CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

M-Structures: Extending a Parallel, Non-strict,
Functional Language with State

P.S. Barth, R.S. Nikhil, Arvind

In Proceedings on Functional

Programming and Computer Architecture,
Cambridge, MA, August 28-30, 1991

1991, August

Computation Structures Group
Memo 327

n ~
e

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

M-Structures:

Extending a Parallel, Non-strict,
Functional Language with State

Computation Structures Group Memo 327
March 18, 1991

Paul S. Barth
Rishiyur S. Nikhil
Arvind

In Proceedings on Functional Programming and Computer Architecture,
Cambridge, MA, August 28-30, 1991.

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

M-Structures: Extending a Parallel,
Non-strict, Functional Language with State

Paul S. Barth, Rishiyur S. Nikhil and Arvind
Massachusetts Institute of Technology

Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139, USA

{barth,nikhil,arvind}@au-bon-pain.lcs.mit.edu

Abstract

Functional programs are widely appreciated for being “declarative” (al-
gorithms are not over-specified) and implicitly parallel. However, when
modeling state, both properties are compromised because the state vari-
ables must be “threaded” through most functions. Further, state “up-
dates” may require much copying. A solution is to introduce assignments,
as in ML and Scheme; however, for meaningful semantics, they resort to
strict, sequential evaluation.

We present an alternative approach called M-structures, which are im-
perative data structures with implicit synchronization. M-structures are
added to Id, a parallel non-strict functional language. We argue that
some programs with M-structures improve on their functional counter-
parts in three ways: they are (1) more declarative; (2) more parallel; and
(3) more storage efficient. Points (1) and (2) contradict conventional
wisdom. We study two problems: histogramming a tree, and graph
traversal, comparing functional and M-structure solutions.

1 Introduction

Functional programming is widely appreciated for its declarative nature. By
“declarative” we mean that one does not have to over-specify the details of an
algorithm. This is sometimes paraphrased as: “Say what you want done, not how
you want it done”.

However, some programs cannot be expressed naturally in a purely functional
style. For example, a program to assign unique identifiers to the nodes in a tree
must thread the supply of unique identifiers through the traversal of the tree; this
“plumbing” can be quite messy. Another weakness of functional languages is that

they are difficult to implement efficiently— there is too much copying of data
structures.

A common approach to addressing these weaknesses is to extend a functional
language with state. Both ML and Scheme are examples of this. However, in
order that these imperative features have a meaningful semantics, the language
is usually made into a strict, call-by-value, sequential language. For functional
programs, this is an over-specification of the order of evaluation, and may thus be
viewed as a loss of declarativeness.

Another issue is parallelism. In pure functional languages, parallelism is implicit.
Annotations for parallelism may be used, but these can be viewed as hints and do
not add to the intellectual burden of the programmer. However, in sequential func-
tional languages with imperative extensions, parallelism is usually re-introduced
through another layer of constructs such as threads, forks, semaphores, futures,
etc. These features usually make the language more complex. Further, when two
such parallel programs are composed, their parallelism does not compose, because
of the underlying strict semantics. The difference in resulting parallelism can be
exponential, as demonstrated in [14].

Parallelism can also be curtailed by the threading alluded to above. Threading
ensures determinacy at the expense of serializing access to the shared data struc-
ture. For a large class of algorithms, determinacy can be ensured in the presence
of asynchronous updates to a shared structure. For example, accumulation and set
operations can use associative and commutative properties to produce determinate
results under any sequence of operations. For such applications, only the atom-
icity of each operation need be guaranteed to ensure determinate results. Again,
the threading required by functional programming over-specifies, by serializing, an
inherently parallel algorithm.

Let us call the traditional approaches A and B:

Approach A: purely functional (strict or non-strict) with implicit par-
allelism or annotations for parallelism.

Approach B: strict functional + sequential evaluation + imperative
extensions + threads and semaphores for parallelism.

In the literature, the landscape of functional programming techniques is normally
defined by these two approaches. In this paper we would like to open up an entirely
new frontier:

Approach C: non-strict functional + implicitly parallel evaluation +
M-structures + occasional sequentialization.

M-structures are mutable data structures manipulated with implicitly synchro-
nized imperatives called take and put, which are quite different from the traditional
assignment statement.

The main points we would like to demonstrate about Approach C are:

(1) Programs in Approach C are often more declarative than their functional
counterparts, because they are less specific about the order in which things
should be computed. By omitting this level of detail, programs in Approach
C are often shorter and easier to read than the pure functional versions.

(2) Programs in Approach C often have much more parallelism than their func-
tional counterparts.

(3) Programs in Approach C are often much more efficient than their functional
counterparts in terms of heap storage used and total number of instructions
executed.

The first two points come to us as a great surprise, because they contradict our
previous intuitions (and, we believe, conventional wisdom)— we always took it for
granted that functional programs are more declarative than programs with state,
and that functional programs always had more parallelism than programs with
state. See [3] for studies of implicit parallelism in functional Id programs.

In fact, point (2) is a very curious reversal of conventional wisdom. Whereas we al-
ways thought that programs with state needed powerful analysis (i.e., dependence
analysis) in order to recover the parallelism that is already evident in functional
programs, we find here that it is the functional programs that would need pow-
erful analysis to recover the parallelism that is evident in Approach C. To our
knowledge, no such analysis techniques exist yet.

The final point, storage efficiency, is also an issue in sequential functional pro-
grams. Many analysis techniques have been developed which attempt to improve
storage efficiency through reuse, such as abstract reference counting[10] and single-
threadedness analysis. Unfortunately, most published techniques seem to be based
on an underlying sequential, strict semantics, sometimes restricted to first-order
languages and flat domains for data structures. Thus, non-strict, implicitly parallel
languages are unlikely to benefit from these techniques.

We hasten to add that Approach C is not without its problems! As soon as one
adds state, one loses referential transparency (RT), and any benefits that may go
with it. For example, RT provides a foundation for equational reasoning, which
may be used during compilation for common subexpression elimination, proofs of
invariants used in loop optimization, etc. Equational reasoning may also be used
to prove functional programs correct. Our intent is not to challenge this work,
but rather to demonstrate some programs which benefit, in both declarativeness
and efficiency, from violating RT. Such benefits have motivated other “functional”
languages, such as ML and Scheme, to introduce imperative constructs. These
languages, which comprise Approach B, are still considered to be functional lan-
guages because the style of programming in these languages is “mostly functional”.
We suggest the same for Approach C—programs are still written in a mostly func-
tional style. Further, we claim that the non-strictness and implicit parallelism of
Approach C yields a more functional programming style than Approach B with
explicit parallelism constructs. Regardless, Approaches B and C will require the
development of new foundations for proving correctness, such as proposed by [6].

In this paper, we will demonstrate our claims by comparing Approach A (func-
tional programs) and Approach C (M-structures) for two example applications:

computing a histogram of values, and performing a graph traversal. The declar-
ativeness of these programs is critiqued, and their performance measured on a
parallel simulator. The rest of this paper is organized as follows: Section 2 de-
scribes the core functional language, its non-strict semantics and parallel execution
model, the M-structure extensions, and our parallel simulator. Sections 3 and 4
explore the two example programs, respectively, in some detail. Section 5 discusses
our results, and outlines a method for reasoning about M-structure programs. We
conclude in Section 6.

2 Background

2.1 The core functional language

The core of Id is a non-strict functional language with implicit parallelism[13]. It
has the usual features of many modern functional languages, including a Hind-
ley /Milner type inference system, algebraic types and definitions with clauses and
pattern matching, and list comprehensions. An Id block, which has letrec seman-
tics, consists of a set of bindings and a body expression following the keyword In,

e.g.:

{x=1y;
y = 2:x ;
In
x }
Here, “:” is an infix list constructor, and the block evaluates to a cyclic list whose

infinite unfolding is 1:2:1:2:..- Note that non-strict evaluation allows this cycle to
be created with mutually recursive bindings; such bindings are meaningless under
strict evaluation.

In addition, Id has extensive facilities for arrays, including array comprehensions
for the efficient construction of functional arrays. For example, the expression

{array (1,5) of
| [j3J =011 j<=1¢to5?}

creates an array with index range 1 to 5, with every location containing 0.

One form of array comprehension useful for computing histograms is the accumu-
lator. For example, suppose we wish to build a histogram of numbers ranging from
1 to 5 drawn from a list of numbers xs. The result is an array with index range 1
to 5, such that the j’th cell of the array contains the number of occurrences of j
in xs. Here is the program:

{array (1,5) of
| [jJ =01l j<-1¢to5
accumulate (+)
| (31 =1113<-xs}

Before the accumulate keyword is an array comprehension that specifies the initial
contents of the array (zeroes). The rest of the construct specifies that for each j
in xs, we increment element j of the histogram by 1.

In array and accumulator comprehensions, no order is specified for the array-
filling computations. However, note that array comprehensions can be non-strict,
whereas accumulator comprehensions must be strict. In array comprehensions,
each slot is assigned at most once, i.e., there is a single transition from L to
non-L (or “unevaluated” to “evaluated”, in graph reduction terminology). Thus,
the array can be returned as soon as it has been allocated, with consumers auto-
matically blocking on L if necessary. However, in accumulator comprehensions,
each slot may go through several intermediate non-1 states, and we cannot be
sure that a slot has reached its final value until all the accumulations have been
performed. Thus, the array cannot be returned to a consumer until it has been
fully computed!.

2.2 Non-strict, Implicitly Parallel Semantics

We are interested in non-strict semantics, not only for its expressive power, but
also because it admits more parallelism than strict semantics [14]. Many evalua-
tion orders implement non-strict semantics, with lazy evaluation being the most
popular. Id, on the other hand, implements non-strict semantics by eager eval-
uation of most expressions. A precise description of Id’s operational semantics
using rewrite rules is given in [1, 15]. The flavor of Id’s semantics is given here to
illustrate its expressive power and implicit parallelism. Briefly,

e In a block:

{x1

el ;

xN = eN ;
In
eBody }

all expressions (ei, ..., eN and eBody) are evaluated in parallel, and the value
of eBody may be returned as soon as it is available (even if et, ..., eN have
not finished evaluating). Thus, the block has letrec semantics, with no im-
plicit ordering on the evaluation of expressions, except as imposed by data
dependencies.

e All expressions in an application (e0 e1 ... eN) may be evaluated in parallel.
Suppose 0 evaluates to a function f and we have a definition:

def £ x1 ... xN = eBody ;

then the application can immediately be rewritten to:

1Array and accumulator comprehensions in Haskell were influenced by these array notations in Id[11].

{x1 =el ;
xN

In
eBody }

eN ;

In other words, the function may be invoked as soon as €0 is evaluated, and
a result may be returned as soon as it is defined by the function, even if the
arguments el, ..., eN have not finished evaluating.

e In a conditional expression (IF el THEN e2 ELSE e3), el is evaluated to a boo-
lean value, after which one of the expressions e2 or 3 is evaluated.

Id’s rewrite rules also take a precise position on sharing of computations and
data structures, since this is also crucial in a language with state. Informally, an
identifier such as x1 above may not be substituted by et until e1 has been reduced
to a variable or constant; this ensures that expressions do not get duplicated. Data
structures are always referred to via labels, which may be regarded as abstract
pointers. Thus, a constructor produces a single data structure that is shared
among all its references.

Note that the operational semantics of Id are quite unique in that they are:

e Non-strict, but not lazy (blocks, constructors, and function applications may
return values before any of their inputs are available), and

e Eager, but not call-by-value (evaluation of arguments is initiated whether
they are needed or not).

As an example of eager, non-strict evaluation, consider the following. Given the
function £

def f a b = (a+1,b+1) ;

we can evaluate the following block as sequence of rewrites:

{ (x,y) = 3x;
In
vy

First, the function application reduces to a nested block:

{(x,y) ={a=3;
b=x;
In
(a+1,b+1) } ;
In
vy}

In the rest of the sequence, nested block bindings are flattened into a single block,
and tuple bindings are rewritten into identifier bindings. The block returns a value
when the body identifier y is bound to a constant:

{ (x,y) = (atl,b+1) ; ==> {x=atl; ==> {x=4; ==> 5
a =3 ; y = b+l y = b+l ;
b =x ; a=3,; a=3,;

In b=x; b=4,;
v} In In

v} v}

This is perhaps an artificial example, but the cyclic binding establishes the point
that this is a non-strict language even though we do not use lazy evaluation. To
emphasize this further, we invite the reader to trace the evaluation of the function

(due to Traub [18]):

def f bxy={zxx

yy
In

XX +yy };

if b then x else yy ;
if b then xx else y ;

under the calls (f True 10 20) and (f False 10 20). These expressions are undefined
under strict semantics, but are perfectly meaningful in Id and other non-strict
languages.

2.3 Non-strictness, yes, but why not lazy evaluation?

Consider the following function:

def £ x = (el, e2) ;

and suppose the expression e1 contains a side-effect. In Id, we can immediately
conclude that whenever £ is called, the side-effect will occur.

In a lazy evaluator, on the other hand, we have to look at each application of £
separately— the side-effect will occur only if the application is actually examined in
a strict context and, further, that the first component of the resulting tuple is also
examined in a strict context. For example, merely selecting the first component
of the tuple and storing it into another data structure will not cause e1 to be
evaluated, so the side-effect will not occur. Thus, determining the conditions
under which the side-effect will occur is as hard a problem as strictness analysis,
requiring potentially global analysis. The presence of higher order functions only
complicates matters further.

In Id, evaluation of an expression is controlled only by conditionals. Thus, deter-
mining the conditions under which a side-effect in a function £ will occur requires
only local analysis; we do not have to look at the contexts in which f is applied.

We believe that having such a local model of whether or not side-effects occur is
essential in order to reason about programs with side-effects.
2.4 M-structures with Toke and Put operations

As described, Id is a determinate language with no provision for side-effects. Its
eager, non-strict semantics allows the efficient, parallel execution of functional

programs. However, functional Id programs that share state suffer from the draw-
backs alluded to earlier, i.e., the loss of declarativeness and parallelism due to
threading.

To support programs that share state, Id is extended with M-structures. M-
structures are implicitly synchronized data structures that support atomic up-
dates. We define two M-structure operations, called take and put, for reading and
writing the components of an M-structure.?

Take and put operations are implicitly synchronized, i.e., there is no separate
notion of locks or semaphores. Rather, a state bit is associated with every M-
structure element indicating whether it is empty or full. The empty state means
that the element is currently taken and may not be read; the full state indicates
that it is available. A take operation on a full element atomically reads its value
and resets its state to empty, while a take on an empty element suspends. A
put operation writes a new value to an empty (i.e., taken) element;? if there are
suspended take operations waiting for the element, one is resumed and the value
communicated to it, and the element remains in the empty state. Otherwise, the
value is written into the element and its state set to full.

For example, consider the following statement? that atomically increments an el-
ement of an M-structure array:

AL3T = ALCHT + 1

Here, the expression A![j] on the right hand side denotes a take operation on the
7’th element of array A. This value is incremented by one; the expression A![j]
on the left hand side denotes a put operation on the same element. Note that
the strictness of the addition operator ensures that the take precedes the put. In
general, the expression computing the value to be put into a cell should be strict
in the value taken from the cell. Assuming this strictness, the M-structure syn-
chronization guarantees that the cell update is atomic. For example, if k parallel
computations attempt to execute the statement above, their access to the location
will be properly serialized and the final value of the cell will be its original value
plus k.

2.4.1 Explicit Sequencing

When writing parallel programs that share state, it is sometimes necessary to
introduce explicit sequencing. For example, suppose we wish to reset an array
location to 0 and return its old value, e.g.,

{ A7 = A'[3] ;
-—= % barrier
At[jl =0

In
Aj }

2An analogous pair of operations, called E-fetch and E-store, were developed independently by Milewski[12].

3A version in which multiple put operations are buffered has also been designed, allowing M-structures to act as
producer-consumer channels. The examples in this paper will not use this feature.

*In Id, statements are included among a block’s bindings

The first statement takes the old value out, and the second one puts the new value
(0) back. The horizontal line is read as a sequentializing barrier, to ensure that
the take occurs before the put. This is necessary since, by default, all components
of a block are evaluated in parallel, and so there would be nothing to prevent the
put occurring before the take. The barrier makes the put operation strict in the
take.

A barrier in a block is more subtle than a simple sequencing form (the classical
semicolon). It makes the statements following the barrier (including the body
of the block) hyperstrict in the statements that precede the barrier. That is,
no expressions following the barrier begin evaluation until all expressions before
the barrier are completely evaluated, including procedure calls and all their ex-
pressions, recursively. This hyperstrict evaluation allows barriers to be used to
sequence side-effects buried in procedure calls.

Unlike synchronization barriers in other parallel languages, an Id barrier is not a
global barrier— it is entirely local to the block of bindings in which it appears, and
it is reentrant, i.e., each instance of the block has its own barrier. This not only
makes them relatively easy to use, but they are also implemented very efficiently
using “synchronization trees” (we do not have space to go into details here).

2.5 M-structures in Algebraic Types

As another example of an M-structure, consider a polymorphic list where each tail
is updatable. The following type declaration defines such a list, where “x0” is a
type variable and “1” denotes an updatable field (called an m-field):

type mlist *0 = MNil | MCons *0 !(mlist *0) ;

Although Id has pattern-matching on algebraic types, one usually does not use
pattern-matching for types with m-fields, since pattern-matching and imperatives
do not mix well. Thus, the fields of an algebraic type may also be selected using
record syntax, with field names derived from the constructor and the field posi-
tion. Ordinary fields, such as the head of the cons cell above, are selected using
“dot” notation, e.g., x.MCons_1. M-fields are taken using “bang” notation in an
expression, as in x!'MCons_2. A new value v may be put into an empty m-field using
the statement:

x!'MCons_2 = v

Type-checking ensures that m-fields and ordinary fields are accessed with the cor-
rect notation.

To compare the M-structure list with a functional list, consider the problem of
inserting an integer x into a set ys, taking care not to insert duplicates. In the
following functional solution, the set is represented as a list of integers and pattern
matching is used:

typeof insert_f = (list int) -> int -> (list int) ;

def insert_f Nil x = x:Nil
| insert_f (y:ys) x = if (x == y) then

ys

else

y: (insert_f ys x) ;

Using record syntax instead of pattern matching, insert_f is:

def insert_f ys x = if (Nil? ys) then
Cons x Nil
else if (x == ys.Cons_1) then
ys
else
Cons ys.Cons_1 (insert_f ys.Cons_2 x) ;

For comparison, the following solution uses M-structure lists:

typeof insert_m = (mlist int) -> int -> (mlist int) ;

def insert_m ys x = if (MNil? ys) then

MCons x MNil

else if (x == ys.MCons_1) then
ys

else
{ ys!MCons_2 = insert_m ys!MCons_2 x ;
In

ys }

The first two conditional clauses of insert_m mimic the functional solution. In the
third clause, we take the tail of the list, insert x into it and put it back, and we
return the original list. Note that insert.m is strict in ys (due to the conditional),
so the take and put are properly ordered. The advantage of this program over the
functional version is that it takes O(1) heap store per insertion, instead of O(n),
where n is the length of the list.

Under non-strict semantics, insert_f has the attractive property that in the last
line, the new cons cell can be returned even while we are inserting x into its tail.
Thus, multiple insertions can be “pipelined”, i.e., a second insertion can run closely
behind the first, automatically synchronizing on empty slots.

Note that insert_m has the same kind of “pipeline” parallelism as insert_f. In the
last line, non-strictness allows us to return ys immediately. If a second insertion
is attempted immediately, it can run closely behind the first, blocking on empty
fields (due to takes) in the same manner as insert_f blocks on empty fields.

However, there is an interesting subtlety here. Consider the following two near-
identical fragments:

zs = insert_f ys x1 ; zs = insert_m ys x1 ;

ws = insert_f zs x2 ; ws = insert_m zs x2 ;

and assume that neither x1 nor x2 is present in ys. In the functional case, despite
the pipelined behavior, x2 is guaranteed to be inserted behind xi. The second

insert_f can never “overtake” the first; if it tried to run faster, it would block at
some point, waiting for a result from the first insert_f.

In insert_m, however, it is possible for the second insertion to overtake the first,
inserting x1 behind x2. The reason is that in the parallel block in the last else
clause, the first insert_m may return ys before it takes the MCons_2 field. Thus, when
given ys, the second insert_m “races” with the first traversal to take of this field,
and may potentially overtake it. If we want to prevent this overtaking, we have
to delay returning ys until the take completes. This can be accomplished with a
barrier:

def insert_m ys x = if ...
else ...

else
{ ys’ = ys!MCons_2 ;
ys!MCons_2 = insert_m ys’ x ;
In
ys }

Note that this expression does not wait for the put to take place before returning
ys— that would make the insertion strict, eliminating pipelined behavior com-
pletely.

This subtlety highlights important differences between M-structures and their
functional counterparts. First, atomicity is clearly a weaker property than de-
terminacy. In the above example, both the M-structure and functional solutions
are correct (neither make duplicate entries); however, the M-structure solution ad-
mits more parallelism through overtaking. Second, the M-structure solution can
be modified to provide the sequencing property of the functional solution without
the additional storage overhead. Finally, reasoning about the interaction of sev-
eral concurrent operations is more difficult for M-structures than functional data
structures. We address this issue in Section 5.

To conclude our discussion of the Id language and semantics, we make the following
observation. In most approaches to parallel computing, one starts with a sequential
language and adds parallel annotations. This is true even amongst functional
languages, e.g., the “future” annotation [8] and the “spark” annotation [7]. In
contrast, we go in the opposite direction: we start with an implicitly parallel
language and add sequentialization only where necessary. The degree to which we
expose and exploit parallelism is thus much more aggressive.

2.6 Owur Experiments
To determine the validity of our claims, we compare several Id programs written in

a functional style (Approach A) against programs using M-structures (Approach
C). These programs and our analysis are presented in the next two sections.

We evaluate the programs in several ways. First, we compare them subjectively
in terms of declarativeness, i.e., how well the structure of the program mirrors the
structure of the problem. Second, we compare their efficiency in terms of storage
use and number of instructions executed. Finally, their parallelism is compared.
Since the parallelism exhibited by a program depends on many factors, this last
measurement deserves some explanation.

Id programs compile into dataflow graphs, which constitute a parallel machine
language (a partial order on instructions). The dataflow graphs respect the non-
strict semantics and parallel evaluation order describe earlier in this section. The
performance of these programs is measured on GITA, which is a dataflow sim-
ulator instrumented to take “idealized” performance measurements.® The GITA
simulator executes dataflow graphs under the following idealized assumptions:

e No limit on the number of instructions that can be executed in parallel.

e An instruction is executed as early as possible, i.e., as soon as all inputs are
available.

e All instructions, including storage allocation “instructions”, take 1 unit of
time.

e No delay in communicating the output of one instruction to the input of
another.

The purpose of idealized simulation is to give an upper bound on achievable per-
formance, unconstrained by machine-specific characteristics, such as the number
of processors, available memory, or scheduling policy. One important measure of
idealized performance is the parallelism profile. This profile charts the number
of parallel operations against time. Given the above assumptions, the parallelism
profile exhibited under GITA describes the “inherent” parallelism of a program,
i.e., the program’s limit of achievable parallelism. In this paper, we summarize
these profiles as the average parallelism, which is the number of instructions di-
vided by the time to completion.

Note that a major idealization in GITA is that each heap allocation takes one
instruction. This hides the additional overhead of heap management encountered
in a real system, such as garbage collection and initialization. In addition, storage
management in a parallel system may also perform the task of load balancing.
Thus, programs requiring more storage will, in fact, require more instructions
than indicated by idealized performance measurements.

3 Histogramming a tree of samples

Consider the problem of histogramming numbers in the leaves of a tree. Given a
tree T of numbers, where each number is in the range 1 to 5, the histogram H is
an array of 5 elements such that H; = the number of leaves containing number .

5GITA is part of the “Id World” programming and simulation environment which has been in use at MIT and
elsewhere since 1986.

This problem statement is a highly abstracted account of MCNP, an application
program used by over 350 organizations in diverse industries such as oil explo-
ration, automobiles, medical imaging, etc. © The program models the diffusion of
subatomic particles from a radioactive probe through the surrounding material,
using Monte Carlo simulation. For each original particle, the program follows it
through events in its lifetime, such as motion in some direction, collision with a
material boundary or another particle, etc. The tree structure arises because par-
ticles may split into two (and recursively, those particles may split again), after
which the simulation follows each particle separately. When a particle finally dies,
i.€., reaches a leaf, some of its properties are collected in various histograms, such
as final position and energy. MCNP has eluded easy parallelization in all conven-
tional programming models, but is “embarassingly parallel”, because the tree may
have thousands of branches, and the events in a particle’s life are decided purely
locally, based on the toss of a coin.

In MCNP, no tree data structure is actually constructed. Rather, intermediate
arguments and results are passed through the call/return tree. In our histogram
example, the histogramming functions traverse a previously constructed tree, with
the following type definition:

type tree = Leaf int | Node tree tree ;

The cost of creating this tree is not included in the measurements.

3.1 HA1l: A Functional Solution

This program builds an initial array HO containing 0 everywhere, and then per-
forms a right-to-left traversal of the tree. At each leaf, the i’th element of the
array is incremented by 1, where ¢ is the number of the leaf. Since the functional
solution may not use imperatives, incrementing this element requires building a
new array, identical to the original, except that the i’th location is incremented.
Here is the code:

typeof hist = tree -> (array int) ;
def hist T = { HO = {array (1,5) of
| [3J =011 j<1to57
In
traverse T HO } ;

typeof traverse = tree -> (array int) -> (array int) ;

def traverse (Leaf 1) H = incr H 1
| traverse (Node L R) H = traverse L (traverse R H) ;

typeof incr = (array int) -> int -> (array int) ;

5Los Alamos National Laboratory is developing a comprehensive version of MCNP in Id under the direction of Olaf

Lubeck.

def incr H i = {array (1,5) of
| [j] = if (i==j) then H[jl+1 else H[j] || j <- 1 to 5 } ;

Critique

In principle, the increments can be done in any order. However, since each in-
crement creates a new array, the array must be “threaded” sequentially through
the traversal. Threading requires that the recursive calls to traverse be composed,
which imposes a particular order on the increment operations. In the original
MCNP problem, threading is even worse, since many arguments and results are
passed through the call/return tree. The threading required by functional pro-
gramming obscures the independent nature of the accumulations.

This program also suffers from storage overhead, since the histogram array is
copied at each leaf of the tree. Each copy of the array requires 5 loads and stores,
while the problem requires only a single load and store per increment. Note
that techniques for eliminating copying in functional programs, such as single-
threadedness analysis and abstract reference counting, might determine that all
the updates could occur in place. However, these analyses assume a sequential
order of execution, and so preclude parallel execution.

3.2 HAZ2: A Functional Solution using Accumulators

In this example, we build an accumulator array with each element initialized to
zero. The accumulation draws from a list produced by traverse, which collects all
the numbers in the leaves of the tree. Here is the code:

typeof hist = tree -> (array int) ;
def hist T = {array (1,5) of
| [jJ =011 j<-1¢to5
accumulate (+)
| 1 =11]] 1 <~ traverse T } ;
typeof traverse = tree -> (list int) ;
def traverse T = aux T Nil ;

typeof aux = tree -> (list int) -> (list int) ;

def aux (Leaf 1) is = 1i:is
| aux (Node L R) is aux L (aux R 1is) ;

Critique

The use of an accumulator for the histogram eliminates the need to copy the array.
In fact, the accumulator is quite declarative and modular: for each ¢ drawn from

the list of leaf numbers, the ’th element is incremented by one. The functions
traverse and aux still require threading to construct the list of leaf numbers. How-
ever, non-strictness allows this list to be constructed in parallel and “piped” into
the accumulator.

Although an improvement, the intermediate list read by the accumulator incurs
storage overhead and overspecifies the order of accumulations. Accumulators use
lists for modularity and composition; eliminating the list through compiler analysis
requires global analysis to thread the accumulator through the generator function
and its descendants.

The use of accumulators in an early version of the MCNP program corroborates
these observations: the intermediate list complicated the program and introduced
inefficiencies. The M-structure solution, presented next, retains the declarativeness
of accumulators and eliminates the need for an intermediate list.

3.3 HC: An M-structure Solution

In this solution, the histogram H is represented as an M-array initialized to zero.
The traverse function recursively passes H down to all leaves in parallel. Each leaf
(containing) atomically increments element H; by taking the element, adding one,
and putting it back. A sequential barrier is used to ensure that H is not returned
until traverse completes. (Recall that this barrier is implicit in accumulators,
since they may not return until all accumulations have been performed.) The
M-structure program is below:

typeof hist = tree -> (m_array int) ;

def hist T = { H = {M_array (1,5) of
| [3J =01l j<=1tob5 7} ;
_ = traverse T H ;
- % sequential barrier
In
HL}

typeof traverse = tree -> (m_array int) -> void ;
def traverse (Leaf i) H = { H![i] = H![i] + 1 }

| traverse (Node L R) H={ _ = traverse L H ;
traverse R H } ;

Bindings of the form “_ = ¢” are used to execute e for its side-effects and discard

its result. Let blocks with no body expression return a meaningless value of type
void, and are executed solely for side-effect.

Critique

This program requires no threading since the accumulation is performed by side-
effects. Thus, the recursive calls to traverse are not composed, and the order

of accumulations is not overspecified. The atomicity of each accumulation is is
locally specified by the take and put operations and their implicit synchronization.
In contrast to the functional programs, only storage for the result histogram is
required, and each accumulation requires only a single load and store (take and

put).

3.4 Other Functional Solutions

Several techniques for improving the performance of parallel and functional pro-
grams have been developed, such as parallel combining trees and tree-structured
arrays. These techniques were used in three other functional solutions, which are
summarized below:

HA3: Tree Accumulation. The program recursively descends in parallel to
every leaf. At a leaf containing, say, 2, we produce the array [0 1 0 0 0].
At each node, we add the arrays from the two subtrees and return the new
array. Thus, the top node produces the sum for the whole tree. Although
this eliminates threading, its storage requirements are double that of HAL.

HAA4: Parallel Traversal. The entire tree is traversed five times in parallel
(once for each element in the histogram). The 7’th traversal uses parallel
tree accumulation to sum the number of leaves containing ¢. Since this ac-
cumulation computes an integer, it requires no additional storage. Finally,
the histogram is constructed by storing the five sums into an array, which is
returned. Although this has no threading and minimal storage, it executes
a large number of instructions, because the entire tree is traversed for each
element of the histogram.

HAS5: Tree-Structured Histogram. The program is a modification of HAT,
replacing the histogram array by a balanced tree. This reduces memory and
instruction overhead by copying a single path of the tree (O(log b) instead
of O(b), where b is the number of elements in the histogram). Note that
copying a path requires several memory allocations rather than one, as well
as conditionals to route each increment to the appropriate leaf. Therefore,
this solution is less efficient than HA1 for small histograms. Even with large
histograms, threading still obscures the code and overspecifies the order of
accumulations.

3.5 Experimental results

We ran the above programs on a full binary tree of depth 10, i.e., 1024 leaves with
an (almost) equal number of 1’s, 2’s, ... and 5’s. The results are shown below:

Program | Total Critical | Avg. Heap
version | instructions | path parallelism | store
executed used (words)
HA1 199,757 1,452 138 9,250
HA2 72,847 7,324 10 2,100
HA3 325,472 238 1368 18,423
HA4 266,223 195 1365 9
HA5 253,370 | 28,833 9 11,301
HC 60,496 589 103 9

3.5.1 Observations

Declarativeness: We believe the M-structure solution HC is more declarative
than the functional solutions, since it does not overspecify accumulation order
by threading.

Instruction count: HC requires the fewest number of instructions. The instruction
overhead of copying in solutions HA1, HA3, and HA5 is significant when compared
to HA2 (accumulators) and HC. The high instruction count in HA4 is due to the
duplicate traversals of the tree.

Heap Store Used: Copying intermediate data structures in the functional solutions
dominate their storage profiles. Imperative updates, as used in HC, allow storage
use to be reduced by three orders of magnitude.

Parallelism: HA3 and HA4 have more parallelism than the other programs, but
this is mostly due to redundant computation, such as copying arrays or multiple
tree traversals. The poor parallelism in HA2 and HA5 comes from overserializa-
tion: the intermediate list in the case of accumulators, and copying the path of
the tree in HA5. The parallelism in HC is limited by synchronization of take
and put instructions. Because they are atomic, the number of parallel increment
operations is bounded by the size of the histogram. Parallelism in this example
exceeds 5 because these increments are overlapped with the tree traversal.

In summary, the M-structure solution to the histogramming problem is highly
declarative, and combines instruction efficiency and low storage use with significant
parallelism.

4 A Graph Traversal Problem

For a second comparison of functional and M-structure programs, consider a simple
graph traversal problem. Suppose we are given a directed graph structure, i.e., an
interconnection of nodes:

type gnode = GNode int int (list gnode) ;

The first int field contains a unique identifier for the node, the second int field
contains some numeric information, and the list of nodes represents the list of
neighbors (possibly empty) of the current node.

The problem is this: given a node A in a graph, compute rsun(4), the sum of the
integer information in all nodes reachable from A.

The unique identifiers in the nodes highlight an important difference between
graphs and trees: graphs can have can have shared substructures and cycles.
Graph traversals need to take this into account to avoid repeated traversals of
nodes and subgraphs. Therefore, traversal programs must be able to test equality
between nodes. The notion of object equality differs between functional and im-
perative languages, but is not central to the issues in this paper. For clarity, the
unique ID field in the graph nodes will be used to determine node equality.

Traditional graph traversal algorithms rely on “marking” visited nodes to avoid
repeated traversals. For familiarity, we will begin this section with two M-structure
programs that use imperative operations to mark visited nodes. This is followed
by the functional solution and experimental results.

4.1 GC1: A Simple M-structure Solution

The traditional imperative solution to this problem involves extending the node
type to contain a mark field, which is used to avoid repeated traversals of shared
subgraphs. We assume that the mark field is initially set to False. The following
program expresses this solution:

type gnode = GNode int int (list gnode) !bool ;

def rsum nd = if (marked? nd) then
0
else
nd.GNode_2 + sum (map rsum nd.GNode_3) ;

def marked? nd = { m = nd!GNode_4 ; % take the mark field
-—- % sequentialize
nd!GNode_4 = True ; % put True in mark field
In
m} o

Note that in this solution, the unique ID field is not required.

Critique

The solution is very clear. The only subtle point is the atomicity of the marked?
predicate. The value of the mark field is taken and returned, and set to True
regardless of its previous value. Since the mark field is set to True the first time
the node is visited, the node will be counted only once. As described earlier, the
serialization barrier between the take and put guarantee that they happen in the
correct order.

While this solution corresponds to most textbook algorithms, it has two drawbacks:

Mark initialization: We assumed that the marks in the graph were initialized to
False before the traversal began. But, how do we achieve this? Traditionally, we

have some independent access to all the nodes, such as an array or set of all nodes,
and we iterate through this collection, resetting all marks. Note that resetting
the marks cannot be overlapped with the traversal algorithm—this easily doubles
the cost of the algorithm. Further, if the graph is large compared to the region
traversed, resetting all marks may be more expensive than the traversal.

Multiple traversals: Suppose we are given two nodes A and B and want to compute
the reachable sum from each of them, in parallel. GCI cannot be used for this,
since the marks from the A and B traversals may interfere, i.e., nodes marked by
A’s traversal will not be counted by the traversal from B, and vice versa.

These drawbacks can be overcome by a simple extension of the “mark field” idea.
Here, each traversal carries an additional parameter, a unique traversal identifier.
Rather than marking nodes with a boolean, each node contains a list of traversal
identifiers indicating who has visited the node. The marked? predicate checks and
updates this list.

This solution allows multiple traversals to occur in parallel, since they have distinct
traversal IDs and will not interfere. Also, node marks do not have to be reset, since
a brand new traversal ID is issued for each traversal. However, the performance of
this solution worsens as more and more traversals are performed, creating unused
IDs that slow the marked? predicate and occupy storage. Because of this weakness,
we will not pursue this idea any further.

4.2 GC2: A Solution Allowing Multiple Traversals

A better solution that allows multiple traversals uses a separate visited table to
keep track of nodes already traversed. Rather than marking nodes directly, this
table contains the unique IDs of visited nodes, and is updated as each new node
is encountered. The original definition of graph nodes (without a mark field) is
used:

type gnode = GNode int int (list gnode) ;

Here 1s the code for the reachable sum:

def rsum nd = { visited = mk_empty_table () ;

def aux (GNode x i nbs) =
if (member?_and_insert visited x) then
0
else
i + sum (map aux nbs) ;
In
aux nd } ;

The member?_and-insert function is analogous to the marked? function in GCI: it
returns a boolean indicating whether x is present in the visited table, inserting x
in the table if it is not.

Critique

The version of rsum given in GC2 is quite similar to GC1. There is no threading,
and marking code is localized. The main difference between the programs is the
modularity supplied by the visited table. It is shared by all calls to aux, but does
not require threading or modification to the graphs. Further, its storage can be
released after the traversal.

4.2.1 A Parallel Hash Table

We can implement the visited table in a number of ways. A parallel hash table
is a good candidate, since it allows O(1) access to the elements of a dynamically
created set. An empty hash table of size N (for some suitable constant N) is
constructed using an m-array comprehension:

def mk_empty_table () = {M_array (1,N) of
| [3] = MNil [] j <= 1 to N} ;

Each bucket of the array is initialized to an empty mnlist.

As with the marked? function in the GC1 solution, the member?_and_insert function
must execute atomically to avoid duplicate traversals. This function tests whether
an integer x is in the hash table and, if not, inserts it:

typeof member?_and_insert = (m_array (mlist int)) -> int -> bool ;

def member?_and_insert table x =
{ (1,u) = bounds table ;
j = hash 1 x u;
(b,ys’) = member?_and_insert_list table![j] x ;
table![j1 = ys’ ;
In
b}

In the first line in the block we extract 1 and u, the lower and upper index bounds
of the table, and in the second line we hash the given integer index x into an index
j in the range 1 to u (using some unspecified hash function). Then, we take the
set of integers at index j and uses the member?_and_insert_list function to test if x
is in that set and insert it if not. Finally, the (possibly) new set is put back and
the boolean result returned.

Note that the list function that tests for membership, followed by conditional
insertion, is not a simple composition of the member and insert functions on m-lists.
The elements of the list must be tested and inserted in a single scan of the list to
ensure atomicity. Otherwise, a node may be seen as unmarked by two processes,
resulting in redundant traversals.

We modify our insert_m function from Section 2.5 to perform this simultaneous
test for membership and insertion:

typeof member?_and_insert_list = (mlist int) -> int -> (bool, (mlist int)) ;

def member?_and_insert_list ys x =
if (MNil? ys) then
(False, MCons x MNil)
else if (x == ys.MCons_1) then
(True,ys)
else
{ (b,ys’) = member?_and_insert_list ys!MCons_2 x ;
ys!MCons_2 = ys’ ;
In
(b,ys) } ;

Note that the hash function can be applied to two integers xt1 and x2 in parallel.
If they hash to different indices, there is absolutely no interference between the
two calls. Even if they hash to the same index, they may “pipeline” as discussed
earlier.

GC2’: A Mark Array

We can improve the implementation of the visited table even further if we know
that the unique identifiers in the graph nodes are in some contiguous range, say 1
to N. In this case, the table can be implemented as an array of booleans, instead
of a hash table, i.e.,

def mk_empty_table () = {m_array (1,N) of
| [j] = False || j <= 1 to N} ;

def member?_and_visited table x = { b = table![x] ;

table![x] = True
In
b}

Note that in the pure functional program described next, the O(1) access time of
the hash and mark tables cannot be exploited. Implementing the visited table as
a balanced binary tree is the best we can do.

4.3 GA1l: A Functional Solution

Since nodes cannot be imperatively marked, the functional solution also uses a
visited table to keep track of nodes that have already been traversed. This table
is threaded through the traversal, as shown in the following program:

def rsum nd = { visited = TEmpty ;

def aux (s,visited) (GNode x 1 nbs) =
if (member? x visited) then
(s,visited)
else
{ visited’ = insert visited x ;
In
foldl aux (s+i,visited’) nbs } ;

(s,visited’) = aux (0,visited) nd
In
s}

The function foldl is similar to map, but passes partial results (the partial sum and
visited table) to each successive call of aux. Here is the code for fold1:

def foldl f z Nil =z
| foldl f z (x:xs) foldl £ (f z x) xs ;

The visited table can be implemented as an ordered binary tree, with log n time
for the member? and insert functions, assuming the tree is balanced:

type tree = TEmpty | TNode int tree tree ;

def member? TEmpty x = False
| member? (TNode y L R) x = if (x == y) then
True
else if (x < y) then
member? L x
else
member? R x ;
def insert TEmpty x = TNode x TEmpty TEmpty

| insert (TNode y L R) x = if (x == y) then
(TNode y L R)
else if (x < y) then
(TNode y (imsert L x) R)
else
(TNode y L (insert R x)) ;

Critique

The rsum program is obscured by the “threading” the visited table through the
traversal. Again, threading overspecifies the order in which the traversal is made;
here, the order of insertions is determined by the function fo1d1. Conceptually, one
imagines all outward edges from a node being explored in parallel, with a shared
subnode being explored only by the first traversal that happens to arrive there (we
don’t care which one).”

"Readers who are familiar with parallel graph reduction will recognize that this is exactly what happens in a parallel
graph reducer— a shared node 1s evaluated by the first process that arrives there, which also marks it as “in progress”,

Note that here, unlike the histogram example, sharing is critical to ensure a poly-
nomial time algorithm. Therefore, threading is unavoidable in purely functional
solutions. In more complex problems, the threading required by functional pro-
gramming further complicates the solution, adding extra parameters and return
values and imposing unnecessary serialization.

The functional solution also introduces storage overhead. Each insert rebuilds
the visited table along the path from the newly inserted leaf back to the root,
allocating new tree nodes along the way. The total storage cost for the table
over the complete graph traversal can therefore vary from O(nlogn) to O(n?),
depending on how well the tree is balanced. Including tree rebalancing operations
introduces overhead that may be recouped over many operations.

4.4 Experimental Results
We ran tests on our simulator, running four versions of rsum on four graphs. The

graphs each contained about 512 nodes, but differed widely in their topologies
(amount of sharing). The four versions of rsum were:

GAL1 | The functional program with a visited table
implemented as an ordered binary tree.

GC2 | The M-structure program with a visited table
implemented as a hash table of size 523.
GC2’ | The M-structure program with a visited table,
implemented as an array of booleans.

GC1 | The M-structure program using mark fields in
graph nodes.

For the functional version, the unique identifiers in the graph nodes were randomly
generated so that the binary tree visited table would be roughly balanced, in order
to show the numbers for the functional program in the best possible light. Random
ID generation was also used for the hash and marks version, though it does not
really matter for these versions. For the “array” version, IDs were integers in the
range of 1 to n, the number of nodes in the graph, and the array of marks had the
same index range.

The fundamental difference in heap store use for the four programs is in the visited
tables. We modified the programs slightly from the text of the paper in order to
measure this, i.e., to separate heap usage for the visited table from heap usage for
closures in higher order functions and tuples for multiple results. These changes
do not affect the total instruction counts or parallelism very much.

The cost of originally building the graphs (storage and instructions) is not included
because the graphs were built in a separate invocation before the application of

rsum.

Figures 1 through 4 show the four graphs and the measurements for the four
programs.

so that later-arriving processes will not duplicate the work.

2

. Graph 0

Program | Total Critical | Avg. Heap
version | instructions | path parallelism | store

executed used (words)
GAl 480,123 | 90,605 5.3 15,934
GC2 102,244 4,280 23.9 2,072
GC? 55,843 2,743 20.4 524
GC1 48,002 412 116.5 0

Figure 1: Reachable Sum on Graph0 (511 nodes).

Program | Total Critical | Avg. Heap
version | instructions | path parallelism | store
executed used (words)
GAl 594,323 | 124,276 4.8 17,305
GC2 177,062 9,271 19.1 2,959
GC? 95,501 9,102 10.5 524
GC1 84,078 3,728 22.6 0

Figure 2: Reachable Sum on Graphl (515 nodes).

Program | Total Critical | Avg. Heap

version | instructions | path parallelism | store
executed used (words)

GAl 587,873 | 123,434 4.8 16,998

GC2 130,188 | 22,527 5.8 2,068

GC? 68,933 | 12,799 5.4 524

GC1 59,902 | 11,596 5.2 0

Figure 3: Reachable Sum on Graph2 (511 nodes).

Program | Total Critical | Avg. Heap

version | instructions | path parallelism | store
executed used (words)

GAl 549,169 | 103,917 5.3 18,550

GC2 103,456 | 28,844 3.6 2,076

GC? 56,385 | 10,359 5.4 524

GC1 48,518 8,808 5.5 0

Figure 4: Reachable Sum on Graph3 (515 nodes).

4.4.1 Observations

Parallelism: Graph0 and Graphl have a high degree of parallelism, i.e., there is
much branching without sharing; Graph2 is not very parallel (much branching, but
also much sharing), and Graph3 is also not very parallel (not much branching).
Nevertheless, the functional program is unable to exploit the parallelism in Graph0
and Graphl, because the threading of the visited table forces it to be practically
sequential. All the other programs, however, were able to exploit the additional
parallelism of those graphs.

Instruction count: The instruction counts for the functional program GA1 is high-
est, by over a factor of 10 from the most efficient version (marks).

Heap Store Used: The O(nlog(n)) heap store cost for the visited table in the
functional program is apparent— it uses close to 10 times more heap store than
its nearest rival (the hash program GC2). GC2 takes about 523 words for the hash
array, plus 3 words (one cons cell) for each of the about 512 entries in the table,
making a total of a little over 2000 words. The mark array GC2’ program takes
exactly 524 words for the array of booleans. GC1, which marks the nodes directly,
allocates no store, but we should remember that we have already paid one word
extra per graph node for the mark field, i.e., a total of about 512 words.

Again, we point out that the functional program is being presented in it best possi-
ble light because (a) we are charging only one instruction for each heap allocation,
and (b) we have set up the IDs to keep the visited tree balanced.

5 Discussion

In this section, our work on M-structures is put in the context of other work.
First, we describe our preliminary experiences validating our simulation results
on a real multiprocessor. Next, M-structures are briefly compared to other non-
deterministic extensions to functional languages. Finally, a method for reasoning
about M-structure programs is outlined.

5.1 Validation

In order to ensure that our simulations are reasonably accurate, we have also
run all the above programs on Monsoon, a parallel machine with 64-bit, 10MIPS
dataflow processors and 4 MWord I-structure memory units[16]. These processors
are being built in partnership with Motorola, Inc. Our programs ran on a two-
node prototype; a sixteen-node machine is expected to be available in June, 1991.
The major unaccounted cost in our simulation is that of heap allocation, since
the simulator counts each heap allocation as a single instruction. In Monsoon,
therefore, instruction counts are higher than in our simulations, but the overall
trends are the same (the Monsoon figures are too preliminary to publish at this
time).

5.2 Nondeterminism in Other Languages

Since Approach C admits non-deterministic, parallel programs, it is interesting to
compare it to Approaches A and B extended to allow non-determinacy. Several
non-deterministic extensions have been proposed for Approach A, such as amb][19],
streams[17], and managers[2, 4]. To retain the flavor of functional programming,
these solutions are process-oriented: many processes share information over an
tmplicit communication channel. This channel merges updates and synchronizes
accesses. Fach process can then be viewed as a state transformation function that
maps successive values on the shared channel. Thus, each process can be analyzed
as a function, with only the aggregate behavior producing non-determinism.

Approach B allows imperative operations but ensures determinacy through a se-
quential, strict control paradigm. Extensions for parallelism, such as fork and join
in Scheme and ML, require explicit synchronization constructs to be used by the
programmer. Proving such programs correct is difficult, and much of the original
declarativeness of the program is destroyed.

M-structures are a data-oriented approach to non-determinism, which provides
the efficiency of Approach B. In addition, M-structures provide the implicit syn-
chronization, which guarantees the atomicity of operations on individual elements
of data structures. This fine-grained atomicity allows for substantial parallelism
in programs that share data without additional synchronization complexity. The
result is highly declarative, efficient programs.

5.3 Reasoning about M-structure Programs

The attractiveness of an implicitly parallel, non-strict language like Id is that
programmers can write parallel, determinate programs without annotations or
explicit synchronization. Reasoning about determinate Id programs follows in the
traditions of functional programming: functions map expressions to values, and
correctness proved by equational reasoning.

M-structures introduce indeterminacy, and thus cannot use equational reasoning.
Instead, the correctness of an M-structure program is related to the notion of
serializability in databases. That is, correctness is defined in terms of the history
of values held in an M-structure cell. In a correct program, the sequence of cell
values is a member of an allowed set of sequences. Serializability is one notion of
correctness, requiring that any parallel execution corresponds to some interleaving
of its update operations. Serializability ensures that M-structure updates appear
atomic and sequential.

Determining the possible histories of an M-structure cell requires an operational
understanding of Id. The set of M-structure histories is determined by the possible
orderings of take and put operations on the cell. Since Id is an implicitly parallel
language, the order of operations is a partial order, formed by a precedence relation
< between operations. That is, given operations a and b in program P, if a < b,
then a will execute before b under any correct execution of P. Precedence between
two operations is determined by three things: data dependence, control constructs,
and data structures.

Data dependence defines precedence between strict operators. For example,

{1 = atb;
In
ikxi};
yields +<#*, since the multiplication is strict in the result of the addition.

Control constructs define precedence between a predicate and the selected expres-
sion. For example, in the following if expression,

if 1==0 then
i+1
else
142
the equality test precedes the addition in both arms, i.e., ==<+.

Finally, M-structures define a precedence relation, since a take is always preceded
by some put. A formal description of precedence has been developed by the au-
thors, based on operational semantics for Id given in [1].

We now outline a correctness proof of the histogram program HC that uses M-
structures. We wish to show that each cell in the histogram contains the sum of
the number of leaves in the tree with its index. We can prove this by showing
that the histogram is initialized to 0, that each leaf is reached once, and that each
update is atomic. Since the tree traversal is a simple recursion, the second step
can be proved by traditional inductive means.

First, let us address the atomicity of the updates. When a leaf is reached, the
expression H![i] = H![i]+1 is evaluated. This corresponds to a take, an addition,
and a put. Put and addition are strict in their arguments, therefore take<+<put.
M-structure synchronization guarantees that exactly one take operation will get a
value after a put. This value will be incremented and put back, as defined above,
potentially satisfying another take. This continues until all increments complete.
Thus, the precedence of this expression, and M-structure synchronization yield
some interleaving of atomic updates.

To show that M-structure cells are initialized correctly. When an M-structure is
allocated, its elements are initially empty; the constructor (the array comprehen-
sion) initializes these elements by putting a value in each element. In this case,
the allocate is followed by a put with the value 0. Since any take must be preceded
by a put, no increment operation will begin until the cell has been initialized.

Therefore, the history of histogram cell ¢ is
alloc<put O0<take<+<put<take< +<put< --- <put

which always corresponds to a serialization of the update operations. Since ad-
dition is commutative and associative, serialization is sufficient to determine that
the cell has the correct count after the last put, regardless of the order of the
increments. As expected, eager evaluation allows this proof strategy to use local
assertions about initialization and update operations.

Note that M-structure synchronization enforces this precedence relation even if
a take operation is invoked before a put operation, or several takes are issued

simultaneously. The implicit synchronization provided by M-structures allows
the set of all possible interleavings to be reduced to only the set allowed by the
precedence relation. Proving the correctness of this set depends on the application.

Reasoning about M-structure programs involving more than a single cell is more
complex, but follows the same principles. In this case, atomicity involves synchro-
nizing several M-structure operations to prevent processes from interfering and
to avoid deadlock. To aid the development of such programs, the authors are
developing constructs for encapsulating M-structure operations to ensure atomic-
ity. Such encapsulation has been shown to be useful elsewhere [6, 9] for reasoning
about parallel programs that share state.

6 Conclusion

Although the results presented in this paper may be viewed as a recommendation
to use Approach C in programming, it may also be viewed as a challenge for
the functional programming community to come up with new purely functional
notations and optimization analyses that match the declarativeness and efficiency
of Approach C. There is some precedent for this kind of development. Some
years ago, we proposed a non-functional construct called “I-structures”, showing
how they cleanly overcame certain limitations in expressive power and efficiency
in functional languages [5]. This stimulated much debate and research, leading
to the purely functional “array comprehension” notation in Id, which eliminates
much of the need for I-structures. Perhaps this paper on M-structures can serve
a similar role and lead to new developments in pure functional languages.

Acknowledgements: This paper describes research performed at the Laboratory
for Computer Science of the Massachusetts Institute of Technology. Funding for
the Laboratory is provided in part by the Advanced Research Projects Agency of
the Department of Defense under the Office of Naval Research contract N00014-
89-J-1988. Paul Barth is supported by a fellowship from Schlumberger Technology
Corporation.

References

[1] Z. M. Ariola and Arvind. P-TAC: A Parallel Intermediate Language. In
Proceedings of the Fourth Conference on Functional Programming Languages
and Computer Architecture, London, pages 230-242, September 1989.

[2] Arvind and J. D. Brock. Resource Managers in Functional Programming.
Journal of Parallel and Distributed Computing, 1(1), June 1984.

[3] Arvind, D. Culler, and G. Maa. Assessing the Benefits of Fine-Grained Par-
allelism in Dataflow Programs. International Journal of Supercomputing Ap-

plications, 2(3), 1988.

[4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Arvind, K. P. Gostelow, and W. Plouffe. Indeterminacy, Monitors and
Dataflow. Operating Systems Review (Proceedings of the Sizth ACM Sym-
posium on Operating Systems Principles), 11(5), November 1977.

Arvind, R. S. Nikhil, and K. K. Pingali. [-Structures: Data Structures for
Parallel Computing. ACM Transactions on Programming Languages and Sys-
tems, 11(4):598-632, October 1989.

F. W. Burton. Encapsulating Non-determinacy in an Abstract Type with
Determinate Semantics. Journal of Functional Programming, 1(1), January

1991.

C. Clack and S. L. Peyton Jones. The Four-Stroke Reduction Engine. In Pro-
ceedings of the 1986 ACM Conference on Lisp and Functional Programming,
Cambridge, Mass., pages 220-232, August 4-6 1986.

R. H. Halstead. Multilisp: A Language for Concurrent Symbolic Computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501—
539, October 1985.

C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Com-
munications of the ACM, 10(10):549-557, October 1974.

P. Hudak. A Semantic Model of Reference Counting and Its Abstraction. In
S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative
Languages, Computers and Their Applications, chapter 3, pages 45-62. Ellis
Horwood Limited, Chichester, West Sussex, England, 1987.

P. Hudak and P. Wadler (editors). Report on the Programming Language
Haskell, A Non-strict Purely Functional Language (Version 1.0). Technical
Report YALEU/DCS/RR777, Yale University, Department of Computer Sci-
ence, Apr. 1990.

J. Milewski. Functional Data Structures as Updatable Objects. IEEE Trans-
actions on Software Engineering, 16(12):1427-1432, December 1990.

R. S. Nikhil. Id (Version 90.0) Reference Manual. Technical Report CSG
Memo 284-1, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, USA, July 1990.

R. S. Nikhil. The Parallel Programming Language Id and its Compilation for
Parallel Machines. In Proc. Workshop on Massive Parallelism, Amalfi, Italy,
October 1989. Academic Press, 1990 (to appear).

R. S. Nikhil and Arvind. Programming in Id: a parallel programming lan-
guage. 1990. Textbook on implicit parallel programming. In preparation.

G. M. Papadopoulos and D. E. Culler. Monsoon: An Explicit Token Store
Architecture. In Proc. 17th. Intl. Symp. on Computer Architecture, Seattle,
WA, May 1990.

W. Stoye. Message-Based Functional Operating Systems. Science of Com-
puter Programming, 6:291-311, 1986.

[18]

[19]

K. R. Traub. Sequential Implementation of Lenient Programming Languages.
Technical Report TR-417, MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA 02139, May 1988. Ph.D. thesis.

D. Turner. Functional Programming and Communicating Processes. In Pro-
ceedings of PARLE: Parallel Architectures and Languages, Furope, Volume
1, Findhoven, The Netherlands, Springer-Verlag Lecture Notes In Computer
Science, Volume 259, pages 54-74, June 1987.

Contents

1 Introduction

2 Background
2.1 The core functional language
2.2 Non-strict, Implicitly Parallel Semantics
2.3 Non-strictness, yes, but why not lazy evaluation?
2.4 M-structures with Take and Put operations
2.4.1 Explicit Sequencing L o0
2.5 M-structures in Algebraic Types
2.6 Our Experiments o
3 Histogramming a tree of samples
3.1 HAIL: A Functional Solution
3.2 HA2: A Functional Solution using Accumulators
3.3 HC: An M-structure Solution
3.4 Other Functional Solutions
3.5 Experimental results o oo
3.5.1 Observations o
4 A Graph Traversal Problem
4.1 GC1: A Simple M-structure Solution
4.2 GC2: A Solution Allowing Multiple Traversals
4.2.1 A Parallel Hash Table,
4.3 GAIl: A Functional Solution
4.4 Experimental Results. o o0
4.4.1 Observations o
5 Discussion
5.1 Validation
5.2 Nondeterminism in Other Languages
5.3 Reasoning about M-structure Programs
6 Conclusion

— O 0o =1 =1 Ut R

—_

12
13
14
15
16
16
17

17
18
19
20
21
23
26

26
26
27
27

29

