CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

An Introduction to the Id Compiler
S. Glim, B.S. Ang, A. Caro, A. Shaw
1991, April

Computation Structures Group
Memo 328

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139






LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

MASSACHUSETTS

/

An Introduction to the Id Compiler

Computation Structures Group Memo 328

May 7,1991

Boon S. Ang, Alejandro Caro,
Stephen Glim and Andrew Shaw

This research was supported in part by Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contract no. N00014-
89-J-1988. Stephen Glim is supported by a fellowship from the National Science
Foundation.

\

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139



An Introduction to the Id Compiler

Boon S. Ang, Alejandro Caro,
Stephen Glim and Andrew Shaw

May 7,1991



Abstract

This memo describes the machine independent phases of the current Id compiler. It details the
organization and implementation of the compiler’s modules. It also describes how the DFCS ab-
stractions for compiler building are used in the Id compiler.
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Chapter 1

Introduction

This memo is an outgrowth of a workshop on the Id compiler held during the winter of 1991. The
Id compiler has grown considerably since its first incarnation and documentation has not kept pace.
At the time of the workshop, some essential features of the compiler were documented only in the
source code, or not at all. Though we heartily agree that source level comments are essential for
the compiler’s maintenance and modification, they are no substitute for a general introduction to
help novice compiler hackers navigate their way through the code. Before writing this memo, its
authors were unfamiliar with the specific features of the Id compiler they documented. It was our
intention to both document and demystify the code as much for our own benefit as for others. In
the process, we’ve surely made mistakes and omitted some details but we hope we’ve provided a
helpful introduction to the Id compiler for other programmers. Please note that the compiler is
a rapidly moving target and features may have been added, removed or reorganized from what’s
described within. We don’t intend to keep this memo up to date with the latest and greatest
changes, but hopefully future compiler hackers will feel compelled to update relevant sections for
posterity.

It was our original intention to document the three phases of the compiler and the top-level
“glue” that binds it together. However, manpower constaints have forced us to restrict ourselves to
only the implementation independent front and middle ends. The reader interested in a description
of a back end for an ETS dataflow machine is referred to Jamey Hick’s memo [5]

The reader is advised to have a copy of the DFCS documentation [10] handy while reading
since we make frequent references to tools and structures described in it. A working knowledge of
Common Lisp [8] is essential to understand the compiler’s code. Also, Ken Traub’s master’s thesis
[9] describing an initial version of the compiler might be read in parallel with this document.

We'd like to thank the compiler hacker’s of CSG for giving presentations at the workshop and
explaining things in general, including, Ken Traub, Jamey Hicks, Shail Adityah Gupta, Paul Barth
and Andy Shaw. We’d also like to thank Christine Flood for helpful comments.



Chapter 2

General Structure of the Compiler

2.1 Introduction and Motivation

At first glance, the Id compiler seems to be an impenetrable piece of software. The fledgling
compiler hacker can be easily intimidated by the number of modules and by the sheer size of the
program’s source code. Nevertheless, the Id compiler was conceived as an experimental tool, and
consequently, one of its design goals was to make it easy to modify and to adapt. In order to
enjoy the benefits of this design goal, it is important to understand the high level organization
of the compiler, as well as its high level structuring facilities. This chapter provides a top-down
description' of the structure of the Id compiler, and it will introduce several of the important
software engineering concepts that make the compiler a flexible tool.

At this point, it is important to make one clarification. Although we have been referring to the
Id compiler, there are actually many Id compilers! Some Id compilers compile Id source files to
TTDA object files while other Id compilers compile regions of Id code in editor buffers to Monsoon
object files. The reason why there are many Id compilers is that Id compilers are built on top
of the Dataflow Compiler Substrate (DFCS) [10]. DFCS is a collection of data structures and
abstractions that provide the general functionality for writing compilers for a dataflow language.
In the framework provided by DFCS, a compiler is composed of a collection of modules and of a
top-level procedure that “supervises the passing of control from module to module” [10].2

Thus, a compiler in the DFCS framework is really a very flexible software system. One can add
modules to a compiler to implement new functionality or one can eliminate modules that become
superfluous. Instead of building one monolithic compiler to handle different cases of input and
output formats, optimizations levels, etc. .., one can build many different compilers using DFCS.
More importantly, each of these compilers is separate from others already defined. This prevents
separate software development efforts from interfering with each other.

'This chapter should be regarded as a tutorial in its scope and depth. While it introduces many new concepts, it
does not attempt to provide a definitive treatment of these. Alternative references are provided for readers interested
in more detail.

2Since the top level structure of an Id compiler is defined by using the facilities provided by DFCS, this chapter
will parallel much of the discussion found in Chapter 2 of the DFCS reference document [10]. However, this chapter
takes a top-down approach, while the DFCS document is organized in a bottom-up fashion. In addition, this chapter
will give specific examples of the use of DFCS in the context of building or modifying an Id compiler.



2.2 Defining a Compiler

So let’s plunge right in. This section presents the DFCS macros used to define an Id compiler. It
also presents a sample definition of a compiler as well as examples on how to modify the definition
to add functionality. For a more detailed description of defcompiler, refer to [10].

defcompiler name family &clauses [(:wrapper-macro macro-name)] [Macro]
[(:message-hook hook-name)] [(:options {optionH)]
[(:lambda-list {argument}x)] [(:option-default option default)] &body
modules

This macro defines a compiler name belonging to the compiler family family. The compiler is
composed of the given sequence of modules modules. The various optional clauses are used to build
the top-level function that invokes this particular compiler.

The :wrapper-macro clause supplies the name of a “wrapper” macro for the whole com-
piler. A wrapper macro provides a lexical “enclosure” for the invocation of the compiler. The
:message-hook clause provides the name of a function hook-name that is called whenever the
compiler generates a message. This hook allows the compiler writer to customize the generation
of messages depending on the compiler. The :options clause specifies a set of options that can
be set to alter the behavior of the compiler on a particular invocation. Compiler options will be
discussed later. The :option-default clause allows the default values of options to be changed for
this particular compiler. The :1ambda-1ist clause permits the specification of a LISP-like lambda
list for the top-level function that invokes the compiler. If this clause is omitted, the defcompiler
macro will generate a default lambda list using rules discussed later.

Figure 2.1 shows the definition® of a typical compiler.As its name implies, this particular com-
piler, monsoon-id-compile-file, compiles Id source files into Monsoon object code. The com-
piler belongs to the id-compiler family. Notice that only some of the optional clauses of the
defcompiler macro are included. This compiler uses a wrapper macro and defines the compiler
option libraries. Figure 2.2 shows the code for the wrapper macro.

A list of module names follows the list of clauses in the definition of this Id compiler. The
name of a module usually reveals its function. For example, the first module of this compiler
is the file-parser module. The purpose of this module, as we’ll see later on, is to read an
Id source code file and to produce a parse tree from it. The module following the parser, the
pre-scope-analysis-desugaring module, receives a parse tree as input an replaces parts of the
parse tree with semantically equivalent constructs. Notice that the type of the output of one module
must match the type of the input of the following module. The defcompiler macro makes sure
that the different representation of the Id program used by different modules match, as control is
passed from module to module.

That’s all thereis to defining the top-level structure of an Id compiler. With the proper collection
of modules, any particular type of dataflow compiler, whether for Id for some other language, can
be implemented. The following section describes how modules are defined and implemented.

2.3 Defining a Module

As we saw in the previous section, an Id compiler is composed of a sequence of modules. While
the defcompiler macro takes care of connecting modules and building the top-level Lisp function

®For expository purposes, this definition has been shortened somewhat. However, it retains the key features a
typical use of defcompiler.



(defcompiler monsoon-id-compile-file
id-compiler
((:wrapper-macro id-monsoon-compile-file-wrapper)
(:options libraries))
file-parser ; Beginning of front end.
pre-scope-analysis—-desugaring
scope-analysis

type-checking ; Type inference module.
overloading-translation

lambda-1lift ; Lambda lifting module.
generate-program-graph ; Beginning of middle end.

manager-synchronization

constant-propagation ; Optimizations
call-substitution ;
fetch-elimination ;
simple-fetch-elimination ;
dead-code-elimination ;
cse-and-hoisting ;
circulate-structures ;
constant-propagation ;
synchronize-release s
partial-evaluation ;
constant-propagation ;
dead-code-elimination ;
thunk-splitting ;
inlinable-definitions ;
loop-constant-propagation ;

code-blocks

signals-and-triggers

generate-ets-graph ; Beginning of back end.
peephole

add-fanouts

merge-merges

expand-system—-functions

merge-merges

assign-fp-offsets

add-successor-constraints

assign-ip-offsets
file-assemble-monsoon-graph ; Assemble and produce object code.

Figure 2.1: Definition of an Id compiler



(defmacro id-monsoon-compile-file-wrapper (&body body)
‘(let* ((#current-compilation-exsym-table* (make-exsym-table))
(*the-copyright-notice* nil)
(start-time (get-universal-time)))
(format t "~&The Id Monsoon Compiler, Version 1.0.~
“&"A" (get ’id-compiler :copyright-notice))
(monsoon-id-compile-file-exsym-table-prolog)
,@body
(monsoon-id-compile-file-exsym-table-epilog)
(format t "~&"%Compiled “d procedureP,”
“% in “d seconds"
(- (get-universal-time) start-time) )))

Figure 2.2: Compiler Wrapper Macro

that invokes the compiler, it is the compiler modules that actually do the work. According to the
DFCS reference document, a compiler module “packages up a particular phase of compilation.” In
Figure 2.1, we saw that there was a single parser module, some graph generation modules, several
optimization modules, and finally a single assembler module. Each of these is a separate phase of
the compilation of an Id program, and each is implemented by a distinct module. In order to define
a module, we must use one more DFCS facility: the defcompiler-module macro.

defcompiler-module name family &clauses [(:input representation level)] [Macro]
[(:output representation level)] (:function function-name)

{(:before-function unit [function-namel) }x
{(:after-function unit [function-name]) }*
[(:levels-marked {levelH+)] [(:options {optionH)]
[(:wrapper-macro macro-name)]

The defcompiler-module macro really defines the external interface of a module to the rest of
the compiler. The :input clause informally describes the “type” of input data structure which
the module expects. The type of this data structure is described by a representation and a level;
these two concepts will be addressed later. Similarly, the :output clause describes the type of the
output data structure of the module. In order to maintain the correct composability of modules
the types of the :input and :output data structures must be “equivalent” in a manner described
below. The defcompiler macro checks this property and signals an error if the equivalence is not
maintained.

The :function clause names the top-level Lisp function that implements the module. The
:before-function and :after-function clauses provide hooks to setup and cleanup functions
which are called before and after the invocation of the module.

The :levels-marked clause provides some rather subtle functionality which is beyond the scope
of this document. Interested readers are referred to [10].

The :options clause specifies the compiler options used by this module. These options should
have been defined using the defcompiler-option macro, which will be described in Section 2.4.
Finally, the :wrapper-macro clause names the macro macro-name as the wrapper for this module.



2.3.1 Families, Representations, and Levels

Modules generate, transform, and pass on data structures. In order to be able to describe the
interface of a module, we must be able to name these data structures. A representation is exactly
that: a name for a data structure. Informally, a representation can be viewed as the type of a data
structure. For example, the compiler uses two representations of programs as graphs during com-
pilation: these are program graphs and machine graphs. Although these are different abstractions,
they both happen to be implemented using the dataflow-graph data structure provided by DFCS.

However, as we mentioned in the previous section, the input and output interfaces of a module
are described by a representation and a level. Often, the complete representation of a program
may be too unwieldy for a particular module to process. For example, a module performing an
optimization on loops does not need to know the structure of the whole program. Therefore, it
becomes important to describe the program in a hierarchical manner. A level is exactly this: a name
for a level in the hierarchical representation of a program. For example, an Id program is described
using the following levels: a program is composed of definitions, each of which is composed of some
procedures. Finally, each procedure is implemented by one or more code-blocks. Figure 2.3 shows
an Id program and its hierarchical representation.

A representation must also describe the levels that it supports. For example, a parse-tree
supports the program, the def, and the procedure levels. Similarly, the program-graph represen-
tation supports these three levels plus the code-block level. Since we have different data structures
supporting the same levels, it becomes important to describe how they correspond to each other.
We use the defcompiler-family macro to describe these relationships.

defcompiler-family family &clauses {(:representation representation {levelH)H [Macro]
{(:equivalence { (representation level) H) }*

The :representation clauses declare the different program representations used in this compiler
family. The format for these clauses includes the name of the representation followed by the names
of the levels it supports, from smallest to largest. The :equivalence clauses establish equivalence
classes among different representations. These equivalence classes, known as units, are used by the
defcompiler macro when checking the connectivity of modules: the condition that must be met
is that the output of one module must be in the same unit as the input of the next module.

Figure 2.4 shows the definition of the Id compiler family. Notice that the definition describes
three representations for Id programs: the parse-tree representation, the program-graph repre-
sentation, and the machine-graph representation. Different parts of the compiler use the different
representations of the program to facilitate their work. Moreover, the definition of the Id compiler
family also describes four units, one for programs, one for definitions, one for procedures, and one

for codeblocks.

The real purpose of compiler families, however, is to implement the mechanism of sharing.
Modularity without sharing amounts to reinventing the wheel for every new software project. The
association of data structures, modules, and options with a compiler family allows the sharing of
these resources among the different compilers of the family. For example, an Id compiler that
compiles Id source files shares most of its internal data structures and modules with an Id compiler
that compiles source code from Id editor buffers. Without the sharing facilities provided by compiler
families, each of these two compilers would have to replicate substantial amounts of code.

Currently, the Id compiler family is the only compiler family defined at MIT. However, other
users of DFCS have defined compiler families for languages such as Fortran.



%86 This is the programfoo.id

PROGRAM TEXT

def foo x =
{ def subfoo z =2z * z;
def subfoo2 z =
{ result = 1;
in
{ for i <- 1to z do
next f =f * |
finally f }};
* X

a =X
in
subfoo (subfoo2 a) };

def bar x = x * 2;

PROGRAM LEVELS

foo.id
Program
Definition f oo bar
i ~
Procedure subf oo subf 002
i .
Codeblock subfo002_0 subf 002_0

Figure 2.3: Hierarchical Representation of a Program
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(defcompiler-family id-compiler
(:representation parse-tree procedure def program)
(:representation program-graph code-block procedure def program)
(:representation machine-graph code-block procedure def program)
(:equivalence (parse-tree program)
(program-graph program)
(machine-graph program))
(:equivalence (parse-tree def)
(program-graph def)
(machine-graph def))
(:equivalence (parse-tree procedure)
(program-graph procedure)
(machine-graph procedure))
(:equivalence (program-graph code-block)
(machine-graph code-block)))

Figure 2.4: 1d Compiler Family Definition

2.3.2 Cycling the Compiler

The discussion of representations and levels naturally leads one to ask the question: how does the
compiler control the level at which a particular module receives its input? After all, the user declares
that a module will operate at a certain level, yet apart from equality between levels—as defined by
the defcompiler macro—the user makes no explicit conversion between levels and representations.
The answer to this question is known as cycling.

As we have seen, the definition of the Id compiler family includes a description of the hierar-
chical representation of programs. If we think of a representation at a certain level as a set whose
elements are representations at a lower levels, then we can see that the compiler can automatically
insert code to convert between different levels. This cycling code would consist of code to mapping
over the elements of the set. For example, the lambda-1ift module produces the parse-tree
representation at the def level while the module the follows it, generate-program-graph, ex-
pects its parse-tree input at the procedure level. In this case, the compiler would cycle the
generate-program-graph module over each of the procedures contained in each of the definitions
produced by the lambda-1ift module.

The opposite case arises when the module that occurs earlier in the compilation process produces
a data structure that is at a lower level than that required by the following module. In this case,
the compiler needs to collect the output of the earlier module into a data structure at the higher
level so that it can be passed on the later module.

Readers interested in more details should consult the DIF'CS reference document [10].

2.3.3 Some Compiler Modules

A module can be classified as a member of one of four different classes of modules, according to
inputs and outputs. The first type of module is the generator module. This module does not
include an :input clause in its definition, and it is the first module of the compiler. There is only
one generator module in a compiler. Figure 2.5 shows the definition of a file parser module for a
file-based Id compiler.

11



(defcompiler-module file-parser id-compiler
(:output parse-tree def)
:levels-marked program)
:before-function initialize-lexical-analyzer-for-file)
:function parse-def)
:wrapper-macro file-parser-wrapper)
:options input-file))

N NN NN

Figure 2.5: A Generator Module

(defcompiler-module call-substitution id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options call-substitution)
(:function cs-code-block))

Figure 2.6: A Standard Module

The second class of modules is the standard module class. This type of module receives its input
at a certain representation and level and produces its output in the same representation and level.
Modules that implement optimizations epitomize this class of modules since they typically perform
some local analysis and perform small changes to their input. Figure 2.6 shows the definition of
a module that performs the call-substitution optimization on program-graphs at the code-block
level.

The third class of modules is the translator module class. Translator modules take input
at one representation and level and produce output in another representation, but at the same
level.? These modules mark the places where different parts of the compiler begin. For example,
the parse-tree representation is used in the front-end of the compiler, program graphs are used in
the middle-end, and machine graphs are used in the back end. The modules that appear on the
boundaries of the conceptual “ends” of the compiler are translator modules.

Figure 2.8 contains a collector module. A collector module simply receives input. It produces
no output apart that will pass to the rest of the compiler. A collector module is typically the last
module of a compiler and produces a file or a stream of object code.

‘Remember that conversions between levels are done automatically by the compiler. Therefore a module cannot
change the vary the level of its input and output representations.

(defcompiler-module generate-machine-graph id-compiler
(:input program-graph code-block)
(:output machine-graph code-block)
(:function gmg-dataflow-graph))

Figure 2.7: A Translator Module

12



(defcompiler-module assemble-monsoon-graph id-compiler
(:input machine-graph code-block)
(:wrapper-macro monsoon-assembler-wrapper)
(:function assemble-monsoon-graph))

Figure 2.8: A Collector Module

(defcompiler-module display-graph id-compiler
(:input program-graph code-block)

routput program-graph code-block)

:function display-program-graph)

:options reverse-video)

:wrapper-macro display-graph-wrapper))

N N NN

Figure 2.9: Definition of a New Module

2.3.4 Example: Adding a New Module

Let’s say we want to instrument our compiler so that it displays the intermediate representation of
the program in a graphics window. A module such as this is useful when debugging the output of
an optimization module, for example.

Due to the modular nature of the compiler, a module such as this is simple to add. Let’s assume
the task of our module is to display program graphs (rather than machine graphs) since most of the
optimizations of the compiler at done with this program representation. Assume that the top-level
function of our graph display module is called display-program-graph. Also, assume that we
want to display graphs at the code-block level so that the graphs do not become too large. Figure
2.9 shows a possible definition for this new compiler module.

Notice that we specify the inputs and outputs to be the same representation and level. After all,
this module simply displays graphs and does not modify them. Next, the :function clause specifies
the name of the top-level function that implements this module, display-program-graph. The
:options clause declares that this module makes use of the reverse-video option (which should
have been defined already). Finally, the :wrapper-macro clause contains the name of the wrapper
macro for this module.

Figure 2.10 shows a possible wrapper macro for this module. If the compiler is operating under
the X Window System, for example, this wrapper macro takes care of opening a display connection
and a top-level window.

2.4 Compiler Options
Options are additional compiler resources—shared by all compilers of a given family—that modules
may use during their computations. Typically, options augment the environment in which a module

operates. The defcompiler-option macro is used to define compiler options.

13



(defmacro display-graph-wrapper (&body body)
‘(let* ((#display* (OPEN-DISPLAY ¢‘vinod:0°’))
(*screen* (first (DISPLAY-ROOTS #*display*)))
(*gcontext* (CREATE-GCONTEXT :drawable (SCREEN-ROOT *screen%)
:foreground (SCREEN-BLACK-PIXEL *screen*)
:background (SCREEN-WHITE-PIXEL *screen*)
:font font))
(*top-level-window* (CREATE-WINDOW :parent (SCREEN-ROOT *screen*)
:class :input-output

:x O
:y O
:width 500
:height 500

:border-width 5
:background (SCREEN-WHITE-PIXEL *screen*)

)))
,@body))

Figure 2.10: Wrapper for New Module
defcompiler-option name family &clauses (:type type) [Macro]
[(:how-defined how-defined)] [(:default default)]

[(:mentioned-default mentioned-default)]
[(:documentation documentation-string)]
[(:importance importance-number)]
*option-types* [Constant]

This macro adds the option name to the compiler family family. The :type of the option must be
one of the types defined by *option-types*. These types are typically :symbol, :string, :number,
:integer, :date, :pathname, :boolean, :enumeration, and :stream. The :how-defined clause
specifies how the option is going to be defined when the lambda-list of the top-level function to
invoke the compiler is constructed. The two possible values are :keyword or :positional. If the
option is specified to be a :keyword option, then it must also have a :default value default. The
:documentation clause specifies a string to describe the option. Finally, the :importance clause
specifies a number between 0.0 and 1.0 that is used to sort the options when the lambda-list of the
top-level function is constructed.

In the previous section, for example, we declared that the display-graph compiler module
used the reverse-video option. A possible definition for this option is shown in Figure 2.11.

In order to access the value of a compiler option within a module, we use the option macro.
In order to determine whether or not an option is valid for the current compiler, we use the
option-exists-p macro.

option option-name [Macro]
option-exists-p option-name [Macro]
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(defcompiler-option reverse-video id-compiler
(:type boolean)
(:how-defined :positional)
(:default nil)
(:documentation ‘‘This options defines whether or not graphics are
displayed in reverse video’’)
(:importance 0.3))

Figure 2.11: Definition of the reverse-video Option

(define-target-option Id-Compiler-Float-Format *Float-format#
(:ttda ’single-float)
(:monsoon ’double-float))

Figure 2.12: Definition of a Target Option

2.5 Target Options

Target options are used to set the value of variables that depend on the target architecture for which
the compiler is compiling. These options do not use the defcompiler-option machinery defined
by DFCS and described in the previous section. In particular, target options are not associated
with a particular compiler family. Rather, they are defined and set with the following forms:

define-target-option name variable &body alist [Macro]
set-target target [Function]

The define-target-option macro defines the target-option name and the variable variable to
hold the value of this target option. The body of the macro, alist, is an association list of targets
and values. Figure 2.12 shows an example definition of a target option.

The set-target function sets all the options defined for a particular target to their appropriate
values. In the example above, (set-target :monsoon) would set the value of *Float-format*
to >double-float. The target options mechanism is really a tool that allows the compiler writer,
specially those working on the back-end of the compiler, to write code that depends on the details
of the target architecture in a reasonably portable manner.

2.6 Pragmas

While the Id compiler performs extensive optimizations on programs, there are certain situations
which it cannot detect; control over these optimizations is left to the Id programmer. Currently,
the compiler allows the Id programmer to control the way in which certain loops are compiled,
in order to reduce overhead, and to “insert suggestions...to the compiler to generate code that
releases or reuses data structure storage”[6]. The compiler provides a mechanism to define and
implement these pragmatic annotations of programs (known as pragmas) in a straightforward way.

define-definition-pragma keywords arglist properties &body body [Macro]
define-block-pragma keywords arglist properties &body body [Macro]
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(define-definition-pragma :inlineonly (name pragma dataflow-graph place) ()
(declare (ignore name pragma place))
(exsym-put *current-procedure-name#* :inline-only t *current-compilation-exsym-tablex*)
(setf (dataflow-graph-get dataflow-graph :inline-only) ’t)
(setf (dataflow-graph-get dataflow-graph :inlinablep) ’t))

Figure 2.13: A Definition Pragma

(define-block-pragma :release process-release-pragma (:expression-variables-free T))

Figure 2.14: A Block Pragma

define-toplevel-pragma keywords arglist properties &body body [Macro]

There are three different kinds of pragmas supported by the Id compiler: definition pragmas, block
pragmas, and toplevel pragmas. Definition pragmas apply only to the definition of the function,
and they occur between the formal parameters and the "=" of a definition. Several definition
pragmas can appear together; they are simply enclosed in braces. For example, the @inlineonly
pragma is a definition pragma. Figure 2.13 contains the definition of this pragma, whose purpose is
to allow the Id programmer to declare that the Id procedure being defined should always be inlined
in its callers’ code.

Block pragmas are found in bindings lists. They apply to the region of the program within
the braces that enclose the pragma’s binding list. A pragma in a loop binding list, for example,
applies to the predicate of the loop and to the FINALLY expression of the loop. The @release
is a block pragma which allows the programmer to specify that the storage for a data structure
should be released (reused) upon termination of the current control region.® Figure 2.14 illustrates
the definition of @release.

The final type of pragma is the toplevel pragma. These pragmas affect the global behavior of
the compiler; they are not associated with a particular definition or binding list. The@include
pragma is an example of a toplevel pragma. @include tells the compiler to include the exsym
information (see Section 2.7) for a particular file during the current compilation. The inclusion
of exsym information allows certain optimizations to be performed since the compiler has more
information available. Figure 2.15 shows the defintion of @include.

The development of new pragmas requires a deep understanding of the compiler; the reader
should not be alarmed if the topic seems confusing at first.

2.7 Exsyms

The Id compiler supports separate compilation of functions. In order to be able to support this
feature, the compiler must maintain a database of information about top-level symbols. Each entry
in this database is known as an exsym®”

5A control region is simply a region of the program, such as a procedure body, loop iteration, or conditional
expression, for which the compiler detects termination.

6The term exsym comes from EXternal SYMbol.

"The material in this section is also covered in Chapter 5 of [10].

16



(define-toplevel-pragma :include (name expression place)
(:processing-module pre-scope-analysis-desugaring)
(declare (ignore name))
(if (null expression)
(message :warning place
"INCLUDE pragma requires a string expression.")
(grammarcase expression
(:string
(let ((file (parse-library-filename (unslashify (ptnode-value expression)))))
(let ((exsym-table (file-exsym-table file t)))
(when exsym-table
(pushnew exsym-table (cdr *exsym-search-path#*))))))
(otherwise
(message :warning place
"INCLUDE pragma requires a string expression."))))
nil)

Figure 2.15: A Toplevel Pragma

2.7.1 Exsym Properties

Exsym entries store information about top-level symbols in properties. An exsym for a top-level
function, for example, contains information such as the type signature of the function, the arity of
the function, and whether or not the function is “inlinable”. In order to access a property from an
exsym entry, the following functions are used.

exsym-get symbol indicator search-path [Function]
exsym-put symbol indicator value exsym-table [Function]

The exsym-get function retrieves the property indicator from the exsym entry for symbol. It
searches for the exsym entry in the set of exsym tables indicated by search-path. For example, if
one wanted to find the arity of the function foo, one would use the following form:

(exsym-get :foo :arity *exsym-search-pathx)

The exsym-put function inserts a property value in an exsym entry. For example, if the compiler
was processing a function of two arguments named bar, it would eventually use the following form
to insert the arity of bar into the exsym database.

(exsym-put :bar :arity 2 *exsym-search-path*)
Exsym properties are defined using define-exsym-property.
define-exsym-property indicator &clauses (:consistency-predicate pred) [Macro]

[(:consistency-encoder encoder)]
[(:consistency-printer printer)]

This macro defines the property indicator. This property can be placed in exsym entries using
exsym-put. The :consistency-predicate clause is necessary. It specifies the name of a predicate
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that checks the consistency of this property. The next section introduces the concept of consis-
tency checking, which uses these predicates. The last two clauses, :consistency-encoder and
:consistency-printer are optional.

The following functions manipulate individual exsyms.

install-exsym exsym exsym-table [Function]
find-exsym symbol search-path [Function]
exsym-exists-p symbol exsym-table-or-search-path [Function]
exsym-clear symbol search-path [Function)]
copy-exsym exsym [Function]

The function install-exsym stores exsym into exsym-table under the name (exsym-name ezsym).
Find-exsym finds the exsym for symbol in search-path. An exsym search path is simply a list of
exsym tables. Exsym-exists-p is a predicate which returns t if an exsym for symbol exists in
exsym-table-or-search-path. Finally, copy-exsym returns a copy of ezsym.

The following functions manipulate collections of exsyms (exsym tables).

make-exsym-table [Function]
map-exsym-table function exsym-table [Function]

Make-exsym-table constructs a new, empty exsym table. Exsym tables essentially implement a
mapping from keyword symbols (representing top-level Id identifiers) to exsym structures. Map-exsym-table
applies function to each entry in exsym-table. The function is called for its side-effects, and it is

passed the name of the exsym and the exsym structure itself as arguments.

2.7.2 Assumptions

Exsym tables store not only properties about identifiers but also assumptions about properties. Any
time the compiler uses an exsym property of one identifier to compile code for another identifier,
it records an assumption in the “assumer’s”
function foo, the compiler encounters a reference to function bar, it looks up the :arity property
in bar’s exsym in order to determine whether or not to compile a general application or a direct
application.® The compiler records an assumption in foo’s exsym about bar’s arity. This record
of assumptions is then used by the consistency checking functions to determine whether or not the
functions that were compiled separately were compiled with a consistent set of assumptions about
each other.

exsym. For example, if in the course of compiling

The following functions implement the assumption and consistency checking mechanisms of
exsyms.

exsym-assume assumer assumer-table assumee assumee-indicator assumee-search-path [Function]

exsym-assume-value assumer assumer-table assumee assumee-indicator [Function]
assumee-search-path assumee-value

consistency-summary root-exsym-names search-path [Function]

describe-consistency root-exsym-names search-path [Function)]

The exsym-assume and exsym-assume-value functions are used to record assumptions into exsyms.
Following the example above, the form below would record an assumption about bar’s arity in foo’s
exsym.

8General applications involve building a closure; they are used when the arity of a function is unknown or when
the function application is a partial one. Direct applications are compiled when the arity of a function is known and
satisfied. Direct applications are more efficient than general applications since they do not build closures!
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(exsym-assume :foo exsym-table-1 :bar :arity *exsym-search-path#*)

Notice that an exsym for the assumee must exist; otherwise, the value of the property (the
arity, in this example) could not be determined. The difference between exsym-assume and
exsym-assume-value is that the latter allows for the assumed value to be provided directly. This
obviates the need for the assumee to have an exsym.

The consistency checking functions determine whether the assumptions recorded in the exsym
table are consistent with each other. As an example of an inconsistency, suppose that bar gets
recompiled, after foo has been compiled, so that it takes one more argument than it did before. If
a direct application of bar was compiled into foo, due to the value of bar’s :arity property at the
time foo was compiled, the resulting state of the compiled code in the machine would be incorrect!
If foo were to be executed, the new version of bar would not receive enough arguments! When
called with the appropriate “root” set of exsyms, the consistency-summary function would detect
this problem and would report it. The consistency-summary applies the consistency predicate,
specified when the exsym property was defined, to the assumed value stored in the assumer’s exsym
and to the actual value, stored in the assumee’s exsym. If these values fail to pass the consistency
predicate’s test, consistency-summary records them and returns them as part of its result.

The describe-consistency function prints a detailed description of the inconsistencies found
by consistency-summary, using the consistency printers defined with each exsym property.

Typically, execution managers call consistency-summary before executing functions to ensure
that no error will occur due to separate compilation problems.

2.8 User Features

The following sections discuss features of the compiler that are more “user oriented” than “compiler-
writer oriented”. They are included here because they should form part of the reader’s mental model
for the Id compiler.

2.8.1 Incremental Compilation

Traditional compilers operate in a batch-oriented manner: the user “submits” a program to the
compiler, the compiler attempts to compile the program, and finally, the compiler produces object
code, assuming there were no syntax or type errors in the source program. While the Id Compiler
can operate in this way, it can also operate interactively and incrementally. Incremental compilation
allows the user to compile a program in small pieces until a complete program is compiled. In the
case where a particular function needs to be recompiled, the user need only recompile that function.
The work done to compile all the other functions in the program does not need to be repeated
uselessly.

When compiling incrementally, the Id compiler may take its input from an editor buffer, for
example. By selecting a region of text, the user may request that a particular function be compiled,
that a set of functions be compiled, or that the whole buffer be compiled. In any case, localized
changes to the source program require only localized recompilation of functions.

As a consequence of its ability to support incremental compilation, the Id compiler also supports
separate compilation. As mentioned previously, separate compilation allows groups of functions that
refer to each other to be placed into separate files at compile time. This allows for a more modular
programming style and provides the ability to build useful libraries of functions. References from
functions in one file to functions in another file are resolved when the object code for the functions
is loaded into the machine.

19



2.8.2 Librarian

The previous sections discussed the ability of the Id compiler to support separate compilation
and mentioned that references to functions and other top-level identifiers must be resolved at load
time. The compiler generates information about these symbols in .etb? files. The purpose of the
librarian is to manage the exsym table information stored in .etb files. As Id files as compiled,
the librarian keeps a cache of the exsym information produced by previous compilations so that
subsequent invocations of the compiler can use this information.

2.9 Summary

This chapter has attempted to present a high level overview of the Id compiler by introducing a
broad spectrum of topics and by keeping the discussions of each of these topics short and concise.
These quick glimpses into the structure of the compiler should provide the reader with some intuition
behind its underlying ideas. Later chapters will develop the topics touched in this chapter and will
provide more precise detail.

?The suffix .etb stands for Exsym Table (Binary) format.
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Chapter 3

Front-end

The front-end of the Id compiler is organized as shown in figure 3.1:
The front-end currently consist of the following modules:

e file-parser

e pre-scope-analysis-desugaring

scope-analysis

type-checking
e overloading-translation
e lambda-lift

The first module, file-parse, reads in the source code and performs lexical analysis and parses
the input. The output from the lexer is a stream of tokens or lexemes, which is fed into the parser.
The parser outputs a parse tree, which is the data-structure that the rest of the front-end modules
operate upon. The file-parser can be called repeatedly on the same input file to obtain several
parse trees if the input file contains the code for more than one parse trees. The functions of the
other modules in front-end are described in the next chapter.

The lexical token and parse tree data structures are discussed in great detail in Chapter 3 of
DFCS: Dataflow Compiler Substrate Manual[10]. Note that parse trees are slightly different from
syntax trees. They represent the same information in a more compact form by suppressing syntax
tree nodes that do not contain any additional information. The differences and motivations for
doing this are again described in Chapter 3 of DFCS: Dataflow Compiler Substrate Manual[10]. In
the following sections, we will first describe the tools used in building the lexer and the parser, give
some examples, and proceed with the description of the rest of the modules in the Id compiler.

3.1 PAGEN

PAGEN is a lexer and LALR parser generator for Common Lisp[8]. Given a definition of a gram-
mar, PAGEN generates the tables used by the table driven lexer and parser. In addition, it also
generates the defgrammar and defproduction code for the input grammar. For more details about
defgrammar and defproduction, please refer to Chapter 4 of DFCS: Dataflow Compiler Substrate
Manual[10]. Both PAGEN itself and the lexer/parser are written in Common Lisp.
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Figure 3.1: Id compiler front-end
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3.1.1 PAGEN Input

A PAGEN grammar definition is a Backus-Nauer Format (BNF) definition with a few extensions
for common cases. The PAGEN input file must have a filename ending with a .Pagen suffix. It
consists of a series of statements that do such things as tell what machines to generate scanners
for, what package the resulting file should be in, etc.It is interesting to note that the grammar for
the PAGEN input language itself is defined by a PAGEN file, and PAGEN generated the parser
for the PAGEN input language.

In this document, we will give the grammar for PAGEN in BNF. Appendix pagen-pagen con-
tains the PAGEN file for the grammar of PAGEN’s input language. Terminals will be written as
terminal.

3.1.2 Grammar

A PAGEN grammar definition consists of a series of statements. Each statement starts with a
PAGEN keyword, and may be on more than one line. Keywords in PAGEN start with a ‘$’ sign and
are case-insensitive. PAGEN statements can be divided into 2 categories. Those used for specifying
the lexemes, and those used for specifying the parse trees. Note however that in PAGEN, both go
into the same input file. (In contrast, in C/UNIX, LEX handles the former while YACC the latter.)
We will first describe those used for specifying lexemes and give some examples, before going on to
those used for specifying parse trees. In the course of the description, non-terminals productions
of the PAGEN input language will be written in small-caps fonts, e.g., TARGET-STATMENT.

3.1.3 Lexical Analyzer

The lexical analyzer, or lexer, is defined by a series of lexical statements.

Target Statement

The target statement specifies what target system to make lexers for. Some targets have different
character sets from others, and a mapping from native character codes to internal character codes
will be made for each target. In addition, characters that are indistinguishable in the grammar
(e.g.,whitespace characters) will be mapped to the same internal code in order to compact the
scanner tables.

TARGET-STATEMENT — $target identifier

Currently the available targets are: 1ispm and unix.

Let Statements

A let statement maps an identifier to a regular expression for use in definition of lexical tokens.
LET-STATEMENT — $let identifier = REGULAR-EXPRESSION

The identifier defined is a meta-variable used in other lexical statements, i.e. the identifier is a
variable of the input to PAGEN.
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Regular Expressions

Lexical tokens are defined by regular expressions. The lexer reads the input stream, finds the
longest string that matches one of the regular expressions, and then returns the corresponding
lexical token. If the longest string matching any regular expression matches more than one regular
expression, the regular expression appearing earliest in the .PAGEN file takes priority.

Regular expression specification in the PAGEN input language is defined by the following gram-
mar (The following is an ambiguous grammar that specifies the same language as the unambiguous
grammar used by PAGEN, but is easier to read):

REGULAR-EXPRESSION — REGULAR-EXPRESSION ”| 7 REGULAR-EXPRESSION
REGULAR-EXPRESSION — REGULAR-EXPRESSION REGULAR-EXPRESSION
REGULAR-EXPRESSION — REGULAR-EXPRESSION 7*”
REGULAR-EXPRESSION —  REGULAR-EXPRESSION 747
REGULAR-EXPRESSION —  PRIMARY-REGULAR-EXPRESSION
PRIMARY-REGULAR-EXPRESSION — identifier

PRIMARY-REGULAR-EXPRESSION — set

PRIMARY-REGULAR-EXPRESSION — string

PRIMARY-REGULAR-EXPRESSION — caseless-string
PRIMARY-REGULAR-EXPRESSION — ”~” PRIMARY-REGULAR-EXPRESSION
PRIMARY-REGULAR-EXPRESSION  — 7(” PRIMARY-REGULAR-EXPRESSION ”)”

where identifier, set, string, and caseless-string are defined as:

identifier = ALPHA {(ALPHA | DIGIT)}*

set = “{” {(SET-CONTENTs | “\” ANY)}* “}”

string = “"” {(STRING-CONTENTS | “\” ANY)}* “"”
caseless-string = “‘7 {(CASELESS-STRING-CONTENTS | “\” ANY)}* 7

As in BNF, “¥” means zero or more occurences of the preceding regular expression (Kleene
recursion), and “+” means at least one occurence of the preceding regular expression. The defi-
nitions of ALPHA, and DIGIT are self explanatory. ANY means any character in the character set.
SET-CONTENTS is any character except right brace (}) and backslash, unless these are preceded
by the escapes character, backslash. STRING-CONTENTS is any character except double-quotes and
backslash. Again, these charaters can be included by preceding them with the backslash escape
character.CASELESS-STRING-CONTENTS is any character except close-quote and backslash. As be-
fore, a preceding backslash allows us to include these characters in CASELESS-STRING-CONTENTS.
A few examples will make the meaning of these terminals clear.

Examples

1) An identifier is a meta-variable defined in a $let statement. When used on the RHS, the
corresponding expression that the identifier denotes is substituted in its place. For example, if
we have

$let digit = 0123456789
then the regular expression for number is
digit*

and is equivalent to
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{0123456789}*
2) A set represents any single character string within the set. An example of a set is
{abc}
and is equivalent to
tal|tpt| e
3) A string is any sequence of characters enclosed by double quotes. An example is:
"aBc"
which only matches the string
"aBc"
4) A caseless-string on the other hand ignores the case of the letters. So
‘aBc’
matches any one of the following strings:
"abc" |"ABC"|"Abc" |"aBc'" |"abC'" | "ABc" |"aBC" | "AbC"

The productions of REGULAR-EXPRESSION are self-explanatory and similar to BNIF grammar.
The only exception is that involving ~. This is only used for “exp where exp must match only
single characters. “exp matches any character other than those in exp.

Lexical Tokens

There are three kinds of lexical tokens in Pagen, terminals, pseudo-terminals, and discards and they
are defined by their respective statements:

TERMINAL-STATEMENT —  $terminal identifier = REGULAR-EXPRESSION
PSEUDO-TERMINAL-STATEMENT — $pseudo identifier = REGULAR-EXPRESSION
DISCARD-STATEMENT —  $discard identifier = REGULAR-EXPRESSION

A terminalis a lexical token used by the parser. No ptnode is built by the parser for a terminal
lexical token. The string making up a terminal is not saved. Discard tokens are recognized by the
lexer and discarded. They are not passed on to the parser. A pseudo-terminal, like a terminal, is
used by the parser, but also becomes a ptnode itself. During lexical analysis, the string making
up a pseudo-terminal is saved, and subsequently used by the parser. For instance, identifiers in an
input program are pseudo-terminals — the ptnode-value of an identifier is the string of characters
that names the identifier. Pseudo-terminals have values that are used during the static-analysis
phase of compilation.

Before proceeding with the description of those parts of PAGEN concerned with parsing, we
give a complete example of an input file to PAGEN specifying a lexer.
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Example

The following is a specification of a lexer for mathematical expressions:

$let alpha = {ABCDEFGHIJKLMNOPQRSTUVWXYZ}|
{abcdefghijklmnopqrstuvwxyz_-}

$let digit = {0123456789}

$terminal left-parenthesis = "("

$terminal right-parenthesis = ")"

$terminal plus = "+"

$terminal minus = "-"

$terminal times = "x"

$terminal divide = "/"

$terminal semicolon = ";"

$terminal equal = "="

$pseudo id = alpha (alpha | digit)=*

$pseudo number = digit+

$discard whitespace = (space | newline | tab | return | page)+

Given the input: offset = 3 + index ,

the above lexer recognizes a pseudo-terminal id with value offset, the terminal ’=’, another
pseudo-terminal number with value 3, followed by another terminal ’+°’, and finally a last pseudo-
terminal id with value index.

3.1.4 The Parser

The parser is defined by a series of grammar statements. There are five kinds of grammar state-
ments:

Acceptance Statement

The acceptance statement tells the parser what to return as a parse tree. When the parser is
called, it will parse until it processes the accept production, and return the parse tree. There are
two forms: accept and accept-each. The identifier below names a non-terminal in the grammar

being defined.

ACCEPT-STATEMENT — accept identifier
ACCEPT-EACH-STATEMENT — accept-each identifier

The accept form means that the whole file or stream must parse into exactly one parse-tree.
The accept-each form means that the parser can be called repeatedly until the file is empty. Each
time the parser is called, it will parse and return one parse-tree.

significant

This defines a normal production. When the parser reduces this production it makes a ptnode
whose tag is derived from the name of this production, and leaves the new ptnode on the stack.
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no-node

This defines a linear production, that is, the right hand side contains only one non-terminal. It
is used for parsing, but it really conveys no useful information beyond the parser, so no ptnode is
made for this production. For example:

$no-node primary-regular-expression -> identifier

When the parser reduces the identifier to a primary-regular-expression, it just leaves the identifier
on the stack instead of making a primary-regular-expression ptnode out of it.

n-ary
This is an extension to the normal syntax of context-free grammars. For example, the statement
$n-ary tuple-expression -> expression $separated-by ","

defines tuple-expression to be any number of expressions separated-by commas. This production
takes the place of a number of simpler productions. The ptnode formed will have as its children a
list of all the child ptnodes that were separated by the separator tokens.

To specify a number of non-terminals separated by whitespace, use the following format.

$n-ary production-rhs -> production-rhs-primary $separated-by

n-ary-1

The n-ary-1 is a combination of n-ary and no-node. If there is at least one separator token,
then it behaves like an n-ary production. If there is no separator, then it behaves like a no-node
production. This is what we use for tuple-expressions if we allow a single expression to be considered
a degenrate case of tuple-expression:

$n-ary-1 tuple-expression -> expression $separated-by ","

Example

The following is a grammar specification for a parser, where id and number are as defined in the
lexer example:

$significant proc -> "def" id id "=" expr ";
$no-node expr -> add-expr
$no-node add-expr -> mul-expr
$significant add-expr -> add-expr "+" mul-expr

g P P p
$significant add-expr -> add-expr "-" mul-expr

g P P p
$no-node mul-expr -> primary-expr

P p y-exp

$significant mul-expr -> mul-expr "*" primary-expr

g P P p y-exp
$significant mul-expr -> mul-expr "/" primary-expr
$no-node primary-expr -> "(" expr ")"
$no-node primary-expr -> block-expr
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proc

The 2 indicates

that we are refering

to the second add-expr
which implicitly hasa"*".

id id add-expri2 /]

value:"double" value: "n"

number id
value "3" value: "n"

Figure 3.2: Parse tree for: def double n = 2 * n;

$no-node primary-expr -> id

$no-node primary-expr —> number

$significant block-expr -> "{" blist in expr "}"
$n-ary blist -> binding $separated-by ";"
$significant binding ->

$significant binding -> id "=" expr

$accept proc

Given the input file:
def double n = 2 * n;
the parser produces the parse tree shown in figure 3.2

3.1.5 Running Pagen

First, make a grammar definition, in a pagen file (with suffix ".pagen"). Next bring up a LISP
process and do the following to load PAGEN:
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(load "/df/id-world/utilities/011/loop")

(load "/df/id-world/utilities/011/out-file-system")
(load "/df/id-world/utilities/011/defprogram")
(load "/df/id-world/csg/registry/021/registry")
(make-program :pagen :noconfirm)

Finally:
(pagen:pagen file)

will generate a file with the extension ".pagen-output" that contains the tables for the scanner and
parser. The functions that perform the shifts and reductions in the parser resides in parser.lisp
in the PAGEN directory and need to be added manually. The ".pagen-output" file will include
an in-package statement naming the package specified by the package-statement in the PAGEN
file.

Using the Parser

The parser should be in a package that uses the Lisp and DFCS package. See the DFCS: Dataflow
Compiler Substrate Manual[10] for support manipulating parse trees. Some examples are given in
the next section.

3.2 Working with parse tree data structures

Selectors, constructors and mutators for working with parse tree data structures are defined in
DFCS and documented in DFCS: Dataflow Compiler Substrate Manual[10]. We will not repeat the
definitions here, but will instead give some examples which illustrate use.

3.2.1 Examples
Example 1

In the first example, we make use of the DFCS functions: block-place, ptnode-tag, ptnode-child, ptnode-v
ptnode-children, ptnode-place, ptnode-line, parse-tree-root. The example operates on

a block-structured language and prints out the place where each variable binding occurs. The place

in this case refers to the line number of the beginning of the enclosing block. Both :identifier

and :block-expr/1 are tags associated with productions.

;3 top level function.
(defun print-binding-occurences (parse-tree)
(pbo-expr (parse-tree-root parse-tree) nil))

;3 pbo—expr recrusively walks down a parse tree from the root.

;3 If the current node is an :identifier, we reach a base case.

M Nothing is done in the base case as there no binding takes place.
;3 If the current node is a :block-expr/1, the Oth child of the

N node is a subtree of bindings, while the 1st child is a subtree
HH containing the body of the block. pho-expr calls pbo-blist to

HH print out the binding-occurences and recursively calls itself on
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M the body of the block.
;; For any other internal ptnodes, pbo-expr calls itself recursively
;3 on every subtree.
(defun pbo-expr (ptnode block-place)
(case (ptnode-tag ptnode)
(:identifier
nil)
(:block-expr/1
(let ((blist (ptnode-child O ptnode))
(in-expr (ptnode-child 1 ptnode)))
;3 process bindings
(pbo-blist blist (ptnode-place ptnode))
;3 process "in" expr
(pbo-expr in-expr block-place)))
(otherwise
(dolist (child (ptnode-children ptnode))
(pbo-expr child block-place)))))

;; blist is a list of bindings.
;; block-place is the ’place’ where these bindings occur.
;; pbo-blist prints out the information that the bindings in
N in blist occurs at block-place.
(defun pbo-blist (blist block-place)
(dolist (binding (ptnode-children blist))
(pbo-binding binding block-place)))

;; binding is a the ptnode of a single binding.
;; block-place is the ’place’ where the binding occurs.
;5 pbo-binding prints out the information that the binding
N occurs at block-place.
(defun pho-binding (binding block-place)
(let ((lhs (ptnode-child O binding))
(rhs (ptnode-child 1 binding)))
;3 print this identifier
(format t "Block at “a; identifier ~a™}"
(ptnode-line block-place)
(ptnode-value lhs))
;3 process the rhs
(pbo-expr rhs block-place)))

When the above is run on the following input:

def examp x =
{y = x + 3;
z={q=y+7;
r=gq+ 3;
in

r};
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in

w}
we get the output:

Block at 2; identifier
Block at 2; identifier
Block at 3; identifier
Block at 3; identifier

H Q N <

Example 2

The definition of pbo-expr can be recoded as follows using grammarcase. Grammarcase,grammarbind,
and gramarcasebind used in this and the following example are described in chaper 4 of DFCS.

(defun pbo-expr (ptnode block-place)
(grammarcase ptnode
(:identifier
nil)

((block-expr -> "{" blist in expr "}")
(let ((blist (ptnode-child O ptnode))
(in-expr (ptnode-child 1 ptnode)))
;3 process bindings
(pbo-blist blist (ptnode-place ptnode))
;3 process "in" expr
(pbo-expr in-expr block-place)))

(otherwise
(dolist (child (ptnode-children ptnode))
(pbo-expr child block-place)))))

Grammarcase allows us to use the prodspec instead of the tag. It also takes care of taking the tag
of ptnode. A prodspec is a representation of a production. In the above example,

block-expr -> "{" blist in expr "}"

is a prodspec. It is possible to give a list of prodspec in place of one prodspec if the same code is
excuted for all of them. Note that we can still use keyword tags (such as :identifier) within a
grammarcase statement.

Example 3
The definition of pbo-binding can be recoded to use grammarbind:
(defun pho-binding (in-binding block-place)
(grammarbind (binding -> id "=" expr)
in-binding
;3 print this identifier
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(format t "Block at “a; identifier ~a™}"
(ptnode-line block-place)
(ptnode-value (ptnode id))) ; (ptnode id) returns the child
; of in-binding corresponding to id.

;3 process the rhs
(pbo-expr (ptnode expr) block-place))) ; (ptnode expr) is similar to
; (ptnode id)

In cases where a production has repeated occurence of the same non-terminal, we need to
explicitly name prodspec components. For instance, if we have the following production:

add-expr -> add-expr "+" mul-expr

and we use it in grammarbind, (ptnode add-expr) is ambiguous. The way to get around it is to
explicitly name the components. We can use

add-expr -> (add-expr opl) "+" (mul-expr op2)

in a grammarbind expression, and use (ptnode opl) to obtain the ptnode for the add-expr on the

RHS.

Example 4

The last example here illustrates the use of grammarcasebind which combines the functionality of
grammarcase and grammarbind:

(defun pbo-expr (ptnode block-place)
(grammarcasebind ptnode
(:identifier
nil)

((block-expr -> "{" blist in expr "}")
;; process bindings
(pbo-blist (ptnode blist)
(ptnode-place ptnode))
;3 process "in" expr
(pbo-expr (ptnode expr)
block-place))

(otherwise
(dolist (child (ptnode-children ptnode))
(pbo-expr child block-place)))))

Multiple prodspec’s can be used as a pattern for grammarcasebind matching. Note however that
they must have the same number of ptnodes on the RHS, and syntactically identical names must
be used for corresponding components. Explicit naming as explained in the previous example can
be used obtain identical names. For instance, the following list can be used as multiple prodspec.
Access to ptnode will be through (ptnode 1b) and (ptnode e).
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(((block-binding 1b) -> call (expression e))
((block-binding 1b) -> (keyword-expression e))
((loop-binding 1b) -> call (expression e))
((loop-binding 1b) -> (keyword-expression e)))

3.2.2 Attribute Grammar

In the course of working with parse trees, we often want to associate information with each ptnode.
Attribute grammar provides a simple way of doing this when the information can be computed in
a structured way from other ptnodes of the production. With an attribute grammar, we associate
with each production rules for computing an attribute of the ptnodes related by the production.
For example, we can associate an attribute free with each ptnode that denodes the free variables in
the subtree of the syntax tree rooted at that ptnode. Then the rule for computing the free attribute
for a production such as:

add-exprl -> add-expr2 "#" mul-expr
is
free(add-exprl) = free(add-expr2) U free(mul-expr)

Attributes are either synthesized or inherited. An attribute is synthesized if all definitions of
the attribute are for LHS of productions. In term of the parse tree, the attribute of a ptnode is
calculated from the attributes of the children of that ptnode. One the other hand, an attribute is
inherited if all definitions of the attribute are for RHS of productions. The attribute of a ptnode in
a parse tree is, in this case, calculated from the attributes of its parent, hence the name inherited.

The tools for working with attribute grammars are defined in DFCS and documented in Chapter
4 of DFCS: Dataflow Compiler Substrate Manual[10]. Again as in previous sections, we will only
give examples of their use. The reader should refer to the DFCS document for details. In particular,
the reader should look at the 3 different storage methods for attributes, :ephemeral, :memoized,
and :permanent, which are discussed in detail there.

Example 1

The following example defines the rules for 5 attributes for the default production. Default pro-
duction refers to the special production

$1hs -> $rhs-component $separated-by)

that PAGEN matches to any production. The attribute ptnode-non-generic-frameis an inherited
attribute, while all the others, ptnode-type, ptnode-defined-type-env, ptnode-idnodes, and
ptnode-nexified-variables, are synthesized attributes.

(defattributes ($lhs -> $rhs-component $separated-by)
((ptnode-type $1lhs) ; defining attribute ptnode-type for $lhs
(ptnode-type (ptnode $rhs-component 0)))
; <ptnode $rhs-component 0> returns the
; Oth ptnode on the RHS.

((ptnode-defined-type-env $1hs)
nil)
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((ptnode-idnodes $1lhs)
nil)

((ptnode-non-generic-frame $rhs-component i)
; defining attribute ptnode-non-generic-frame
; for ith component of the RHS
(ptnode-non-generic-frame (ptnode $rhs))
; <ptnode $rhs> returns the ptnode on the RHS.

((ptnode-nexified-varibales $1hs)
nil))

Our attribute system computes attributes in a lazy fashion, and can handle any attribute not
defined circularly. In addition, it also invalidates :ephemeral attributes when the structure of the
parse tree changes in such a way as to affect the value of that attribute.

Example 2

We can also define rules that apply to a specific set of productions. In this case, all the productions
have to have the same number of children. In addition, the LHS and RHS must be renamed in
the same way as when we use multiple prodspec’s in grammarcasebind (Example 4 of the previous
section).

(defattributes (((block-binding 1b) -> call (expression e))
((block-binding 1b) -> (keyword-expression e))
((loop-binding 1b) =-> call (expression e))
((loop-binding 1b) -> (keyword-expression e)))

((ptnode-idnodes 1b)

(let ((1b-node (ptnode 1b)))
(make-idnode-1list nil (ptnode-free lb-node) lb-node))))

This concludes the description of PAGEN and the attribute grammar tools in DFCS. The next
chapter will describe the other front-end modules.
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Chapter 4

Front End Modules

4.1 Introduction

Unlike some compilers which generate low-level code directly, the Id compiler uses parse-trees as one
of its intermediate representations for programs. More detailed documentation about the parse-tree
data structure can be found in [10]. The front end of the Id compiler is the group of modules which
operates on the parse-tree representation.

Id Source File
)
file-parser or stream-parser
)
pre-scope-analysis—-desugaring

i)

scope—analysis
i)

type-checking
i)

overloading-translation

N
lambda-1lift

i)
Id Compiler Middle End

Figure 4.1: Structure of Current Id Compiler Front End (3/18/91)

4.2 The Modules

Each module description briefly describes some high-level characteristic of the module, including:

Module: The defcompiler module definition.

Options: A description of the module’s options.
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Description: A declarative description of the module’s effect on the parse tree.
Strategy: The algorithms used by the module.

Author: Primary person responsible for coding.

Caveats: Known limitations, warnings, points of interest, etc.

Each module in the front end of the compiler reads or modifies a number of global data structures
in addition to its explicit parse-tree argument and result. The following entries, for each module,
provide information about its usage of global data structures:

Parse-Tree Properties: Parse-tree node properties.
Parse-Tree Slots: Parse-tree node slots.

Not each module has all the entries filled in. If a module is the first to define an entry in a
global structure or is the exclusive user of an entry then the entry’s name is in boldface followed
by a description. Otherwise, just the name is listed.

4.2.1 Parsing
Module:

(defcompiler-module file-parser id-compiler
(:output parse-tree def)
(:levels-marked program)
:before-function initialize-lexical-analyzer-for-file)
:function parse-def)
:wrapper-macro file-parser-wrapper)
:options input-file))

NN NN

(defcompiler-module stream-parser id-compiler

(:output parse-tree def)

(:levels-marked program)
:before-function initialize-lexical-analyzer-for-stream)
:function parse-def)
!Wrapper-macro stream-parser-wrapper)
:options input-stream initial-character

initial-line initial-column input-stream-truename))

N N NN

Options:

e input-file is the filename of the Id file to be compiled. This is a positional argument which
has the highest importance (meaning that this argument will appear first in the argument
list of the compile function). This option is only used for file-compiles.

e input-stream is the stream that is passed to the compiler. This is a positional argument
which also has the highest importance. (This argument will also appear first in the argument
list of the compile function. However, there is no conflict with the input-file option, because
only one of these two options is ever specified for any compile function.) This option is only
used for editor-compiles.
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e initial-character is the initial setting for the counter that the parser uses to keep track
of where each lexeme comes from in the editor buffer. Eventually, this information is used
for error messages and source debugging information. This option is only used for editor-
compiles, and the editor calculates the character offset from the beginning of the buffer. (For
file-compiles, the character counter is automatically set to 0, so there is no need for an option.)

e initial-line is similar to the initial-character option, except that this is the line offset
from the beginning of the buffer.

e initial-column is similar to the previous two options, except that this is the column offset
from the current line.

e input-stream-truename is only used for editor-compiles. This is the truename of the file
which is associated with the buffer in which the region or definition is being compiled.

Description: Only one of these two modules (file-parser and stream-parser) are used, de-
pending upon whether we are compiling a file or an editor buffer. file-parser reads from a file
stream, and stream-parser reads from an editor stream.

The two modules are similar: they read the parser tables generated by PAGEN and parse the
input stream. The only function of these modules is to produce parse-trees from Id source.

Strategy: The parser is a LALR(1) parser. More information about parsing can be found in [1].
The chapter on PAGEN describes how to change the grammar of the language. Both file-parser
and stream-parser are just interpreters for the parser tables generated by PAGEN.

Author: Ken Traub, May 1986

4.2.2 Desugaring

Module:

(defcompiler-module pre-scope-analysis-desugaring id-compiler
(:input parse-tree def)
(:output parse-tree def)
(:options loop-bound-mode)
(:function pre-scope-analysis-desugar-def))

Options:

e loop-bound-mode selects whether for loops will be bounded or unbounded. This option
is set to either :bounded-for-loops or :unbounded-for-loops. If the option is set to
:bounded-for-loops, then the compiler will generate the bounded loop schema, which has
slightly more overhead than the unbounded loop schema.

The default is :unbounded-for-loops.
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Description: Several types of desugaring are done in this module:

1. List comprehensions, array comprehensions, accumulator comprehensions, and stream com-
prehensions are translated into loops.

2. Array literals are desugared into either a while loop or a list of assignments, depending upon
whether its bounds are known at compile time.

3. Managers are desugared to abstract types.
4. Multi-clause def’s are desugared to case statements.

5. Lambda’s (fun’s) are desugared to be internal def’s (which are eventually lifted to the top-
level by the lambda lifting module).

6. for loops are transformed into while loops.

Strategy: Recursively descend the parse tree. When you find a pattern that matches one that
you wish to desugar, cut and paste that pattern.

Author: Ken Traub, January 1987

4.2.3 Scope Analysis
Module:

(defcompiler-module scope-analysis id-compiler
(:input parse-tree program)
(:output parse-tree program)
(:function scope-analyze-program))

Description: variable objects are added to parse tree nodes relating valriable definitions and
their uses (def-use information). This analysis is done using the attribute grammar which is de-
scribed in more detail in [10]. More information about attribute grammars can be found in [1] and
in the previous chapter.

Strategy: To compute def-use information, a synthesized pt-node attribute is defined for the

definition point of each variable use, and an inherited attribute is defined for the use point of each

variable definition. Each node is then touched to calculate the value of each attribute variable.
The type inference system also uses attribute grammars to calculate the types.

Author: Ken Traub, January 1987

4.2.4 Type Inference and Checking
Module:
(defcompiler-module type-checking id-compiler
(:input parse-tree program)
(:output parse-tree program)

(:function type-check-program)
(:options type-check))
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Options:

e type-check determines whether the compiler will type infer and type check. If this option is
set to t, then the compiler will infer and check the types of the program; if this option is set
tonil, then the parse tree will pass through this module without alteration.

The default is t.

Description: The type-inference system determines the type of each variable and function. A
more detailed description of the type-inference system can be found in Shail Aditya’s Master’s thesis
[4]. The type-inference system is based upon the Hindley /Milner type-inference system used in ML,
and has been extended to work with separate compilation. A clear exposition of the Hindley/Milner
type-inference algorithm can be found in [3].

Strategy:
Author: Shail Aditya, July 1988

Caveats: The type-inference module has the same limitations that the Hindley-Milner system
has. It has exponential complexity, and limits the polymorphism of let-block assigned variables.

In addition, in order to resolve the type of certain functions, sometimes separate compilation
will not work appropriately. Although information is preserved between separate compilations, if
that information changes, then enough context must be compiled in order to resolve the types of
the changed functions.

4.2.5 Overloading Resolution
Module:

(defcompiler-module overloading-translation id-compiler
(:input parse-tree program)
(:output parse-tree program)
(:function translate-overloaded-program))

Description: Most of the work for this module is actually done in the type-checking module.
This module takes the information deduced in the type-checking module and cuts and pastes
parse tree nodes so that each overloaded operator is transformed into the correct type instance of
that operator.

After this module, each operator has an unambiguous type. For example, all + operators will
be translated to either plusfloat or plusint. If the operator cannot be resolved, an error message
is printed.

Strategy: With the type information calculated in the type-checking module, the context of
each overloaded operator resolves the type of the operator. Each node is visited, and if that node
is an overloaded operator, the type of the operator is looked up from information calculated in
the type-checking module and that operator is replaced with the correct type instance of the
operator.

Author: Shail Aditya Gupta, July 1990
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Caveats: The overloading-translation module does not have much more functionality than
the type-checking module. These two modules are separate because the type-checking module
does not do any cut and paste on the parse tree, and overloading-translation only does cut
and paste. In the future, this module may be incorporated into the type-checking module.

4.2.6 Lambda Lifting
Module:

(defcompiler-module lambda-1ift id-compiler
(:input parse-tree def)
(:output parse-tree def)
(:function lambda-lift-def))

Description: Nested def’s are lifted to the outermost scope, making every function definition a
top-level function. Extra arguments are added to the previously internal function definition to pass
along variables that the internal function references from its lexical scope.

Strategy: The algorithm for lambda lifting is taken from [2].

Author: Ken Traub, October 1986

Caveats: Lambda lifting is implemented to support nested function definitions. Scheme and Lisp
use environments in order to support nested function definitions. It is not clear that lambda lifting

is more efficient than environments. Perhaps we should do an environment-based implemention in
order to clarify the various issues involved in the relative efficiency of these two implementations.
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Chapter 5

Middle End Data-Structures and
Tools

5.1 Introduction

This chapter and the following chapter discuss the middle end of the Id compiler. In theory, the
middle end of the compiler encompasses a machine independent data structure for representing
Id programs and a set of modules that transform one instance of the data structure into another
semantically equivalent (but hopefully more efficient) instance. However, one should always be wary
of sweeping claims. As in most optimizing compilers, our current implementations of semantics
preserving optimizations have not always been rigorously checked (not of course, due to lack of
desire, but these problems are still open areas of research). Making claims that certain machine
independent code transformations result in more efficient execution (in time or space) on a particular
machine is even harder to decide. Therefore, the reader is encouraged to adopt a critical attitude
for the next two chapters and towards machine independent compiler optimizations in general until
the field reaches firmer ground.

Disclaimers aside, the overall philosphy of machine independent optimizations seems appropri-
ate. There are many well known program transformations that work best when applied before
the details of specific machine implementations obscure the landscape of a program. For the Id
compiler these include: optimizing accesses to statically known data (either through constant fold-
ing and propagation or fetch elimination from static structures), simplifying algebraic expressions,
unrolling procedure calls and loops, and hoisting code out of loops among others.

Also, over time, features that have more to do with specific machine models than machine inde-
pendent optimizations have crept into middle end modules. Hence the middle end is an amalgam
of modules that perform general optimizations as well as add features that make programs easier
to implement in the dataflow model or on a specific machine.

Current wisdom dictates that graphs are the most appropriate data structure for middle end
transformations. The Id compiler has the fortune to use very similar graph structures for both the
middle and the ETS back end (described in [5]), both program graphs (in the middle end) and ets
machine graphs (in the back end) are implemented on top of the same low level structure provided
by DFCS. Unfortunately, sometimes the underlying details of the low-level data structure obscure
the higher level abstraction used by the middle end (largely for reasons of efficiency). In particular,
it’s worthwhile to pay extra attention to the details of surfaces which can confuse the novice.
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5.2 Program Graphs

The Id compiler’s middle end modules manipulate program graphs, a graph data structure for
representing Id programs. Program graphs are a generalization of the dataflow graph data structure
provided by DFCS. Conceptually, progam graphs consist of instructions wired together into a graph:

Definition 1 A Program graph contains
1. A set of instructions, each with the following components:

(a) An opcode, represented by a keyword symbol.

(b) An external surface with a set of input and output ports. The name of the external
surface is the keyword symbol :exterior.

(c) Zero or more internal surfaces, each with their own sets of input and output ports.
The name of each internal surface is represented by a keyword symbol.

(d) Various other fields for characterizing an instruction’s properties and keeping bookkeeping
information.

2. A set of directed arcs connecting instruction output ports to instruction input ports:

e No input ports may have more than one incoming arc.

e Qutput ports have no limitation on the number of outgoing arcs.
3. An (implicit) notion of the graph’s inputs and outputs:

o A graph’s inputs are the set of its unconnected instruction inputs.

e A graph’s outputs are the set of its unconnected instruction outputs.

In the dataflow model, where arcs carry tokens from outputs to inputs, every dataflow in-
struction produces a complete set of output tokens when presented with a complete set of input
tokens. Program graph instructions have dataflow instruction behavior. Dataflow behavior can be
generalized to graphs of instructions as well.

Definition 2 A Basic Block (or just a block) is a program graph where if a token arrives at every
input:

1. FEvery output emits a token.

2. Fvery instruction in the graph executes exactly once.

Its useful to classify program graph instructions based on the number of internal surfaces they
have:

Definition 3 Simple instructions have no internal surfaces.

Simple instructions represent primitive Id operators (like + or i-store). A simple instruction’s
input ports represent arguments to the operator and its outputs represent the results returned by
the operator. Some simple instructions can be classified by their use of input and output ports:

e Purely functional instructions (like +) depend only on their inputs and have no observable
effects outside the results they return.
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e Purely side-effecting instructions (like i-store) have no outputs.

e Constant instructions have no inputs.

Definition 4 Encapsulating instructions (called encapsulators) have at least one internal sur-
face.

Each internal surface of an encapsulator connects to different, disjoint basic blocks. Encapsu-
lators are used to represent Id operators with complex translations from parse trees to blocks of
machine graph instructions (called translation schemas). The opcode of the encapsulating instruc-
tion represents the invariant part of the schema and the blocks connected to each internal surface
of the instruction correspond to the variant subgraphs of the schema.

Alternatively, encapsulators can be thought of as simple instructions whose semantics are com-
pletely determined by their opcode and internal blocks. They represent black boxes, hiding internal
surfaces from the outside. Like simple instructions, they produce a full set of output tokens on
their external outputs when presented with a full set of tokens on their external inputs.

For example, the Id if expression is represented by an if encapsulator with the following
components:

1. An external input taking the output of the predicate expression.
2. n external inputs for the arguments (free variables) of the then and else expressions.
3. m external outputs.

4. Two internal surfaces named :then and :else which connect to blocks of n inputs and m
outputs.

Note, after being presented with a full set of input tokens, the if encapsulator produces a full
set of output tokens, though only one of its internal blocks executes.

5.3 Port Names

The input and output ports on each surface of an instruction can be referred to either by number or
symbolic name. If a surface has n input ports then each input port can be referred to as a number
in the range {0,...,n — 1} (similarly for output ports). Alternatively, ports can be referred to by
symbolic names (which map onto port numbers) using the following conventions:

e A Symbolic Name is either

1. A keyword symbol (a simple name).

2. (keyword . 1i) (a subscripted name), where 7 is a non-negative integer.

e An input or output port may have at most one symbolic name.

No two input ports or output ports of the same instruction may have the same symbolic name
although an input port and an output port may have the same name.

If (keyword . n) is a port name then sois (keyword . i) for all i from zero through n.

Subscripted names with consecutive subscripts always map to consecutive port numbers.
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The following functions translate between port names and numbers:

instruction-input-name-to-number instruction input-name [Function]
instruction-output-name-to-number instruction output-name [Function]
instruction-input-number-to-name instruction input-number [Function]
instruction-output-number-to-name instruction output-number [Function]

These functions return nil if the name or number is ill-defined for the given instruction. The names
returned are always subscripted.

5.4 Arcs, Sources and Sinks

Definition 5 Sources and sinks allow the programmer to specify a specific output or input port
of an instruction:

e A source points to an instruction’s output port.

e A sink points to an instruction’s input port.
Definition 6 An Arc is a source-sink pair.

Arcs are implemented as pairs of sources and sinks. The source of the pair points to the output
port attached to the arc’s tail. The sink of the pair points to the input port attached to the arc’s
head.

Notice that instructions never point directly to other instructions. Instead, sources and sinks
provide a doubly linked list corresponding to arcs. For example, if instruction A points to instruction
B then A points to a sink pointing to an input of B and B points to a source pointing to an output
of A.

Sources, sinks and arcs can also carry annotations which are either nil or a pointer to some
data-structure.

Constructors
make-instruction-sink instruction port &optional annotation [Function]
make-instruction-source instruction port &optional annotation [Function]

Creates and returns an instruction source or sink referring to an input or output port of instruction.
Port may be either a symbolic name or a port number.

Selectors
instruction-sink-instruction instruction-sink [Function]
instruction-source-instruction instruction-source [Function]

Returns the instruction referred to by instruction-sink or instruction-source. May not be used with
setf.

instruction-sink-input instruction-sink [Function)]
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instruction-source-output instruction-source [Function)]

Returns the port number referred to by instruction-sink or instruction-source. Note that the value
returned is always a number. These functions are discussed further in section 5.6. May not be used
with setf.

instruction-sink-annotation instruction-sink [Function)]
instruction-source-annotation instruction-source [Function]

Returns the annotation slot of instruction-sink or instruction-source. May not be used with setf.

5.5 Parameters, Slots and Properties

Instruction Parameters

Instruction parameters are used when one opcode stands for a family of instructions. For example,
there might be an instruction with opcode :constant which emits a certain value upon the receipt
of any input. The :constant instruction’s parameter determines what constant it emits.

Instruction Slots

It’s possible to define extra slots for program graph instructions. These extra slots can store
additional information about a given instruction. Also, slots can be added and removed without
the entire compiler being recompiled. Section 5.13 describes slots used in the compiler’s current
implementation.

Instruction Properties

Read-only slots called properties can be set up that store information for all instructions with a
particular opcode. See section 5.7 and the explanation of the define-program-graph-instruction
macro for the details of defining instruction properties. Section 5.12 describes properties used in
the compiler’s current implementation.

5.6 Using Program Graph Instructions

Now that the basic components of program graph instructions have been defined, we can describe
the Lisp functions operate on instructions.

Selectors

instruction-opcode instruction [Function]

Returns the contents of the opcode slot of instruction.

instruction-parameter instruction [Function]

Returns the parameter value of instruction. May be used with setf.

instruction-encapsulator-p instruction [Function]

Returns true if the instruction contains internal surfaces.
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instruction-block-names instruction [Function]

Returns a list of the names of instruction’s surfaces.

instruction-<property-name> instruction [Function]

Returns the value of the property for instruction. May not be used with setf.

define-program-graph-instruction-slot selector-name &key copyable-p [Macro]

Sets up a new instruction slot with name selector-name.

instruction-<slot-name> instruction [Function]

Returns the value of the slot for instruction. May be used with setf.

instruction-n-exterior-inputs instruction [Function)]
instruction-n-exterior-outputs instruction [Function]

Returns the number of exterior inputs or outputs for instruction.

5.6.1 Surface Related Functions

For historical and efficiency reasons, an encapsulator’s internal surfaces are manipulated with the
same functions used for manipulating a simple instruction’s external surface. In actuality, input
and output ports are assigned to different surfaces only by convention. For simple instructions, an
instruction’s input and output ports are the same as the ports for its exterior surface. For encap-
sulators, functions are provided to map between the absolute ports of the instruction (considering
all ports to be on the :exterior surface) and the ports for each surface.

Fact 1 A simple instructions input and output ports are the same as the ports on its exterior
surface.

instruction-inputs instruction [Function]

Returns an array containing the inputs of instruction. Each element of the array is an instruction
source and each element’s index is its port number. May not be used with setf.

instruction-outputs instruction [Function]

Returns an array containing the outputs of instruction. Each element of the array is a list of
instruction sinks and each elements index is its port number. May not be used with setf.

Fact 2 An encapsulating instruction has an indirect mapping between the ports of its surfaces
and its absolute ports referenced by instruction-inputs and instruction-outputs.

There is an indirect mapping between: (<surface-name>, <surface-port-num>) and <absolute-
port-num>

Mapping from Surface to Absolute Ports

The following functions implement the mapping from (<surface-name>, <surface-port-num>) to
<absolute-port-num>.

instruction-surface-lowest-input instruction surface [Function)]
instruction-surface-lowest-output instruction surface [Function]
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instruction-surface-highest-input instruction surface [Function]
instruction-surface-highest-output instruction surface [Function]

These functions return the number of the lowest (or highest) numbered port belonging to a given
surface, or nil if there is no such surface. Note that a number is returned in the case where a
surface exists but has no ports.

Note: <absolute-port-num> = <lowest-surface-absolute-port-num> + <surface-port-num>.

Mapping from Absolute to Surface Ports

The following functions implement the mapping from <absolute-port-num> to (<surface-name>,
<surface-port-num>).

instruction-input-surface instruction port [Function)]
instruction-output-surface instruction port [Function]

These return the surface on which a given port of instruction lies, or nil if the instruction has no
such port.

5.6.2 Using Internal Surfaces

The definition of interior surfaces, as implemented above, usually confuses novice users. Though
program graph instructions make no distinction between internal and external ports, a user’s mental
picture of an instruction does! In the diagrams we draw to represent an encapsulating instruction
(see figure ??), external inputs connect to the “top” of the instruction and outputs extend from
its “bottom.” However, for internal blocks, outputs hang off the “top” of the internal block and
inputs enter from the “bottom” of the internal block. It’s vital to keep in mind that the outputs
from an interior surface feed the inputs of an internal block (and vice versa for the inputs of an
interior surface).

An Example

Here are some Lisp functions using instruction surfaces:

;33 multiple value giving number of lowest & highest port for given surface

(defun instruction-surface-input-numbers (instruction surface)
(values (instruction-surface-lowest-input instruction surface)
(instruction-surface-highest-input instruction surface)))

(defun instruction-surface-output-numbers (instruction surface)
(values (instruction-surface-lowest-output instruction surface)
(instruction-surface-highest-output instruction surface)))

;33 Return sequence that corresponds to the subsequence of the port array
;55 for a given surface

(defun instruction-surface-inputs (instruction surface)
(multiple-value-bind (1 h)
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(instruction-surface-input-numbers instruction surface)
(and 1 h (coerce (safe-subseq (instruction-inputs instruction) 1 h) ’list))))

(defun instruction-surface-outputs (instruction surface)
(multiple-value-bind (1 h)
(instruction-surface-output-numbers instruction surface)
(and 1 h (coerce (safe-subseq (instruction-outputs instruction) 1 h) ’list))))

5.7 Defining Program Graph Instructions

The define-program-graph-instruction macro provides a convenient way of declaring program
graph instructions. It sets up a blueprint that defines all instructions of a given opcode. It declares
a parameterized constructor function to create instances of the instruction having the specified
opcode. It defines the symbolic names of input and output ports, interior surface names, and what
ports are associated with what surfaces. It also defines properties associated with any instructions
created by the constructor.

The syntax is as follows:

define-program-graph-instruction opcode (argl arg? ...) &clauses [Macro]

{(:inputs {input-name input-expr}x)}
{(:outputs {output-name output-expr}*)}
[(:constructor-name constructor-name)]
[(:blocks {block-name input-names output-names}x)]
[(:properties {indicator value}*)]

input-expr :integer

output-expr :integer

<input-names> = (keyword*)

<output-names> = (keyword*)

e The :inputs and :outputs clauses are required; all others are optional.

e The numbers of inputs and outputs are determined by evaluating the expression for each port
name, where these expressions may refer to the arguments.

e The :blocks clause may be used to declare that certain inputs and outputs belong to interior
subgraphs; there is always a surface named :exterior to which all ports not mentioned in
the :blocks clause belong. If the :blocks clause is omitted entirely, then the only surface is
the :exterior.

e Ports within a surface are always assigned consecutive numbers. The lowest numbers are
assigned to the :exterior surface, and the remaining numbers are assigned to surfaces in the
order in which they appear in the :blocks clause. Within each surface, the ports are ordered
as they appear in the :inputs or :outputs clause.

e The :properties clause can be used to associate properties to all instructions of a given
opcode; Note that the properties are really assigned to opcodes, rather than individual in-
structions.

Evaluating the macro defines the lisp constructor:
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make-<opcode>-instruction {arg}* [Function]

The constructor function for the instruction. The name may be overridden by the constructor-name
clause. The argument values may be used to parameterize the numbers of inputs and outputs.

<opcode>-instruction-arg<i> instruction [Function]

Returns the ith argument to the constructor creating the instruction

Examples

Here’s an example defining a simple instruction.

(define-program-graph-instruction make-tuple ()
(:constructor-name make-make-tuple-instruction-internal)
(:inputs :trigger 1 :anchor 1)
(:outputs :output 1 :signal (if *resource-manager-signal-p* 1 0))
(:properties :generate-ets-function ’g-ets-make-functional-tuple-instruction
:side-effecting-p t
:create-like-p t
:k-allocator :make_k_tuples
:k-deallocator :free_k_tuples))

;33 Constructor for make-tuple instruction. Notice make-...-internal is used
;33 to construct a tuple instruction with no parameter. The parameter of
;35 resulting instruction is set to be size. Parameters should be definable
;;; with define-program-graph-instruction, but apparently they must be
;33 set by hand!
555
(defun make-make-tuple-instruction (size)
(let ((make-tuple-instruction (make-make-tuple-instruction-internal)))
(setf (instruction-parameter make-tuple-instruction) size)
make-tuple-instruction))

555

;33 Selector for the size of the tuple the instruction creates

555

(defun make-tuple-instruction-size (make-tuple-instruction)
(instruction-parameter make-tuple-instruction))

Here’s an example defining an encapsulating instruction:

(define-program-graph-instruction loop (n-variables n-constants)
(:inputs :predicate 1
:loop-constant n-constants
:predicate-output n-variables
:loop-input n-variables
:body-output n-variables)
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(:outputs :predicate-input n-variables
:body-input n-variables
:loop-output n-variables)

(:blocks :predicate (:predicate-output :predicate) (:predicate-input)
:body (:body-output) (:body-input))

(:properties :iterator-p t))

The example above defines the following functions:
(make-loop-instruction n-variables n-constants)
(loop-instruction-n-variables loop-instruction)

(loop-instruction-n-constants loop-instruction)
(instruction-iterator-p instruction)

5.8 @!-opcode program graph instructions

To be filled in.

5.9 Wiring Instructions Together

For now see the DFCS manual for a description of how to wire together dataflow graphs.

5.10 Traversing Program Graphs

Instruction Marks and Numbers

When traversing program graphs it’s often useful to mark instructions as they are processed, to
avoid following loops in the graph. Instructions may also be numbered with non-negative integers.
Algorithms which traverse program graphs cannot mark some instructions and number others since

marks and numbers are stored in the same location within an instruction structure.
The functions below control marking a program graph:

reset-all-instruction-marks
mark-instruction instruction
instruction-marked-p instruction
unmark-instruction instruction

The functions below control numbering a program graph:

reset-all-instruction—-numbers
number-instruction instruction number
instruction-number instruction
unnumber-instruction instruction

Iterating Over Blocks

Function
Function
Function
Function

[ ]
[ ]
[ ]
[ ]

Function
Function
Function

[ ]
[ ]
[ ]
[ ]

Function

The with-basic-block-array macro provides an efficient way to point to every instruction in a
basic block. The macro stores the simple and encapsulating instructions of a block in two arrays

(in no particular order). Iterating over the arrays provides access to every instruction in the block.
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with-basic-block-array (bb-array encaps-array encapsulator bb-name) body [Macro]

<bb-array> := symbol

<encaps-array> 1= symbol
<encapsulator> ::= <lisp form evaluating to an encapsulator instruction>
<bb-name> 1= <keyword denoting a basic block in encapsulator>

e bb-arrayis bound to an array whose elements are the instructions comprising the block named
bb-name in the encapsulator.

e encaps-array is bound to an array containing all instructions in it bb-array which are them-
selves encapsulators.

e The original encapsulator is not included in either array.
e Any values returned by the body are returned as the result of the entire macro.
e with-basic-block-array changes instruction marks.

With-basic-block-array is a macro because it recycles the arrays after executing the body.
Therefore, no pointers to the arrays must exist when the body exits! If necessary, the
body can make copies of these arrays.

An Example

Here’s a code fragment lifted from the circulate-structures module. Circ-basic-block tra-
verses a basic block within an encapsulator from the bottom-up, applying circ-loop-instruction
to every loop encapsulator in the block.

(defun circ-basic-block (encapsulator surface)
(with-basic-block-array (instruction-array encapsulator-array encapsulator surface)
instruction-array
(map nil #’circ-encapsulator encapsulator-array)))

(defun circ-encapsulator (encapsulator)
(loop for block in (instruction-block-names encapsulator) do
(circ-basic-block encapsulator block))
(when (eq (instruction-opcode encapsulator) :loop)
(circ-loop-instruction encapsulator)))

Iterating Without Blocks

The with-instruction-array stores all instructions in a program graph into an array, not sepa-
rating encapsulators from simple instructions and not heeding block boundaries.

with-instruction-array (instruction-array dfgraph) body [Macro]

<instruction-array> ::= symbol
<dfgraph> = <lisp form evaluating to a dataflow graph>

Instruction-array is bound to an array whose elements are all the instructions in the dfgraph.
Instruction-array contains a pointer to every instruction in the graph, including those hidden by en-
capsulators. The restrictions for array reuse in with-basic-block apply towith-instruction-array.
Note, that when dealing with program graphs, with-basic-block is preferred.
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5.11 Anchors, Signals and Triggers

Though program graph’s are machine independent, they are also the preferred site for adding some
machine dependent features. The fact that these transformations occur in the machine-independent
“middle-end” is just a matter of semantics. In fact, it’s more correct to view the middle-end as
a mixture of machine independent optimizations and some machine dependent transformations. I
describe these concepts here because the modules that implement them work on program graphs
as defined above.

5.11.1 Signals and Triggers

The abstract model of dataflow graph execution, though useful for reasoning about graph trans-
formations, has flaws that make it hard to realize directly in executable machine instructions.
The requirement that every instruction in a basic block execute exactly once, when all inputs
are presented, needs clarification. In a block, reachable instructions with inputs fire after inputs
are presented to the basic block since tokens will travel to every reachable instruction. However,
constant instructions with no inputs, are not reachable from the block’s inputs and have no local
method of determining when to fire. Similarly, it’s often necessary to know when every instruction
in a block has executed since the resources required by the graph’s execution can be deallocated.
But again, instructions with no outputs don’t contribute to the outputs of the block making a
simplistic check of the outputs insufficient.

In order to solve the above problems and make dataflow graph evaluation easier to implement,
two new software abstractions are added to our model of program graphs: signals and triggers. In
essence, adding signals and triggers to the program graph gives every instruction at least one input
and one output, making the question of when an instruction fires simple to determine. As a first
approximation, trigger inputs are added to instructions with no other inputs and signal outputs
are added to instructions with no other outputs:

Definition 7 A Trigger is an additional input to an instruction which must receives a token
whenever a set of inputs arrive (the trigger may itself be the only input).

Definition 8 A Signal is an additional output of an instruction which emits a token whenever
the instruction fires and a set of outputs appear (the signal may itself be the only output).

With these definitions in hand, we can define triggers and signals for basic blocks:
Definition 9 A Block Trigger is an additional input to a basic block that receives a “trigger
token” whenever inputs arrive at the block. One token is received for every complete set of inputs

that arrive.

Definition 10 A Block Signal is an additional output from a basic block that must emit a “signal
token” after every instruction with a signal output fires.

Note, a block signal indicates only that instructions with signal outputs have fired. All instruc-
tions in a block have fired only after all outputs from the block (including the block signal) emit

tokens.

Definition 11 A Signal Tree is a graph of instructions with n-inputs and one output that fires
after receiving all it’s inputs.
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A block signal is normally computed by connecting it to the output of a signal tree whose inputs
are connected to all the signal outputs in the block. Though the addition of signals and triggers
is closely related to a particular machine implementation, it’s easier to add them at the program
graph level

5.11.2 Anchors

Signals and triggers make the semantics of basic blocks explicit by providing paths from a block’s
inputs to all its instructions and from all its instructions to its outputs. However, signals and
triggers also complicate the graph considerably and are usually added just before leaving the middle
end. Before their addition, blocks can contain subgraphs with no paths to the block’s inputs or
outputs (for example, constant instructions connected to purely side-effecting instructions). During
optimizations it’s easier to work with fully connected graphs, so extra inputs are provided to
“anchor” all instructions with either no inputs or outputs.

Definition 12 An Anchor is an additional input to an instruction with either no input’s or
output’s that serves to keep blocks connected.

Definition 13 A Block Anchor is an additional input to a basic block that connects to every
instruction in the block with no inputs or outputs

Semantically, anchors are superfluous. They are merely a convenience to the programmer,
providing a simple way to keep blocks connected.

5.12 Program Graph Properties

What follows is a list of some currently used program graph properties:

constant-p :boolean True for constant instructions and loop constants.
propagatable-constant-p

strict-p :boolean True for instructions which are strict in all their arguments.
folding-function : value”™ — > value™ Function which “executes” an instruction, taking n
inputs and returning m outputs.

side-effecting-p :boolean True for instructions that are non-functional. Includes those that
allocate unfilled storage for aggregate structures as well as explicit store instructions.
apply-like-p :boolean True for any instruction that matches the type signature of the
apply instruction. Apply-like instructions are used to apply a function whose arity won’t
be satisfied by the given arguments.

encapsulator-propagation-alist

create-like-p :boolean True for instructions that return a pointer to an aggregate structure
that can be fetched from or stored into

store-like-p :(list Input-port Qutput-port fe-Match-p) Instructions that store into part of an
aggregate data structure. All store-like instructions are side-effecting.

fetch-like-p :(list Input-port Output-port fe-Match-p sfe-Match) Instructions that retrieve
part of an aggregate DS created by a create-like instruction.

Where:

fe-Match-p = (store-inst x fetch-inst — > boolean)

is the type of a function which returns true if the fetch instruction retrieves the same item
put in by the store instruction (ie storing and fetching on the same index).
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sfe-Match = (make-inst x fetch-inst — > input-Port)

is the type of a function which returns the make-inst’s input port name that corresponds to
the object the fetch instruction is fetching.

For example, if (match :sfe-match ),(cons :make-inst ) and (head :fetch-inst ) then (match
cons head) returns ‘(:input . O0).

associative-p :boolean True for associative instructions.

generate-ets-function :pg-inst — > ets-machine-graph Generates an ets machine graph for
a given program graph instruction.

sr-before-function :

5.13 Program Graph Slots
What follows is a list of currently used program graph slots:

instruction-unfold-count :copyable-p t
instruction-peel-count :copyable-p t
instruction-loop-type :copyable-p t
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Chapter 6

Middle End Modules

6.1 Introduction

The program graph structure is extremely flexible and expressive. Constraining middle end modules
to work on program graphs is hardly a restraint since the number of different types of instructions
in a program graph is indefinitely extendable. In retrospect, the design of the Id compiler is com-
plicated by an intermediate language that is too flexible (though extensions to the core of the
intermediate language are easier to express, if not implement). Without a more restrictive notion
of an intermediate language, adding new program graph instructions can impinge on every module
in the middle end. For ease of development, it’s probably best, to define several intermediate lan-
guages, each a small perturbation of the other, which have modules that work exclusively on them.
Other, more general modules can be defined to work with every perturbation. In actuality, the Id
compiler implements this scheme, but its boundaries are hard to define without close examination
of the compiler’s code.

6.2 Ordering the Modules

The middle end modules can be divided into two categories: tranformation and optimization. Op-
timization modules perform machine independent optimizations within a given intermediate lan-
guage. They can be used in any order, any number of times (including not at all). Transformation
modules, convert one intermediate language to another. Usually they perform a small perturbation
of the intermediate language by either excising opcodes, adding opcodes or enforcing some machine
dependent constraint on the graph. They must be used exactly once in a sensible order.

e The following modules transform the program graph:
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generate-program-graph Creates a program graph from a parse tree.

manager-synchronization Connects release instructions.

call-substitution Stores inlinable functions in the Exsym table.
synchronize-release Translates the synch instruction.

thunk-splitting Translates the thunk instruction.
inlineable-definitions Inlines functions.

loop-constant-propagation Inserts loop-constant instructions.

code-blocks Splits loop’s into seperate code blocks.

loop-analysis Determine’s when a while loop can be used as a for loop.
unroll-loops Unroll and unfold loops.

signals-and-triggers Insert signals and triggers into the graph.

The above ordering of transformation modules gives a middle end with a minimum number
of modules.

e The following modules optimize the program graph:

fetch-elimination Remove fetch’s when a corresponding store found.
simple-fetch-elimination Remove fetch’s from functional data-structures.
dead-code-elimination Remove dead code.

constant-propagation Propagate constants through encapsulators and bodies.
cse-and-hoisting Common subexpression eilmination and hoisting out of loops.
partial-evaluation Simplify some algebraic identities.

circulate-structures Hoist allocate’s and deallocate’s out of loops.

Note, a minimal middle end won’t necessarily compile quickly since some optimizations shrink
the the program graph’s size considerably.

6.3 The Modules

Each module description briefly describes some high-level characteristic of the module, including:

Module: The defcompiler module definition.

Options: A description of the module’s options.

Description: A declarative description of the module’s effect on the program graph.
Strategy: The module’s method of traversing the graph.

Author: Primary person responsible for coding.

Caveats: Known limitations, warnings, points of interest etc.

Each module in the middle end of the compiler reads or modifies a number of global data
structures in addition to its explicit program graph argument and result. The following entries, for
each module, provide information about its usage of global data structures:

Exsym Properties: External symbol properties.
Graph Properties: Dataflow graph properties.

Instruction Properties: Program graph instruction properties.
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Instruction Slots: Program graph instruction slots.

Not each module has all the entries filled in. If a module is the first to define an entry in a
global structure or is the exclusive user of an entry then the entry’s name is in boldface followed
by a description. Otherwise, just the name is listed.

6.3.1 Generate Program Graph
Module:

(defcompiler-module generate-program-graph id-compiler
(:input parse-tree procedure)
(:output program-graph procedure)
(:options check-bounds)
(:function gpg-definition))

Description: The primary function of this module is to transform the parse-tree into a program
graph. Pattern matching is also compiled out at this stage, although it should probably be done

at an earlier module.
1

Strategy: The information obtained from the scope-analysis module is used to wire together
instructions, given the parse-tree.

Author: Ken Traub, October 1986.

Caveats: Pattern matching should logically being in the desugaring module in the front end. At
this point, it would probably be too difficult to change move this code there.

6.3.2 Fetch Elimination

Instruction Properties: store-like-p, fetch-like-p

Module:

(defcompiler-module fetch-elimination id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options fetch-elimination)
(:function fe-code-block))

Description: Fetch elimination traverses the program graph searching for instructions storing
values into data aggregates. When a “store-like” instruction is found it looks back from it’s inputs
for the create instruction allocating the aggregate. If found it follows the aggregate’s other uses
looking for other fetch instructions retrieving information placed in the aggregate by the store.
These fetches can be eliminated by rewiring from the store instruction’s input.

'Nikhil and Arvind figured out the algorithm for doing pattern matching regardless of the order of the patterns.
The algorithm for this is described in the file: /jj/nikhil/haskell/pattern-matching.text Unfortunately, this file
has not been published — perhaps it should be turned into a CSG memo. Other pattern matching algorithms can be
found in Simon Peyton Jones’s book [7].
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Strategy: Uses with-instruction-array to traverse every instruction in the graph, hence it
doesn’t do fetch elimination across encapsulator boundaries?. Fetch elimination is defined for i-

structures, tuples, sums and cons.
Caveats: Fetch elimination doesn’t look across encapsulator boundaries.

6.3.3 Simple Fetch Elimination

Instruction Properties: fetch-like-p

Module:

(defcompiler-module simple-fetch-elimination id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options fetch-elimination)
(:function sfe-code-block))

Description: Traverse the program graph searching for instructions fetching from a data aggre-
gate. When the fetch is from an aggregate allocated by a functional create instruction (determined
by the result of sfe-match) then the fetch instruction can eliminated by wiring directly from the
create instruction’s input.

The following pairs of functional <constructor, selector> instructions can be “short-circuited”
(ie. an input of the constructor instruction can be wired around the selector function. The, no
longer connected, selector function can be removed.
<make-functional-tuple, tuple-fetch>

<make-functional-sum, sum-fetch>
<make-functional-sum, disjunct-number>

Strategy: Uses with-instruction-array to traverse every instruction in the graph, hence it
doesn’t look across encapsulator boundaries.

Author: Jonathan Young, September 1988.
Caveats: Simple fetch elimination doesn’t look across encapsulator boundaries.

6.3.4 Dead Code Elimination

Instruction Properties: side-effecting-p, create-like-p

2To with-instruction-arrayan encapsulator’s subgraphs are disjoint from the graph containing the encapsulator.
Logical connections between the two are determined by the semantics of the encapsulator and are captured, for simple
cases by an encapsulator’s encapsulator-propagating-alist property
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Module:

(defcompiler-module dead-code-elimination id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options dead-code-elimination)
(:function dce-code-block))

Description: There are three types of dead code elimination:

1. Remove non-encapsulating, non-side-effecting instructions with unused outputs.

2. Remove arcs from encapsulators.

(a) If there is an if output not used, then disconnect the corresponding arcs feeding the
interior then-output and else-output.

(b) If there is an if input or loop constant not used within any interior blocks, disconnect
the corresponding arc feeding the exterior.

3. Find structure creating instructions that only feed structure storing instructions. Remove
both the creating and storing instructions.

Strategy: Traverse the program graph doing 2a on the way down for each level. On the way up
do 1 for all non-SE instruction in the basic-block (searching out the largest subgraphs with unused
outputs) and 3 for all create-like instructions. Finish each level by doing 2b.

Author: Ken Traub, June, 1987

Caveats: Step 2 should be generalized to other encapsulators. Neither entire encapsulators,
useless circulating variables from loops, or dead but cyclic portions of the graph are eliminated.
Not all the dead code is caught in one pass.

6.3.5 Constant and Loop Constant Propagation

The constant propagation module and the loop constant propagation module use the same internal
functions and differ only in the way they handle propagation of loop constants.

Instruction Properties: folding-function, inhibit-constant-propagation.

Module:

(defcompiler-module constant-propagation id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function cp-dataflow-graph)
(:options constant-folding constant-propagation)
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Options:

constant-folding :boolean Whether to evaluate constant expressions at compile time.
constant-propagation :boolean Whether to propagate constants through encapsulators at
compile time.

Description: Constant propagation,
1. Evaluates expressions involving only constants.
2. Pushes constants through encapsulators.

3. Removes encapsulators that choose which internal block to execute based on a constant
expression by unencapsulating the appropriate block.

Strategy: Traverse the program graph top-down. At each level identify constant instructions
and either evaluate (fold) them (creating a new constant instruction) or, depending on where on
an encapsulator they are connected, push them in or use them to unencapsulate a block. If any
blocks are unencapsulated then iterate the process again at the same level. Otherwise, recurse on
the next lower level of the graph.

Module:

(defcompiler-module loop-constant-propagation id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function lcp-dataflow-graph)
(:options constant-folding constant-propagation

Description: The loop constant propagation module, uses the same code as the constant propa-
gation module except it performs an extra transformation on loop encapsulators. In addition to the
constant propagation optimizations, it removes constant arcs from the predicate and body blocks
of loop encapsulators and makes them the first variable arcs, splitting each arc with a loop-constant
instruction. Only constants actually used within the body or predicate are retained.

Caveats: The loop-constant conversion is a machine specific optimization. It turns free-variables
occurring inside loops into constants that must be evaluated before any of the loop’s iterations
begin. Conceptually, it belongs in the back end.

6.3.6 Code Block Partitioning
Graph Properties:

code-block-summary : See below.
n-loops :
constant-area-size :

Program Graph Instructions:

The fastcall-apply instruction applies a code-block to n args and get m results.
The fastcall-def instruction defines a code block taking n args and returning m results.
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Instruction Properties: side-effecting-p

Module:

(defcompiler-module code-blocks id-compiler
(:input program-graph procedure)
(:output program-graph procedure)
(:function cb-procedure))

Description: The code block partitioning module takes a procedure’s program graph and splits
off each of the graph’s loop encapsulators into their own code block. These code blocks are con-
tained inside fastcall-def encapsulators and linked into from the existing code blocks with
fastcall-apply. For efficiency, both the loop encapsulator and any of its constant inputs are
lifted into the fastcall-def. As configured, the module limits every code block (including the
top-level def) to at most one loop.

Naming Conventions: If the top level procedure is named F and has n code-blocks lifted out
then their names are F-0, F-1, ..., F-(n-1). Similarly, if F'-i has n code blocks lifted out then
their names are F-i-0, F-i-1, ..., F-i-(n-1), etc.

1. Each code block has the same :procedure-name property as the outer code block.

2. The outer code block has a :code-block-summary property describing the names of code
blocks lifted out and their hierarchy: (F (F-0) (F-1 (F-1-0))) saysF has three code blocks
lifted out, two from the body of F and one from the body of F-1.

Strategy: Code block partitioning proceeds top-down, splitting off all loop instructions at a given
level before proceeding into the next level of encapsulators. It differentiates between loops at the
top-most level and ones nested inside other loops. The first top-level loop is kept in the original
code block and all others are split out. When a loop instruction is found and split out, all the
constants attached to the loop’s inputs are taken along with the loop.

This module should be called immediately prior to signal and trigger generation.

Author: Ken Traub, May, 1986.

Caveats: The module’s name should say something about loops! Also, it uses a hack to find the
constant instructions connected to a loop’s inputs which doesn’t always give the best results. The
coding style might benefit from some graph cut and paste abstractions.

6.3.7 Inlinable Definitions

Exsym Properties:

:inlinable-definition :(string — dfgraph) maps procedure name to copy of dataflow-graph

Graph Properties: :inlinablep, :procedure-name
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Module:

(defcompiler-module inlinable-definitions id-compiler
(:input program-graph procedure)
(:output program-graph procedure)
(:function ild-procedure))

Description: For every code-block with the :inlinablep property true, make an entry in the
current exsym table associating the procedure name of the code-block with a copy of the code-

block.
Caveats: Inlinable definitions must come before call substitution.

6.3.8 Call Substitution

Exsym Properties: :arity, :inlinable-definition, :recursive-set.

Instructions:

:direct-apply :instruction Known arity application (is not apply-like and is side-effecting).
:apply-unsatisfied :instruction Unfulfilled arity application (is apply-like and not side-
effecting).

Instruction Properties: side-effecting-p, apply-like-p.

apply-like-p :boolean True for apply or apply-unsatisfied instructions
propagating-input-p :(encapsulator z input — boolean) True if input of encapsulator prop-
agates to each block.

Instruction Slots:

instruction-cs-forwarding :? forwarding pointer from instruction which has all its con-
nections moved to another instruction.

Module:

(defcompiler-module call-substitution id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options call-substitution)
(:function cs-code-block))

Description:

1. Replaces a chain of applications of correct arity with :direct-apply (works across encapsulator
boundaries) taking a :code-block literal (as the function) and n arguments.

2. Replaces applications of incorrect arity with :apply-unsatisfied

3. Performs inlining for identifiers having the :inlinable-definition property
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(a) If the identifier is a constant then plug in its definition

(b) If the identifier defines a function, then replace a :direct-apply by the code-block for
the function (if it’s not in the :recursive set of the top-level definition, to avoid infinite
unwinding). Only full arity applications will be inlined.

Strategy: Traverse the program graph top-down. For each encapsulator, attach a source to
the encapsulator’s anchor output. For every block in the encapsulator, first traverse every simple
instruction, searching for identifier literals. Inline inlinable constant identifiers. For every non-
constant identifier, follow its application chain (perhaps into an encapsulator) and convert it to
either a direct-apply on a code-block literal or a chain of apply-unsatisfieds. For every inlinable
code-block literal, inline the function body (subject to the recursive constraint) and recursively do
call substitution on its body. Finally, do call-substitution for every encapsulator in the current

block.

Caveats: The code for cs-inline-function could use some abstractions. A function application can
only be inlined if the function’s arity is satisfied by its arguments. It seems like there may be a
cleaner and more efficient way of handling this optimization.

6.3.9 Common Subexpression Elimination and Code Hoisting

Instruction Properties: side-effecting-p, associative-p.

Options:

cse :boolean Whether to eliminate common subexpressions
hoist :boolean Whether to hoist invariant subexpressions from loops

Module:

(defcompiler-module cse-and-hoisting id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function csech-dataflow-graph)
(:options cse hoist))

Description: This module combines two interrelated but conceptually independent optimiza-
tions, Common Subexpression Elimination (CSE) and Code Hoisting (CH)

CSE Common Subexpression Elimination (CSE) merges duplicated expressions that compute the
same function on the same inputs. CSE is done only within a given code block and only for
purely functional expressions composed entirely of simple instructions (see caveats). There
is no attempt to detect and eliminate equivalent encapsulators (the rationale being that this
case won’t occur often).

Combine Equivalent Inputs to Encapsulators CSE may make some inputs of a loop or seq
encapsulator redundant and they should be eliminated before CH or else code may be dupli-
cated when lifted out through the encapsulator inputs.

CH Code hoisting (CH), lifts invariant computations out of loop and seq encapsulators:
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seq Non-constant (ie having at most one input), pure functional instructions connected to
the seq inputs and their successors are hoisted out of the encapsulator “through their
inputs.”

loop Loop expressions are reassociated and hoisted from both the predicate and body:

1. Find loop invariant expressions (called loop “constants” in the code), pure instruc-
tions (and their successors) connected to “constant inputs” or literal values.

2. Find loop variant expressions, instructions that have any input from the loop variable
inputs or any non-functional instruction.

3. Chains of n associative instructions with the same opcode are re-associated to form
a tree of log(n) depth with invariant and variant inputs partitioning the leaves from
left to right.

4. Hoist loop invariant expressions outside the encapsulator.
Strategy: CSE and CH occurs bottom-up:

1. Recursively CSE-CH all the encapsulators (hoisting out invariants, which must be simple and
functional).

2. CSE all the simple, functional instructions in the basic block.

3. Combine equivalent inputs for all encapsulating instructions in the block.
Author: lan Lance Taylor, May ’87

Caveats:
1. Application is assumed to always be side-effecting.
2. Encapsulators are assumed to always be side-effecting.
3. Reassociation is a general notion that should be applied everywhere, not just in loops.
4. Invariants aren’t hoisted out of if encapsulators.

There should be a general abstraction to make lifting instructions out or pushing them into an
encapsulator easy.

6.3.10 Loop Analysis

Instruction Slots:

loop-parameters :(keyword init-source upper-source step-source) ldentifies the type of loop
and sources for its bounds (see below).

Module:

(defcompiler-module loop-analysis id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function la-dataflow-graph))
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Description: For every loop instruction, Loop-analysis examines the predicate and body to
determine if the loop is equivalent to a simple for construct. If so, the module builds a piece of
graph which computes the number of iterations and wires it into the loop as a new loop constant.
Also, set up the loop-parameter slot to hold the sources for the loop’s initial value, upper-limit and
increment.

Strategy: Proceed top-down, analyzing loop instructions.

6.3.11 Loop Unfolding and Unrolling

Instruction Slots:

peel-count :integer - number of times to peel loop
unfold-count :integer - number of times to unfold loop
sequential-loop-p :boolean - set true if loop is sequentialized

Module:

(defcompiler-module unroll-loops id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function ul-dataflow-graph))

Description: Performs loop unfolding and unrolling. An unrolled loop executes k copies of the
loop’s body (ie k copies of the program graph corresponding to the loop’s body wired in series)
before entering the loop itself. Inother words, it unroll’s k iterations from the start of the loop. Loop
unfolding executes k copies of the loop’s body for every iteration of the loop. Of course, care must
be taken that termination during an unfolded or unrolled body exits the loop correctly (which is
accomplished by analyzing the loop’s behavior or by inserting checks of the loop’s predicate around
every body).

Strategy: Proceed bottom up, replacing loop instructions with their unrolled or unfolded equiv-
alents when the unroll-count or unfold-count is non-nil. Whileloops use the most general unfolding
strategy, nesting additional conditionals around every new body graph. For loops are compiled
without this additional overhead by changing the loop’s predicate and adding a series of (k-1)
nested conditionals.

Author: Jamey Hicks, September 1989

Caveats: The terms unpeeling and unrolling are used interchangeably.

6.3.12 Circulate Structures

Instruction Properties: side-effecting-p, create-like-p, k-allocator, k-deallocator
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Module:

(defcompiler-module circulate-structures id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:options circulate-structures)
(:function circ-code-block))

Description: Attempts to find structures that are allocated and deallocated within a given loop
body. If a structure with these properties exists, its allocation and deallocation code is lifted out
of the loop. [A k-bounded loop will have k copies of the structure allocated before starting?]

Strategy: Circulate structures proceeds bottom-up through the graph hoisting allocation and
deallocation code out of loop encapsulators at each level on the way up.

Author: Jamey Hicks

6.3.13 Algebraic Identities (misnamed partial-evaluation)

Module:

(defcompiler-module partial-evaluation id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
\#+DEBUG (:before-function program initialize-partial-evaluation)
(:function pe-dataflow-graph)
\#+DEBUG (:after-function program print-partial-evaluation-statistics)
(:options partial-evaluation))

Description: The algebraic identities module defines a set of rewriting rules for program graph
fragments. A program graph fragment is some subgraph of the program graph all of whose instruc-
tions can be reached from a single instruction. A pattern is a parenthesized expression that can

match a graph fragment:

<pattern> = (<opcode> { <input>* |<every-input> } <output>* [<triggers>] )

< simple-pattern> ::= variable |constant | < pattern>
<opcode> = opcode [$parameter <serp>]
<input> = :input <simple-pattern>

<every-input> = ($every <sexp>)
<output> ::= <simple-pattern>
<triggers> 1= :triggered-by <pattern>*

For example,

(:intimes :input 1 :input x) represents an integer multiply instruction with two inputs.
(:make-functional-tuple ($every :component i) (:tuple-fetch $parameter i :tuple
x)) represents a tuple creating instruction connected to a tuple fetch instruction.
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The module compiles a set of rewrite rules which describe how to rewrite existing patterns into
new patterns. Sets of rewrite rules are defined by the defevaluator macro:

defevaluator name input-pattern output-pattern {constraint}x* [Macro]
<name> 1= symbol
<input-pattern> ::= ($or <pattern>*) |<pattern>
<output-pattern> ::= <pattern>
<constraint> 1= <lisp form>

The module searches for instructions matching the applicable rewrite rules. If any instruction
matches against the input pattern of a defevaluator then that graph fragment is replaced by the
output pattern if all the constraints evaluate to true.

For example, a defevaluator for additive integer identity might look like:

(defevaluator plus-zero
($or (:intplus :input O :input x)
(:intplus :input x :input 0))
x)

Notice that repeated variable names refer to the same instruction in the scope of one defevaluator.
Currently, there are defevaluators to do:

1. Algebraic simplification for integers and floats:

z+0=04+2z— =2
zx0=0x2—0
zxl=1x2—x

2. Reduction in strength for exponentiation

x2%$*$
s rxrka

3. Algebraic simplification for booleans:

TANT — 2

true Nz =z ANlrue = x
false Nz = a A\ false — false
Ve —zx

trueV z = x Virue — true

4. Fetch elimination for functional data-structures
5. Removal of gates controlled by constants

6. Swapping of form-address with set-ip instructions

(:set-ip :input (:form-addr :input x :input offset) :input ip) —
(:form-addr :input (:set-ip :input x :input ip) :input offset)

7. Composition of form-address instructions
(:form-addr :input (:form-addr :input x :input offsetl) :input offset2) —

(:form-addr :input x :input (:intplus :input offsetl :input offset2))
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Strategy: The algebraic identities module proceeds top down, trying first to rewrite graph frag-
ments in the current basic block, before proceeding to basic blocks within encapsulators. New
instructions created by the rewrite rules are added to the list of instructions to traverse within the

block.
Author: Ken Traub

Caveats: The module searches the rewriting rules in order of their definition. This may not be
the best strategy. Pathological rewrite rules might cause the compiler to enter an infinite loop.

6.3.14 Thunk Splitting

Graph Properties: Adds new code blocks to the current graph.

Module:

(defcompiler-module thunk-splitting id-compiler
(:input program-graph procedure)
(:output program-graph procedure)
(:function ts-proc))

Description: Delay encapsulators take arguments to a delayed expression and an address to
store the result of the expression when evaluated. Thunk-splitting implements the delay abstrac-
tion by removing delay encapsulators and replacing them with lower level instructions. In detail,
thunk-splitting implements the following: it encapsulates the delayed expression in a defthunk en-
capsulator and places it in its own code-block with the name “i-THUNK- .” It replaces the delay
encapsulator with a pair of make-thunk/store-thunk instructions which take the arguments to the
delayed expression, the address to store the delayed value in (when it’s lazily computed) and the
name of the thunk’d expressions code-block.

Strategy: Proceed bottom-up, transforming delay encapsulators into make-thunk/store-thunk
pairs and add one defthunk code-block, for the delayed expression, to the current set of code-

blocks.
Author: Jamey Hicks and ?

Caveats: Thunk splitting is very implementation dependent and should be considered part of

the back end.

6.3.15 Synchronize Release
Instruction Properties: encapsulator-propagation-alist

sr-before-function :?7

Only defined for loop instructions. Function that given a loop
instruction, seems to peel it once if it contains a loop-release and hasn’t been unrolled already.
Jamey says that this has something to do with releasing nextified variables that are garbage

after at least one iteration.
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Instruction Slots:

instruction-unrolled-p :boolean Set for an unrolled loop instruction by sr-before-function

Module:

(defcompiler-module synchronize-release id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function sr-dataflow-graph))

Description: Synchronize-release implements the synch instruction in terms of the seq encap-
sulator and other simple instructions. Basic blocks containing synchs are wrapped in seq encap-
sulators. Conceptually, synch instructions and the instructions that depend on their outputs are
moved outside the seq and synchs are turned into gates controlled by the seq’s completion signal.

Strategy: Synchronize-release proceeds bottom-up, (partially) wrapping every basic block con-
taining a synch instruction with a seq encapsulator. It finds all the outputs of the block that don’t
depend on synch instructions and wires them as the body outputs of the seq. All synch instruc-
tions and their successors are moved outside the encapsulator and replaced by gates controlled by
the seq’s termination signal.

Author: Jamey Hicks

6.3.16 Manager Synchronization

Description: Manager-synchronizationimplements finer grain control over mutable structures
than is possible using only block signals. Using Id’s enter construct, mutable data-structures can
be atomically read and modified using a locking mechanism. Manager-synchronization makes
the “unlocking” of the structure occur after all its uses within the enter block, but before the block
itself terminates.

Strategy: Generate-program-graph creates enter and release instructions that delimit the
scope of Id’s enter construct. The arc corrsponding to the imperative data-structure named in the
enter statement is wired to the input of the enter instruction by generate-program-graph. Also,
enter instruction’s outputs are wired to every use of the data-structure. In manager-synchronization,
the release instruction (wired to the block’s signal by gpg), receives a signal tree taking its inputs
from all the uses of the data-structure.

Author: Paul Barth
Caveats: This could (and probably should) be done by desugaring.

6.3.17 Signals and Triggers
Module:
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(defcompiler-module signals-and-triggers id-compiler
(:input program-graph code-block)
(:output program-graph code-block)
(:function st-dataflow-graph))

Instruction Properties: strict-p,legal-unconnected-inputs,legal-unconnected-outputs

Description: Adds signals and triggers to the program graph, as described in the previous chap-
ter.

Strategy: Signals-and-triggers proceeds top-down, adding block signals and triggers to every
block in every encapsulator, then wiring them to the appropriate instruction signals and triggers.

Author: Ken Traub

Caveats: ['m not sure how much optimization goes on here, but there should be ample opportu-
nities.
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