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In this document we will prove the Church-Rosser theorem for both Regular! Term Rewriting Systems

(TRS’s) and the A-calculus.

We also review some powerful proof methods, which require the introduction of basic notions about ordering

relations.

I Researchers have coined the word “Orthogonal” for this subclass of TRS’s. However, in this document we will play conservative

and still use the widely known term “Regular”.



1

Basic Definitions and Properties

Throughout the paper we will make use of the following notation:

—
R

ty
n

—

N

)

1.1

cM

reduction relation induced by R
1 or more steps reduction

n steps reduction

reduction of redex p

p is a subterm of term M

Ordering Relations

We first give a number of examples of ordering relations on a set X.

1. X ={{a},{b},{a,b}}and x Ry:=ax Cy

{a, b}

< <

{a} {0}

2. X =P({a,b}) ={0,{a},{b},{a,b}}and z Ry:=2 Cy

{a, b}

-

{a} {b}

N

1]
1]

3. X ={2,3,4,6,8,12} and z Ry := z is a divisor of y

8N\ 12

4

4. X ={1,2,3,4,6,8,12,24} and # Ry := « is a divisor of y



5. X=2 andz Ry =z <y

6. X=N andz Ry:=z<y

7. X=N x N and (a,0)R{z,y) :=a<zV(e=zAb<y).
<0¢0>= <0¢1>¢ <0¢2>¢ <1¢0>¢ <1¢1>¢ <1¢2>¢ <2a0>a

Definition 1.1 Let R be a binary relation on a set X. We say
- R is reflexive if Vo € X [x R ]
- R is irreflezive if Yo € X [-x R ]
- R is antisymmetric ifVe,ye X [t Ry A y Rz — z = y]
- R is transitive if Ve,y,z€ X [t Ry A yRz — z R 7]
- R is trichotomous if Ve,y€ X [t Ry V y Rz V z =y

Definition 1.2 (Weak Partial Ordering) A relation R on a set X is a weak partial ordering on X iff R is

reflexive, antisymmetric, and transitive.

The one satisfying irreflexivity is named strict partial ordering. Hereon, if otherwise specified, we will assume
that the partial order is a weak partial order. It is customary to use the symbol C for a weak partial order, and
C for a strict partial order. Note that the reason for the qualification partial is that some questions about order

may be left unanswered.

Check that in the Examples 1 through 7, R is a weak partial ordering on X.

Instead of “R is a partial ordering on X” one sometimes says that “X¥=(X, R) is a partially ordered set”. In the
following, we will not make the distinction between a partially ordered set and the domain of the partial order,

that is, we will use X and X interchangeably.

Definition 1.3 (Minimal element) A minimal element of a partially ordered set (X,C) is a y in X such that
AreXz T yNnausy

Definition 1.4 (Least element) The least element of a partially order set (X,C) is a y € X such that

Vee X,y C z

Note that the least element, if it exists, is unique, and the least element is necessarily a minimal element. But,

conversely, a minimal element is not necessarily a least element. In Example 1. {a} and {b} are minimal elements



of X, but X does not have a least element.

In Example 2. (} is the least element of X and hence also a minimal element of X .

In Example 3. 2 and 3 are minimal elements of X, but X does not have a least element.
In Example 4. 1 is the least element and hence also a minimal element of X.

In Example 5. X has not minimal elements and hence no least element either.

Maximal element of X and the greatest element of X are defined analogously.

Definition 1.5 (Upper Bound) Let the set X be partially ordered by C, z is the upper bound of a subset S of
X (SCz)iff ve e S [ CZ]

Definition 1.6 (Least Upper Bound (Lub)) Let the set X be partially ordered by T, z is the least upper
bound of a subset S of X (denoted as | |S) iff:

1. SC z (z is an upper bound);

2.Vzee X, SCe—zLC z.

Note that a subset S of a partially ordered set X can have at most one least upper bound (by antisymmetry).
Hence, in case that S has a greatest element, then this is clearly the least upper bound (lub). However, the lub

for S does not need to belong to S and thus does not need to be the greatest element of S.

In Example 3. the set {8, 12} does not have an upper bound, so no lub. The set {4,6} has two upper bounds, 8
and 12, respectively, but no lub. 12 is the lub of {2,3,6,4,12}.

Lower bound and greatest lower bound are defined analogously.

Definition 1.7 (Weak Linear Ordering) A relation R is a weak linear (total) ordering on X iff R is a weak

partial ordering and R is trichotomous.

Analogously, we can define a strict linear ordering. A linear order is frequently called a chain. Examples 5.,6.

and 7. are weak linear orders.

Definition 1.8 (Weak Well-ordering) A relation R on a set X is a weak well-ordering on X iff

i) R is a weak linear ordering;

ii) iff each non-empty subset has a least element.

The definition of a strict well-ordering implies that R is irreflexive. The relation R as defined in Example 6. is
a weak well-ordering, while R in Example 5. is not, because X has no least element.
As an exercise you can show that A is weakly well-ordered by <. On the other hand, (Z, <) is not a weakly

well-ordered set.

Remark: One consequence of the above definition is that every well-ordered set X is totally ordered. Let

z,y € X, then {z,y} is a non-empty subset of X and has therefore a least element. If the least element is z,



then # C y, otherwise, y C .

We are interested in strict well-ordered sets because we can prove properties of their elements using a process

similar to mathematical induction.

Definition 1.9 (Initial segment) Let X be a partially ordered set, if v € X, then
fveX |y Tz}

is called the initial segment of z; we shall denote it by s(z).

Note that in the above definition we used the symbol C and not C. For this reason the above is usually called

the strict initial segment of z.

Theorem 1.10 (Transfinite induction) Given a subset S of a strict well-ordered set X, then

VeeX, s(x)CS = eS| = S=X
Proof: Suppose that S # X. Since X is well-ordered then (X \ S) has a least element, say zg. Thus,

zog € S A s(zg) C S. Since s(zg) C S, it follows from the hypothesis that 2 € S. We reached a contra-
diction. Therefore, S = X. &

Notice that in the above we didn’t make any assumption about a starting element. This is so because all the
minimal elements of X are included in S by definition. If # is the minimal element of X, then s(z) is empty,

and since s(z) C S then z € S.

If the set X is the set of terms defined over a given signature, it is interesting to think under which conditions

the reduction relation —» defines a partial ordering on X. We can think of the reduction relation as establishing

an ordering between terms. For example, you can read # — y, with n > 1, as saying y T z. By definition C is

irreflexive and transitive, but, in general it is not antisymmetric, in fact, we can have terms M and N, such that
(M— N) AN (N—> M) AN (M#N).

However, if —» is strongly normalizable then it is easy to verify that C does satisfy the antisymmetric property,
because it will never happen that (M —» N) A (N —» M). Moreover, the strong normalization property

guarantees that each non-empty subset of X has a minimal element.

Definition 1.11 (Minimum condition) A partially ordered set X satisfies the minimum condition if each

non-empty subset of X has a minimal element.

Definition 1.12 (Noetherian Relation) Given a TRS (X, R), R is said to be noetherian if (X, R) satisfies

the minimum condition.

Before introducing the noetherian principle we introduce a new definition, which says that a predicate is

complete if it holds for an arbitrary element z of X whenever it holds for all elements less than z.



Definition 1.13 (Complete) Let P be a predicate defined on a partially order set X. We say that P is complete
uf
VeeX, VyCz Ply) = P(x)

Theorem 1.14 (Noetherian Induction) Given TRS (X, R), if R is noetherian and P is a complete predicate
then
Vee X, P(z)

Proof: Suppose, by contradiction, that P does not hold in each element of X, therefore, the set S of all elements

which do not satisfy P is non-empty. Since R is noetherian from its definition we have:
Jm € S such that V2 € S, m[C 2
This means that s(m) NS # @ (otherwise m would not be a minimal element). We then have
s(m)ZS AmeS

This contradicts the hypothesis that P is a complete predicate. Therefore, S is the empty set. &

At this point the reader may feel confused about the difference among the various kinds of induction principles
he may have come across. In the following, we will try to throw some light on these differences, if any. We will
consider mathematical induction, structural induction and transfinite induction. Let’s first say that noetherian
induction is the general version of structural induction. Structural induction, as the name may recall, consists
in reasoning on the structure of a term or formula. For example, most of the proofs in propositional logic, go
like this:

suppose ¢ and 1 are true, then prove that ¢ A 2 is true

We clearly have a partial ordered set (i.e., ¢ C (¢ A ¢) and ¢ C (¢ A 1)), which satisfy the minimum
condition, where the minimal elements are the atomic terms or formulae.

The main difference between structural induction and both mathematical induction and transfinite induction, is
that the first is defined on partially ordered sets, where each chain has a least element, while both mathematical
induction and transfinite induction require that an arbitrary subset of X has a least element. Moreover, struc-
tural induction, like transfinite induction, passes to each element from the set of its predecessors, and, as said

before, does not make any assumption about a starting element.

An an application of noetherian induction we give the proof of the following lemma.

Lemma 1.15 (Newman’s Lemma) SN A WRC = CR .

Proof: Since the reduction relation is SN then all we have to show is that the following predicate P(z) is complete
P(z): Vy,z, x—»y AN z—»2z — Issuchthaty —»s A z —» s
Without loss of generality assume that

T— Uy —Y N T—2 —»Z



By WCR:
Ju, y1 —» u A 21 —» u

By induction hypothesis P holds in y; (since y; C ),
Jv,y — v A u —» v
By induction hypothesis P holds in z; (since z; C z),

ds, v —s A z —» s

3

Thus proving P(z). See the diagram below:

r—> 2 —> 2

[

Y1 — u HP

| |

y — v —» t

1.2 Reduction Properties
Hereon we will not make the distinction between a set of rules R and the induced reduction relation — .
R

Definition 1.16 (Diamond Property) Let R be a reduction relation on a set X. Then R has the diamond
property (notation R |= o ) if

Vt, t1, tQEX[tﬂtl ANt—ty = 3Ti3 [tl — i3 A 1o —>t3]]

See diagram below:

/\
\/

Fact 1.17T R o — R* |=o.
Fact 1.18 R+ — R E CR.

Definition 1.19 (Underlining) Let R be a reduction relation in X, define R and X as follows



- R s the reduction relation in X, obtained by underlining all the leftmost function symbols in the left-hand-side
of the reduction rules in R.

- X is the set containing all terms in X, plus terms with some function symbols underlined.

There are operations that allow us to go from the structure (X,R) to (X,R) and vice-versa. One can convert a
term ¢ in X to ¢’ in X by possibly underlining some function symbols (lifting). Conversely, a term ¢’ in X can be
converted to ¢t in X by erasing all underlnings ( i.e., t =|t'|) .

More formally:

Lemma 1.20

(1)

t - >t 't eX

IIL |

%
t —» tt1 €X

(1)

' — 't eX

||l I
t - ->1 t,tlEX

Definition 1.21 (Development with respect to F) Given a termt € X, and F a set of redex occurrences
int, lett' € X be the term obtained by underlining the redexes in F, then the reduction sequence o : t' —t| —
...t in R is called a development of t with respect to F . A development of a term t is a development of t

with respect to the set of all redex occurrences in t.

Informally, the previous definition says that a development of a term ¢ is a reduction in which only “old” redexes

(i.e., , redexes already present in t), are rewritten.

Definition 1.22 (Complete Development with respect to F) Given a termt € X, and F a set of redex
occurrences in t, let t' € X be the term obtained by underlining the redexes in F, then the reduction sequence
ot 5t = ...t in R is called a complete development of t with respect to F, if !, does not contain any
more underlines. A complete development of a term t is a complete development of t with respect to set of all

redex occurrences in t.

2 Confluence for Regular TRS’s

The proof of CR for Regular TRS’s follows the steps below:

(i) R Regular = R is Regular (lemma 2.1)

(ii) R F WCR ( lemma 2.1 and lemma 2.3)



(iii) R = SN (lemma 2.4)

(iv) (ii A ili)) = R = CR (by Newman’s lemma)

(v) R |E CR (because R* = R*)
The main point to grasp here is that in order to show that a reduction relation R is CR, we define a new reduction
relation R, for which it’s easier to show that is CR. We reduce the problem to something more tractable, and

the translation between the two different problems is given by showing that the two reduction relations have the

same transitive closure. Therefore, once proved that R is CR, it follows that R is also CR.

Lemma 2.1 R Regular —> R Regular.
Proof: Left to the reader. P 3

Fact 2.2 Given a Regular TRS (X,R), Vt € X, 1 Lt At 5ty then the (p1) pa2-reduction does not modify
the (p2) p1-redez.

At first look it seems that the above is only due to non-overlapping patterns. Instead also non-left linearity can

cause problems. As an example, given the rules

Dzxz — =z

lz — =z

consider the term

D (lz) (lx)
———
P1

the pi-reduction modify the ps-redex.

Lemma 2.3 Given a Regular TRS (X,R), R is WCR.
Proof: We want to show the following:

VieX, t 25 4t 2ty = Tits, t;, —» t3 andt; —» i3

We do the proof by case analysis.

1: Redexes p; and p, are disjoint

Trivial. See diagram below:

p

ty ts

RN
N_A

t3
2: Without loss of generality assume that p; is nested inside p;

Since R is regular, by the previous fact, only two cases are possible

©



(2.1) pa-reduction destroys the p;-redex;

(2.2) po-reduction duplicates the p;-redex;

We consider the two cases above separately.

2.1: pe-reduction destroys the p;-redex
This means that py occurrs in ¢; (p2 C t1). Suppose by contradiction that the above is not
true, z.e., the pi-reduction must have erased p;. The only way this could have happened

is if ps C p1. In conclusion:
PrCp2 AN p2Cpp = p1 = p2

We reached a contradiction, since R is not ambiguous.

Therefore,

2.2: pp-reduction duplicates p;

For the same reasons as before ps C ¢, therefore

P2
t —= iy

P1 Pl\L

Lemma 2.4 For any TRS (X,R), R is SN.

Proof: The proof strategy is similar to the one given in the next section.

Theorem 2.5 Given a Regular TRS (X,R), R is CR.
Proof: Left to the reader.

3 The MA-calculus

Hereon A indicates the set of A-terms, and  indicates a reduction relation on A.

10



Fact 3.1 3 £ o.

For an example, consider:

(b Az ) 1) 2> (o I1) (5, 1T)

T To\L

(s 11

Tl\L
(b (Azze)] —— II
In the above example the reduction of redex p duplicates the redex 7, the two copies are named 7y and 7, respec-

tively. For this reason the A-calculus has the so called duplicative property. This raises many issues regarding

efficient implementations.

Proof strategy of CR for A-calculus:

(i) Define a new type of reduction relation, -
(i) — o

(iii) B* = —.

3.1 Marked A-calculus ( A7)

In order to formalize the ideas of development and complete development, we introduce the new calculus Ar.

The A’ terms are given by the following production:

E=z|AeE|EE|(Az.E)E

The rules of A’ are:
Bo: (AxzM)N — M [N/x]

B: (Axe.M)N — M [N/x]

Notice that we do not underline arbitrary A’s, only the ones that constitute the operator part of a redex. Thus,
given the well-know term (A z.z ) (A z.z z), you can certainly underline the first A, obtaining (A z.z ) (A z.z z).

However, you should convince yourself that (A z.z &) (A z.2 «) is not a term in A’

Definition 3.2 (Development with respect to F) Let M € A and F a set of redex occurrences in M, then
o is a development of M relative to F iff the lifted reduction o’, starting with M, is a [y-reduction, where M is
M with all the redexes in F underlined,

Definition 3.3 (Complete Development with respect to F) Let M € A and F a set of redex occurrences
in M, then o : M —» M is a complete development of M relative to F iff the lifted reduction o' : M —» M;

is a fo-reduction and My is a normal form with respect to 3.

11



As an example, consider:

(b Ao 2)(; I(T @) > (; L(I @) (- L(I a))

, |

(La) (-

Tf

(b QAzze)(a) ——s (Ia) (I a)

(7 a))

3.2 Confluence for M-calculus

Definition 3.4 (Variable Convention) Given a A-term M then all bound variables of M are supposed to be

different from the free variables.
From now on we will always assume that all terms satisfy the variable convention.

Lemma 3.5 (Substitution lemma) If z £y and & FV(L), then

M [N/z][L/y]= M [L/y][N [L/y]/x]

Proof:[By structural induction]

1: M is a variable

1.1: M =x

Perform the substitution in both sides and you obtain
N [L/y] = N [L/y]

122 M=y
Perform the substitution in both sides and you obtain

L=L[N[L/y/e]=L «¢&FV(L)

13: M=z #uz,y

In both sides we obtain z

QZMEMlMQ

Follows directly from induction hypothesis

3 M=)Xz.M
By the variable convention we may assume z # z,y and z ¢ FV(N)U FV(L).

(A z.My) [N/z][L]y] = Xz.(M;[N/z][L]y]) by definition of substitution
= Az.(My [L/y][N [L/y]/«]]) by induction hypothesis
(A z.My) [L/Y][N [L/y]/«]] by definition of substitution

12



Lemma 3.6 3y = WCR.

Proof: Let p1 and ps be the two redexes contracted, we will do the proof by case analysis on the relative position

of p1 and p».

1: p1 and p, are disjoint

Trivial

2: Without loss of generality assume that p; C pa
Assume that p; = (A y.P) Q and p2 = (A 2. M) N.

2.1: pp € M.
Follows from Substitution lemma.
2.2: pp €T N.
P2
(b Qzooz o 2)( (o QuP)Q) ) —= (o QAyP) Q) (o, AyP) Q) -
P1 p1\l/
Pl\L
P2

(p2 (Amx:v)(P[Q/y])) %P[Q/y]P[Q/y]

&

We are going to show next that By is SN. The main technique to prove that a reduction relation in a set X is
SN, is to show that the reduction relation well-orders X, that is, each chain in X has a minimal element. Thus

we proceed as follows:

o Assign a weight to each M € A’| call the term so obtained | M |
e show:

M—N = |N|<|M|

that is, the “weight” of a term is decreasing as we reduce it.

Definition 3.7 (Weighting) Given M in A, associate a positive integer to each variable occurrence in M.

We thus obtain a new calculus, A*, that has the usual inductive definition with the variables ranging over

2% .. 2". The definition of reduction on A* (8;) carries over in the usual way.

Definition 3.8 (Weight) Let M in A*, define | M | as the sum of the weights occurring in M.

Definition 3.9 (Decreasing Weighting Property)
Let M in A*, then M has decreasing weight property (dwp) if for every 3 -redex (Ax.P)Q in M :

Vee P |z|>|Q]

Example: (Az.z%27)(Az.z223) has the dwp, while (Az.z%z7)(Az.z?23) does not.

13



Lemma 3.10 For all M in A*, there exists an initial weight assignment so that M has decreasing weight property.

Proof: Start enumerating all variables occurrences in M from right to left, and assign to the m'* variable
occurrence the weight 2™. Since

2m > 2m—1+2m—2+_”2+1
M has the dwp. &

Lemma 3.11 If M — N, and M has dwp then
[N [<|M]
Proof: Let M be -+ (Az.P)Q - -

l:zgP
Then ) vanishes

2:z€P
The weight must decrease because the weight of the substituted expression, i.e., | @ |, is less than

every .

Lemma 3.12 Let M — N, then if M has dwp so does N.
Proof: Suppose M Lo, N, where Ry = (Az.Py)Qo. Examine the effect of Rg-reduction on some other redex

Ry = (Ay.P1)@1 in M. We will do the analysis on the relative positions of Ry and R;.

1: RN Ry =0
Rg-reduction does not affect Ry
2: R C Ry
2.1: R, 1s inside the rator Az.Py
Ro=(Az. - (Ay.P1)Q1) - -)Qo.

By the dwp of M,
Vye P, ly|>]@Q1]

and, by the fact that y ¢ FV(Qo),
Vy € Py [Qo/z], |y|>|@Q1|

And,
Vo € Ro, |2 |> ] Qo |

then
| Q1] > | Q1 [Qo/x] |

In conclusion,

Yy € P [Qo/z], |y |>1|Q1 [Qo/x] ]

14



2.2: R; is inside the rand g

Ry-reduction does not modify R; (may just copy it or destroy it)
3: Ro C Ry
3.1: Ry 1s inside the rator of R;
Ry =Ay. - ((Az.Po)Qo) - - -) Q1

The weights of any y’s in R; are not affected by Rg-reduction.
3.2: Ry is inside the rand of R,

Ri=(QAy-P1) (- ((Az.Po)Qo) - -)

The weight of @)1 after Rg-reduction decreases.

&

From the previous lemma we can infer,
Lemma 3.13 §; = SN.
Corollary 3.14 5, = CR.
Proof: By Newman’s lemma, since Gy is WCR and SN. &
Theorem 3.15 (Finite Development) Let M € A and F C M

(i) All developments of M related to F are finite;

(ii) All complete developments of M related to F end up with the same term.
Proof:
(1) follows from lemma 3.13
(i1) follows from corollary 3.14 &

We can now define the new reduction relation,

Definition 3.16 (Parallel reduction) MT> N, iff N is the result of a complete development of M with respect

to some F.

Notice that one step of the parallel reduction consists in reducing multiple redexes.

Exercise:

Let M = (A w.z z)({ ). Then it is a good exercise to see what M parallel reduces to. In particular, does M
- I(rI?.

Theorem 3.17 — E o

15



Proof:

T
t ——mmm= 19

fll V\luﬁlﬂ
V

ty ----- > i3
Ty

Follows from the finite development (theorem 3.15) that 3 a complete development of ¢ with respect to Fy U Fa:

t - t1 - t5. Analogously, we have the complete development with respect to Fo U F3: ¢ - ta - ty. Since
Bo is CR, it must be the case that t§ =, t5. &

Theorem 3.18 —ﬁ»:—l» .

Proof: Left to the reader. &

Theorem 3.19 § | CR.
Proof: Follows from the diamond property of the parallel reduction (theorem 3.17) and the fact that 3 and the

parallel reduction do have the same transitive closure (theorem 3.18). &
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