sides we obtain z

Case 2: M = M]_ Mz
Follows directly from induction hypothesis

Case3: M = X z. M,

A z.(My [N/z][L/y]) by definition of substitution
A z.(My [L/y][N [L/y]/2]])) by induction hyphothesis
(A z.My) [L/y][N [L/y]/=]] by definition of substitution

(A 2.M,) [N/z][L/y]

Lemma 3.5 8y, = WCR.

Proof: Let p; and p; be the two redexex contracted, we will do the proof on case analysis on
the relative position of p; and p,.

Case 1: p; and p; are disjoint
Trivial

Case 2: Without less of generality assume that P C pa
Assume that oy = (A2z.P)Q and p; = (A z.M) N.

10



SubCase 2.1: py C M.,
Follows from Substitution lemma.

SubCase 2.2: p; C N.

(s 2w 20 0e2)(o (o Q2P)Q)--) L2 o (y (A4.P) Q) (o (Ay.P)Q)---

[ Pl‘l/
|
(o Q2veozeva)(o - PQ/Y] ) — 5 .. P[Q/y]--- P Q]

|

The main technique to prove that a binary relation in a set X is SN , is to show that that

binary relation well-order X, that is, each chain in X has a minimum element. In our case we
are interested in showing that By is SN, thus we proceed as follows:
o Assign a weight to each M € A’, call the term so obtained | M |

¢ show:

that is, the “weight” of a term is decreasing as we reduce it.

Definition 3.8 (Weighting) Given M in A associate a positive integer to each variable occur-
rence in M.,

We thus obtain a new calculus, A*, that has the usual inductive definition with the variables
ranging over 2%... 2" The definition of reduction on A* (B5) carries over in the usual way.

Definition 3.7 (Weight) Let M in A* define | M | as the sum of the weights occurring in M.
Definition 8.8 Let M in A*, then M has decreasing weight property (dwp) if for every fBg-redez
(Az.P)Q in M :

VzeP, |z|>|Q]
Example: (Az.2%27)(Az.2%2%) has the dwp, while (Az.2*z")(Az.2?23) does not.

Lemma 3.9 Forall M in A*, there ezists an initial weight assignement so that M has decreasing
weight property.

Proof: Start enumerating all variables occurrences in M from right to left, and assign to, let’s
the m** variable occurence the weight 2™, Since

2% > om-lpom-24 941

M has the dwp. =

11



Lemma 3.10 If M — N, and M has dwp then
[N|<|M|

Proof: Let M be -..(Az.P)Q-..

Casel: ¢ g P
Then @ vanishes

Case2: z € P
The weight must decrease because the weight of the substituted expression, i.e. | Q) |,

is less than every z.

Lemma 3.11 Let M — N, then if M has dwp so does N.

Proof: Suppose M LNy , where Ry = (Az.Fp)Qo. Examine the effect of Hg-reduction on some
other redex R; = (Ay.P;)Q; in M. We will do the analysis on the relative positions of Ry and
R;.

Casel: RonNR1 =0
Rg-reduction does not affect R,

Case 2: R; C Ry

SubCase 2.1: R, is inside the rator Az. Py

Bo = (Az.. - ((Ay.P1)Q1) - )Qo.

By the dwp of M,
Vyeh, |yl> Q]

and, by the fact that y ¢ FV(Qo),

Yy EP [Qof2z], |y|>|Qu|

And,
Vze Ry, [2]>]|Qo]|

then
1 Q11> @Q1(Qo/z]|

In conclusion,

Vy € P [Qo/z], [y|>]Q1[Qo/z]]

12



SubCase 2.2: R, is inside the rand @,
RO = (Ag_Po)(. . R1 .s .)
Eo-reduction does not modify R; (may just copy it or destroy it)

Case 3: Ry C By
SubCase 3.1: Ry is inside the rator of R,

By =(Ay.--- ((A=z.P)Qo) ---)@1

The weight of y is not affected by Rg-reduction.
SubCase 3.2: Ry is inside the rand of R,

By = (Ay. A )(- - ((A2.Po)Qo)- - -)
The weight of @, after Ry-reduction decreases.

From the previous lemma we can infer,
Lemma 3.12 8, = SN.
Corollary 3.13 8 |= CR (by Newman’s lemma).
Theorem 3.14 (Finite Development) Let M € A and F cCM
(i) All developments of M related to F are finite;
(i) All complete developments of M related to F end up with the same term.

Proof:

(i) follows from lemma, 3.12

(ii) follows from lemma 3.13 |
We can now define the new reduction relation,

Definition 3.15 (Parallel reduction) M - N, if N is the result of a complete development
of M with respect to some F.

Exercise:
Let M = (A z.2 z)(I I). Then it is a good exercise to see what M parallel reduce to. In
particular, does M - rirnoe.

Theorem 8.16 - E o.
Proof:

fll NT:U}*’ Fy
v
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4 Appendix

Definition 4.1 (Least element) The least element of a partially order set (X,<)isayec X

such that
VeeX,y <z

Note that if the least element exists, it is unique, so one should talk of the least element of X.

Definition 4.2 (Well-ordered set) A partially ordered set (X,R) is well-ordered iff each non-
emply subset has a least element.

Examples: The set {1,2,3,..-} is well-ordered. The set {---, 3,2, 1} is not well-ordered, because
it has no first element.

Remark: One consequence of this definition is that every well-ordered set X is totally ordered.
Let 2,y € X, then {z,y} is a non-empty subset of X and has therefore a least element. If the
least element is z, then z R y, otherwise, y R 2.

The reason of the interest in well-ordered sets, lies in the fact that we can prove properties of
their elements using a process similar to mathematical induction.

Definition 4.3 (Transfinite induction) Given §, g subset of a well-ordered set X,
Vz e X,8(z) CS = z€ 8] = §=X
Definition 4.4 Let the set S be a subset of the partial order X then
SCy, ifVze S [zCy]

Definition 4.5 (Least Upper Bound) Let the set X be partially ordered by R, z is the least
upper bound of a subset § of X (denoted as||$ ) iff:

1. §C =z

2.VeeX,SCz—=2LC=z

Example:
¢ {a,b} =a

a
I >< [ {a, c} has no upper bound,so no lub
b d {b, d} has two upper bounds, a and ¢ but not lub

Definition 4.8 (Directed set) Let the set X be partially ordered by R. A nonempty set § is
directed iff: '
Vz1,23 € 8, J23 € S such that z, C 25 and 2y C zj.

14



To give an analogy, directed sets are like the Cauchy sequences in analysis.

Example 1: {a, b, d} of the previous example is directed.
Example 2: Given a set X, define 5 to be the set of all finite subsets of X:

§={FCX: |Fl|l<w}
§ is partially ordered by subset inclusion and is directed:
VF,F; € §, F;UF; € §is an upper bound.

Definition 4.7 (Chain) For a partially ordered set X, a subset § of X is a chain yf S is
nonempty, and Ve,, 2, € §, 21 C 23 0r 23 C z4.

Directed sets are more general than chains, for example, Example 1 is not a chain because b
and d are incomparable, More significant, in Example 2, if X is uncountable then no chain of
elements in § has the same lub as S.

Definition 4.8 A partially ordered set (X, R) is a complete partial order (cpo) iff:
1.3l eX st. LCX.
2. V directed § C X, |8 € X ezists.

Despite the technical distinction between chains and directed sets the difference won’t bother
us. For example, ¢po.pain = cpog;s, since if every chain has a lub then every directed set has a Iub.

Example 1: (P(X),C) is a cpo:
1. there exists the least element 1 = @;
2. V directed § C P(X), JS =15 € P(X).

Example 2: (N,,C}is a cpo with L C N.

0 1 2 3 n...

N\

1

N.B. N, captures the intuition that a program running forever (1) is less defined than a
program converging to some result.

Definition 4.9 A function f: X > Y, where X and Y are partially ordered sets, is monotone

ffVer,ea € X, e1 Cx g = f(ey) Cy F(e2). The function f is continuous iff f is monotone
and ¥ directed § C X, f(1JS§) = [{f(z):z € 5}.

15



Note monotone functions need not be continuous, e.g., let 4 = {0,1,.} U{w,w+ 1} and
f:A— A where f(n) =nVn e N, flv)= flw+1) = w+ 1. f not continuous can be seen
from the fact that it does not commute with taking the limit:

LS =flw)=wr1#w=]]|5=]]#5)

We denote the set of all continuous functions from X to ¥ by X —. Y, and the set of all
monotone functions by X —,, Y.

Lemma 4.10 If X,Y are cpo’s, then so are X —. Y, X —»n Y with the order f T g iff
Ve € X, f(z)C g(=).

Proof:
e [ is a partial order.
¢ There is a least element defined as:
Lx..v(z)= Ly
i.e., Lx_,, v is everywhere less than or equal to every function:

Vee X, ze X -, Y, Llxway(z)= Ly C g(z)

¢ Let F C (X —,, Y) be a directed set. Define the function g by
9(z) = | [{#(z): f € F}
Since F is a directed set :
Vinfa 3fs€Fst. fiC fsand fH, C f
This implies:
Vz € X fi(z) C fa(z) and fo(z) C fa(z)

We conclude that {f(z): f € F} forms a directed set for each . Thus, it has a lub, so
g(z) is well defined and clearly ¢ is a upper bound of F:

Vf; € F, Vze X f(z)Cg(z) = FCg

Moreover, it is the least upper bound, for if there was a smaller upper bound, there would
exist some z such that g(z) were not the lub of the {f(z): fe F}.

* we have to prove now that g is monotone. Suppose z C 2/, then by monotonicity of f:
Vf€F, f(z)C f()
and this implies:
LHf(@): fe FyC| J{f(=): e F)
Thus:
9(=) = | {#(=)} C | {{(=")} = g(=).

16



|
We have thus shown that a set of monotone functions is a cpo. We state without proof that
X —.Y is also a cpo.

Theorem 4.11 (Tarski-Knaster) Let X be a cpoandlet f: X -, X. Then f has a least
fized point,

Proof:
Define the sequence of values:

Zg=.1
Za = [{f(zs): 8 < @}

where a range over the ordinals.
For any ordinal a by transfinite induction we have Z4 C f(24). This implies :

VﬂSG, 25 C 2o

So, {f(23) : B < a} is a directed set in X. Consider the directed set 20, 21, ... 2., such that
k>| X |. By pigeonholing there must exist Ki,Kz 8.t. K1 < K3 < x,and z,, = Zx,. But:

f(ziu) c Tryg = f(z"l) c Ty

Moreover we know z,, C f (2., ), it follows that f(2x,) = 2., hence Z., is a fixed point of f.
To see that z,, is the least fixed point, suppose y is a fixed point of f. By monotonicity of
b

1By

L Cfy) =y
FALEfPy) =y

by induction:

z,, Cy.
|
Lemma 4.12 u: (X — X) — X is monotone,
Proof: Suppose f C g. By monotonicity:
2) C 2§
2] Caf
by induction:
rf £ pg
|

17



5 Notation

—. reduction relation induced by R

s tlor more steps reduction
25 n steps reduction

= reduction of the a-redex
aCt aisasubtermoft
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