CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Multithreading: A Revisionist View
of Dataflow Architectures

G.M. Papadopoulos, K.R. Traub

In Proceedings of The 18th Annual International Symposium on
Computer Architecture, Toronto, Canada, May 1991. Also published
as Motorola Technical Report MCRC-TR 10

1991, May

Computation Structures Group
Memo 330

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139






MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Multithreading: A Revisionist View of Dataflow
Architectures

Computation Structures Group Memo 330
March, 1991

Gregory M. Papadopoulos
Kenneth R. Traub

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

\_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




Multithreading: A Revisionist View of Dataflow Architectures

Gregory M. Papadopoulos
Massachusetts Institute of Technology

Abstract

Although they are powerful intermediate representations for
compilers, pure dataflow graphs are incomplete, and perhaps
even undesirable, machine languages. They are incomplete
because it is hard to encode critical sections and imperative
operations which are essential for the efficient execution of
operating system functions, such as resource management.
They may be undesirable because they imply a uniform dy-
namic scheduling policy for all instructions, preventing a
compiler from expressing a static schedule which could result
in greater run time efficiency, both by reducing redundant
operand synchronization, and by using high speed registers
to communicate state between instructions.

In this paper, we develop a new machine-level program-
ming model which builds upon two previous improvements
to the dataflow execution model: sequential scheduling of
instructions, and multiported registers for expression tem-
poraries. Surprisingly, these improvements have required al-
most no architectural changes to explicit token store (ETS)
dataflow hardware, only a shift in mindset when reasoning
about how that hardware works. Rather than viewing com-
putational progress as the consumption of tokens and the
firing of enabled instructions, we instead reason about the
evolution of multiple, interacting sequential threads, where
forking and joining are extremely efficient. Because this new
paradigm has proven so valuable in coding resource manage-
ment operations and in improving code efficiency, it is now
the cornerstone of the Monsoon instruction set architecture
and macro assembly language. In retrospect, this suggests
that there is a continuum of multithreaded architectures,
with pure ETS dataflow and single threaded von Neumann
at the extrema. We use this new perspective to better under-
stand the relative strengths and weaknesses of the Monsoon
implementation.

1 Introduction

The ability of dataflow machines to expose ample amounts
of all sorts of parallelism—instruction, loop, procedure, pro-
ducer/consumer, unstructured—is well documented [3], and
continues to be an attractive feature of the approach. This
ability derives from fundamental properties of dynamic data-
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flow graphs, which are directly executed as a dataflow pro-
cessor’s machine language. Dataflow machine graphs rep-
resent the program as a partial order of essential depen-
dences, and instructions are dynamically scheduled based
on the availability of data. That is, a dataflow machine pro-
gram does not overspecify the actual order of instruction
execution, and instead relies on low-level runtime mecha-
nisms, e.g. operand matching, to dynamically pick a particu-
lar execution order, including ones where many instructions
are executed simultaneously within and across processors.
Moreover, given sufficient parallelism, dynamic instruction
scheduling has the added pragmatic benefit of being resilient
to long and unpredictable communication latency.

The most recent generation of dataflow machines (e.g.,
MIT’s Monsoon [11, 12], ETL’s EM-4 [13], and Sandia’s
Epsilon-2 [6]) have shown how operand matching can be
accomplished with simple hardware structures in two ma-
chine cycles. There does seem to be an unavoidable price
of purely dynamic instruction scheduling, however. Each
dyadic (two-input) instruction requires the dynamic match-
ing of its operands and must amortize the associated expense
of making copies of data when a particular value is required
by several instructions. In careful comparative studies of
scientific codes, we have found that, for a given algorithm,
a dataflow machine tends to execute two or three times as
many instructions as a von Neumann uniprocessor [2]. Un-
fortunately, the overhead is incurred even when a good static
schedule is known at compile-time. Given that operands for
an expression are available, we would want a compiler to
be able to specify a particular execution order for instruc-
tions within that expression in order to eliminate any intra-
expression synchronization and associated data copying. In
this case, intermediate values could be communicated among
instructions in the sequence via temporary registers, rather
than asynchronously propagating values on tokens [9, 13].

Another objection to pure dataflow graphs concerns the
coding of low-level operating system and resource manage-
ment functions, such as trap handlers and storage allocation
routines. These operations require frequent, guaranteed ex-
clusive access to processor state and need critical sections
around the updating of shared data structures. When con-
fined to pure dataflow graphs, these sections are extremely
hard to code and reason about.

It appears that both the dynamic instruction inefficiency
and critical section problems share a common root cause—
the inability of the compiler to directly control when a suc-
cessor instruction will execute. That is, we would like to be
able to create a sequence of instructions which get executed,



in order, once the first instruction in the sequence has been
dynamically scheduled. This value of this ability has been
recognized by several researchers [9, 13, 6].

In the case of synchronous circular pipelines, such as
Monsoon, this capability is surprisingly simple to imple-
ment: an instruction merely demands that one of its suc-
cessor tokens re-enter the pipeline immediately following its
execution. The instruction may then communicate with its
successor through temporary registers, as well as the value
carried on the token. The relationship between successors
resembles not so much a chain of dependents in a dataflow
graph as it does a von Neumann sequential thread.

This leads to an entirely different view of computation in
the dataflow machine. Rather than viewing computational
progress as the consumption of tokens and the firing of en-
abled instructions, we instead reason about the evolution of
multiple, interacting sequential threads, where forking and
joining are extremely efficient. Because this new paradigm
has proven so valuable in coding resource management oper-
ations and in improving code efficiency, it is now the corner-
stone of the Monsoon instruction set architecture and macro
assembly language. In the following sections, we present
the Monsoon macroarchitecture as a multithreaded multi-
processor, giving coding examples and experimental perfor-
mance results of the approach. We also show that, without
loss of generality, this new macroarchitectural model cap-
tures traditional dataflow execution, as well. We emphasize,
presented here is a new way to denote multi-threading that
harmonizes the apparently disparate dataflow and sequen-
tial execution styles.

2 Computation Model

Under this new model we view Monsoon as a multi-processor,
multi-threaded computer: within each of many processing
elements (PE’s) are many sequential threads of control. Each
thread can be thought of as an independent instruction
stream, and each thread has an independent set of regis-
ters (albeit a very small set). Naturally, each processor has
a fixed limit as to the number of threads it can actually
process simultaneously, but the limit on the total number
of active threads within a processor is much, much larger.
In the current version of Monsoon, for example, up to eight
threads are processed simultaneously in the pipeline of one
PE, but up to 32 thousand threads may be active in that PE,
awaiting execution. Both of these numbers scale up as more
processors are added.

The state of a thread on Monsoon is contained in a com-
putation descriptor, or CD. As shown in Figure 1, the CD
has five registers, the continuation register C, the value reg-
ister V', and three temporaries 71, T2, and T3. There are
also two other registers XA and XB, but as they only play a
role during exceptions, the programmer usually is not con-
cerned with them (exceptions are not discussed further in
this paper).

The continuation register C' of a CD defines the con-
text in which the CD’s thread executes. It contains a pair
of pointers: the instruction pointer that indicates the next
instruction to be executed, and a pointer to data memory
called the frame pointer. The instruction set is designed to
support a programming paradigm wherein the frame pointer
is the base address of an activation frame for a procedure in-
vocation; by using frame-relative addressing, the same code
block can have multiple active invocations. The instruction
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Figure 1: A Computation Descriptor

pointer and frame pointer are constrained to have the same
node number, and furthermore that node is the PE that will
actually execute the thread. The C register also has a field
called PORT that is used only during the Join operation (Sec-
tion 3.2), and in that circumstance is akin to an extension
of the instruction pointer.

The remaining registers in a CD, V, T1, T2, and T3,
simply hold user data associated with a thread. Only V is
used in “pure dataflow” instructions. The use of T-registers
is discussed in Section 4.

As previously noted, on a given processor only eight CD’s
will have actively executing threads, whereas each processor
will maintain a hardware-managed queue of up to 32 thou-
sand CD’s corresponding to threads that are ready, but not
actively executing. A CD is automatically popped from the
ready queue, with zero overhead, whenever a processor re-
quires work. Note that the ready queue only maintains the
C and V registers, so the temporary registers are defined
only for actively executing threads. Our notation provides
ways to guarantee that an actively executing thread will con-
tinue execution, and thus preserve its temporary registers.

In addition to the CD’s of its resident threads, each pro-
cessing unit of a Monsoon multiprocessor has under its con-
trol a portion of the global memory address space. There
are actually two address spaces: the instruction memory
address space and the data memory address space.! Both
instruction memory addresses and data memory addresses
have two parts: a node number and an offset into the portion
of the address space under that node’s control. For many

1Having separate instruction memory and data memory address
spaces is not an essential feature of this type of architecture, but was
done to simplify the design of the current prototype.



types of operations, the division of an address into node
number and offset can be ignored, with the node number
viewed simply as the high-order bits of a global address. On
the other hand, many instructions have addressing modes
that access data memory, but with the constraint that the
data memory address have the same node number as that
of the instruction being executed; an address fulfilling this
constraint will be called a local address. As noted above,
the PE field of a thread’s C register indicates where it ex-
ecutes, and so references to the activation frame as well as
instruction fetch are all local references.

Instruction memory words are 32 bits, and words of data
memory are 72 bits (64 data bits plus eight type bits avail-
able for implementing tagged data). Registers that hold
data are also 64 bits wide with eight type bits. In addition
to data and type bits, each word of data memory has three
presence bits. Presence bits are used to implement a vari-
ety of synchronization protocols, discussed at length in the
sequel. Though associated with each location, presence bits
are not considered part of the contents of a data memory
word, and are not found in the registers of a CD.

3 Basic Instruction Set

In this section we describe the basic instructions for manip-
ulating the C and V registers, for creating and synchroniz-
ing threads, and for making global memory references. We
present these instructions from the multi-thread perspective,
but at the end of this section we show that they are indeed
familiar dataflow instructions. When seen from the multi-
thread point of view, however, the natural style of coding is
quite different from that derived from dataflow graphs.

3.1 Arithmetic and Local Data

The instruction set is similar to that of an accumulator (one-
address) machine, with V' acting as the accumulator. For
example, a program fragment

e :=a*b-6.0x%c;
might be compiled into the following sequential thread, where

each instruction is assigned a consecutive instruction mem-
ory address:

mov [fp+Al, v ; v=A

fmul v, [fp+B] ; v=A%B

mov v, [fp+TEMP] ; TEMP = A * B
mov [LIT_SIX], v ; v=6.0

fmul v, [fp+C] ; v=6.0 % C
fsub [fp+TEMP], v ; v = A¥B - 6.0%C
mov v, [fp+E] ; E = A%B - 6.0%C

In this example, it is assumed that a, b, ¢, e, and the tem-
porary temp are local variables held in the activation frame.
The example shows both the FP-relative addressing mode
for accessing these variables, and the absolute mode for ac-
cessing the constant six. (In the example, the offsets from
the beginning of the frame for a, b, etc., as well as the ad-
dress of the constant six, are shown with assembly-time sym-
bols rather than with numbers.) Both addressing modes can
only make local references, i.e., references to locations on
the same node as is executing the instruction. All of these
instructions increment the 1P field of C to go to the next
instruction.

3.2 Multiple Threads: Fork and Join

The simplest primitive for introducing a new thread into the
machine is fork. The fork instruction is like a combination
of jump and falling through to the next instruction. For
example, executing this instruction

fork labi

has two effects. First, the current thread continues to the
next instruction; that is, the IP field of the C register is
incremented. Second, a new thread is introduced into the
system, whose C and V registers are the same as those of
the current CD, except that the IP field of C is labi.

Two threads executing on the same PE may synchronize
with each other using the Join mechanism. Join is not an
instruction in itself; rather, it is a modifier that may be
applied to other instructions. For example, a join-subtract
would be written like this:
label2 [fp+Q]: £fsub vl, vr
The use of Join is indicated by the appearance of a memory
operand before the colon that delimits a label. The idea
behind a Join is that two threads will fetch a Join-modified
instruction at different times, but only the second one (in
time) actually performs the indicated operation and contin-
ues. The first thread to execute merely saves the contents
of its V register, and then dies without finishing the join-
modified instruction or proceeding to the next. When the
second thread executes the join-modified instruction, it re-
trieves the saved value, so that both V’s are available as
operands.

Threads participating in a Join must have different PORT
bits in their C registers, so that the left and right operands
can be distinguished regardless of the order in which the
two threads happen to execute. (Remember that the PE is
free to choose any active thread for execution on each cy-
cle.) Jump and fork instructions may arbitrarily set the port
in addition to computing a new 1P. By convention, when
a thread executes a non-joining instruction, its C register
specifies the left port.

Every Join operation involves a location in local data
memory called a rendezvous point; in the earlier example,
the rendezvous point was the location named by [fp+Q].
The rendezvous point plays two roles. One, it serves as
temporary storage for the V register of the first thread to
execute. Second, its presence bits record whether any thread
has yet executed the join, and what its port was. Initially,
the rendezvous point for a Join must have presence bits
set to empty. When the first thread executes the join, the
contents of its V' register are stored in the data and type
fields of the rendezvous point, and the presence bits are set
to left-present or right-present, according to the PORT
field in that thread’s C register. When the second thread
executes the join, the contents of the rendezvous point are
retrieved, the presence bits are set back to empty, and the
instruction continues processing with the retrived value and
the second thread’s V register as operands. The presence
bits are set back to empty so that the rendezvous point may
be reused without reinitialization.

Having two states left-present and right-present is
not strictly necessary, because the PORT of the second thread
to participate in a Join serves to indicate which operand is
which. Two states are used so that an exception may be



raised if two left or two right threads try to use the same
rendezvous point.

Here is the simple arithmetic example from the previous
section, using fork and Join to cause the multiplications to
execute in separate threads.

fork labi
mov [fp+Al, v
fmul v, [fp+B]

subit [fp+TEMP]:

fsub vl, vr
mov v, [fp+E]
jump done

labl: mov [LIT_SIX], v
fmul v, [fp+C]
jump subit.r

The “.r” suffix in the final jump statement says that the
PORT field in C should be set to right (in addition to the
1P field being changed to subit). On the other hand, the
default fall-through from the first fmul results in PORT being
left.

Note that this very simple example does not make a com-
pelling case for multi-threading, but was chosen merely to
illustrate the fork and join mechanisms.

3.3 Split-Phase Transactions

The addressing modes described earlier can only access lo-
cal memory, and only when the address (or offset from the
current frame pointer) are compile-time constants. Com-
puted, global memory references are performed with split-
phase transactions [4], in which a thread issues a memory
request and continues while the request is processed concur-
rently. This is the means by which the Monsoon architecture
tolerates long memory latency.

To illustrate, here is a statement from the inner loop of

DAXPY:
yl[il = a * x[i] + y[il
Assuming that pointers to x[i] and y[i] are in frame loca-

tions XI and YI, respectively, the code for the inner loop is
as follows.

fch [fp+XI], mulit
fch [£fp+YI], addit.R
stop

mulit: fmul [fp+Al, v
addit [fp+TEMP]:
fadd vl, vr
str [fp+YI], v
jump done

From the programmer’s point of view, the Fetch instruc-
tion (fch) is like fork, except that the new thread will have
the fetched value in its V register. This new thread may
take a comparatively long time to enter the pool of active
threads, depending on the latency of the fetch. After exe-
cuting a fch instruction, the current thread continues exe-
cution; in the example, after initiating the fetch to x[i] the
thread goes on to issue the fetch to y[i]. The example also

illustrates the stop instruction, which simply removes the
current thread from the pool of active threads. The Store
instruction (str) has a more conventional appearance, as no
result need be returned from the remote memory.

Both fch and str are implemented as split-phase trans-
actions. This means they execute by issuing requests and
continuing immediately to the next instruction in the in-
struction stream. While the issuing thread continues in this
manner, the request travels through the communication net-
work to the node that holds the global location being oper-
ated upon. A Fetch request has the following format:

(regop = fch,n, o), rc

where n and o are the node and offset of the location to be
fetched, and rc is the return continuation. When the Fetch
request is processed by node n, it initiates in the request-
ing node a new thread whose V register contains the value
fetched and whose C register contains the return continua-
tion rc. A Store request has the following format:

(regop = str,n,0),v

When the Store request is processed by node n, it simply
stores v in location (n, 0). In both cases, the node processing
the request only makes access to local data memory.

The result of the fetch request was returned in the V reg-
ister of a new thread. But since the store request has no
return value, the thread issuing the request simply contin-
ues. With no store acknowledgment, there is some question
of ordering: will fetches issued after the store instruction
receive the new value, or the old value? A special hardware
mechanism insures the following invariant: all requests to
the same location issued subsequent to a store by a partic-
ular thread, as well as by threads subsequently forked by
that thread, will be processed following the store request.
In the example above, the code at the label done can count
on the store to y[i] having taken place, and in particular
any fetches to y[i] issued by that code will receive the new
value (assuming some other thread does not store to the
same location). More simply, the hardware supports strong
sequential consistency.

Monsoon supports a number of synchronizing memory
transactions in addition to the imperative Fetch and Store
operations already discussed. The most common of these are
the I-Structure operations I-Fetch and I-Store [5]. These use
presence bits to implement a synchronizing write-once pro-
tocol: an I-Fetch to an empty location is deferred by saving
the return continuation in the location, and a subsequent
I-Store causes the fetch to be satisfied. A more detailed ex-
planation, including what happens when more than one I-
Fetch request arrives before the corresponding [-Store, may
be found in [11]. Monsoon also supports a pair of mutual
exclusion operations called Take and Put. The format of
requests for I-Fetch/I-Store and for Take/Put is exactly like
that described for Fetch/Store; only the processing of these
requests at the receiving node differs.

3.4 Continuation Manipulation

Instructions that manipulate continuations are normally used
for procedure linkage, as they create threads with different
FP’s. The start instruction is similar to fork in that it
introduces a new thread into the system, but in the case
of start both the C and V for the new thread are given
as operands. Thus, start can introduce any arbitrary CD



into the system. The Add Immediate to Continuation and
Start (aics) instruction is similar, but has a small immedi-
ate operand that is added to the 1P of the new continuation.

Both start and aics expect a continuation as an operand.

Two instructions are provided for constructing continua-
tions: Make Continuation (mc), and Make Continuation for
Destination (mcd). The mc instruction composes a contin-
uation from a pointer to a frame (a global data memory
address) and a pointer to an instruction (a global instruc-
tion memory address, constrained to have the same PE as the
frame pointer operand). Typically this instruction is used
to create a continuation for calling a procedure. The mcd
instruction has a label operand, and creates a continuation
with the same FP as the current continuation, but with an
IP pointing to the instruction named by the label. The mcd
instruction is most often used to form a return continuation.

A typical calling convention is illustrated below, for the
following function.

def f(a,b,c,d) = (a * b) + (c * d)

In the calling convention illustrated here, the return contin-
uation and each argument is sent from caller to callee by
starting a new thread with the argument or return contin-
uation in V. Each thread is started with a different 1P: the
return continuation specifies the first instruction of the code
for £, the a argument the second instruction, and so forth.
Since these five threads will share the same activation frame,
created by the caller, they may rendezvous with each other
by joining in frame locations.
This is the code for £ (the callee):

entry: jump returnit.R
a_arg: jump mul_ab.L
b_arg: jump mul_ab.R
c_arg: jump mul_cd.L
d_arg: jump mul_cd.R
mul_cd [fp+0]:

mul vl, vr

jump addit.R
mul_ab [fp+1]:

mul vl, vr
addit [fp+2]:
add vl, vr

returnit [fp+3]:
start vr, vl
stop

As compiled, the multiplication of a and b will proceed even
if the arguments ¢ and d have not arrived, and vice versa.
Alternatively, the code could have joined on all operands
before doing any arithmetic (although there would be no
advantage to doing so, in this example).

The caller for the function above would look like this,
assuming frame location FADDR holds a pointer to the code
for £, and assuming the actual parameters are in frame lo-
cations AA, AB, AC, and AD. This is the code for a caller of
f:

[code to obtain frame]
mc v, [fp+FADDR]
;3 V is continuation with
;3 IP = first instr of £

;3 Send args: start a thread for each arg.

aics v, [fp+AA]l, 1
aics v, [fp+AB], 2
aics v, [fp+AC], 3
aics v, [fp+AD], 4

;; Compute and send
;3 return address

mov v, [fp+TEMP]
mcd done

start  [fp+TEMP], v
stop

;3 Result arrives here
done:

The PE field of the new continuation for the call will de-
termine where the called procedure actually executes. Thus,
the “code to obtain frame” in the example is responsible for
making a load distribution decision.

The calling convention illustrated starts a new thread in
the callee for each argument, plus one with the return ad-
dress. It is also possible to devise a convention that starts
only one thread in the callee, by storing the arguments di-
rectly into the callee’s frame using str instructions.

3.5 Compounds and “Traditional” Dataflow

In the preceding sections, some simple instructions were pre-
sented from the multi-thread point of view, but most of
them can be recognized as pure ETS dataflow instructions.
The correspondence is established by considering the CD (or
CD’s, in the case of Join) of the threads executing the in-
struction to be incoming tokens, and the CD (or CD’s) of the
threads that result to be outgoing tokens. The C register is
easily seen to be the tag of the token, and V the value. Fig-
ure 2 shows a number of instructions in both multi-thread
and dataflow graph notation.

A few instructions discussed earlier are not normally
found in traditional dataflow. For example, the instruction

fch v, label3

is a fetch generating two tokens: the token receiving the re-
sult of the fetch (with 1P of 1abel3) and an immediately gen-
erated acknowledgment (at the next consecutive ). While
this form of fch proved useful in Section 3.3 for launching
several fetch requests into the memory pipeline, it rarely
appears in code compiled for pure dataflow machines. One
suspects that this is because there is no adequate way to
notate this form of fch in a dataflow graph.

There are other dataflow instructions which require a
more elaborate multi-thread notation. A two-input, two-
output, floating point add, for example, is notated as
[fp+5]: fadd

vl, vr || fork label3

t.e., as the combination of an fadd and a fork. In the Mon-
soon architecture, this is really a single instruction, because
presence bit manipulation, operand fetch, arithmetic, and
token forming are handled in separate stages of the pipeline.
Such compounds are distinct opcodes when assembled; the
instruction format is not VLIW. Instructions may not be
combined arbitrarily, but must fit within the constraints of
the pipeline: an optional join, up to one frame operand, one
ALU operation, and one token-forming operation. Other ex-
amples of compound instructions may be seen in Figure 2.
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Figure 2: Sample Dataflow Operators and Corresponding Multithreaded Instruction

One noteworthy case is a fch that does not produce an ac-
knowledgment:

fch v, labell || stop

This can be read as “fork a new thread to 1labell containing
the value at the location named by V', and stop the current
thread.” The distinctive notation for fch emphasizes its
split-phase nature, whereas in dataflow graph notation fch
would be notated exactly as a unary arithmetic operator.

4 Registers and Sequential Scheduling

There is a fundamental asymmetry in the multi-thread view
of dataflow that is lacking in dataflow graph notation. Specif-
ically, a distinction is drawn between tokens produced by
modifying the current C register (falling through and jump-
ing) and by creating new threads (the explicit destinations of
fork and fch, and the computed destinations of start and
aics). This asymmetry may be exploited by using it to con-
trol scheduling: if an instruction modifies the current C (i.e.,
does not stop), then that thread will immediately re-enter
the pipeline. All other threads are subject to a hardware
queueing policy, as in conventional dataflow. Instructions
that depend on the scheduling policy are annotated with a
‘>’ mark.

This elementary “recirculate” scheduling directive opens
up two new programming paradigms. One is the ability to
write critical sections, exploiting both quick re-entry into the
pipeline and that other threads are shut out of the pipeline
as long as the critical section continues. This is essential
to writing resource managers such as memory allocators for
frame storage and heap storage—a topic that has received
fuzzy treatment in the dataflow literature. We will not dis-
cuss critical sections further in this paper. One interesting

issue in the Monsoon setting is that there may actually be
eight simultaneous critical sections occupying different po-
sitions in the pipeline.

The other programming paradigm is the use of registers
to improve the efficiency of code. It is easy to imagine that
a CD has additional data registers besides V. But it would
be impractical to provide these registers for all the active
CD’s in a processor, since they potentially number in the
tens of thousands. Instead, extra registers are only provided
in the CD’s of the eight threads occupying the pipeline. As
long as a thread recirculates in the pipeline it may freely
use its registers, but once it leaves the pipeline it effectively
loses the contents of all but C and V. Thus, the recircu-
late directive may also be viewed as a “preserve registers”
directive.

The CD of each thread occupying the pipeline has three
extra registers, 71, T2, and T3. Instructions may specify
these as operands, in addition to V and the data memory
operand. The result of an ALU operation, however, is always
stored into V. Also, an instruction may separately write
the old contents of V' and/or the memory operand into 7-
registers; these writes are notated using compound notation
(Section 3.5). For example:

fadd t1, t2 || mov v, t3 || mov [fp+5], t2 >

is a single instruction that stores V into 7'3, stores the con-
tents of frame location five into 72, and adds 77 and T2.
When a register is both read and written, as 72 is in the
example, the read precedes the write. Thus, the operand to
the addition is the old value of T2. While this may seem
to be an exceedingly complex instruction, it really is just
taking full advantage of the pipeline. Registers are read and
written in a stage between the data memory stage and the

ALU stage.



4.1 Example of Register Code

We now illustrate how scheduling and registers can improve
compiled code efficiency with a very simple program that
sums, in double-precision floating point, the integers from
one to n. We compare the inner loops of four different for-
mulations on Monsoon: pure dataflow, sequential without
registers, sequential with registers, and parallelized sequen-
tial with registers. The model for the pure dataflow version
is the following Id loop:

{ while (i <= n) do
next sum = sum + i;
next i =i+ 1;

finally sum }

The model for the other three versions is this loop in C:

do {
sum := sum + ij;
i =1+ 1;
} while (i <= n);

The pure dataflow code is shown in Figure 3. This code
is similar to what would be produced by the Id Compiler?,
using a one-bounded loop schema. The instruction counts
would be the same or slightly greater if a more elaborate
k-bounded loop schema were used instead.

The first sequential version does not use T-registers, and
so is “accumulator” style:

loop:

mov  [fp+SUM], v
fadd v, [fp+I]
mov v, [fp+SUM]
mov  [fp+I], v
fadd v, [ONE]
mov v, [fp+I] ;1 <1+ 1
fjle v, [fp+N], loop ; i <=n 7

; sum <- sum + i

The second sequential version uses 1-registers, more than
halving the length of the loop. The register allocation is
T1=sum, 72=1i, and T8=n.

loop: fadd t1, t2 >
mov v, t1 || fadd t2, [ONE] >
mov v, t2 [l £jle v, t3, loop >

Sequential code such as this will only occupy one of eight
interleaves of the pipeline. To fill the pipeline, eight sequen-
tial loops can be initiated, each summing every eighth in-
teger, with staggered starting points. The general scheme
for this program is shown in Figure 4. This illustrates that
the dataflow and multi-thread styles of reasoning about code
may be freely mixed. The code for each inner loop is the
same as above, except that eight is added to i instead of
one.

The performance of these four loops is summarized in the
table below. The figure under “instructions per iteration”
is the number of instructions completed. The difference be-
tween this and “tokens per iteration” is always the num-
ber of joins per iteration. “Cycles per iteration” assumes
that there is no other parallel activity in the machine, and a
pipeline depth of eight. Threading without registers reduces
the number of instructions per iteration from 14 to 7, but

21t was actually compiled by hand by one of the authors

i sum

Figure 3: A Pure Dataflow Graph which Sums the First n
Integers

only reduces the number of cycles from 71 to 56. In Mon-
soon, eight threads are interleaved in the pipeline, so when
only a single thread is executing the total number of cycles
required will be eight times the number of instructions in
the thread. The use of registers further reduces this num-
ber from 7 to only 3 instructions per iteration, because the
three loop induction variables fit in the registers. Finally,
the multithreaded code with registers is able to keep the
pipeline fully utilized by spawning eight concurrent threads.

Instructions / | Tokens / | Cycles /

Program Iteration Iteration | Iteration
Pure Dataflow 14 22 71
Non-Register 7 7 56
Register 3 3 24
Parallel Register 3 3 3

While the performance improvements in this example are
surprisingly large, we caution that this is a best-case scenario
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Figure 4: Using Parallelized Sequential Threads to Sum the First n Integers



because the loops only involve scalar values. If the loop re-
quired remote memory references, then the performance dif-
ference would be less dramatic because the responses would
have to rejoin to the computation flow. Recall, temporary
registers are not saved across join points.

5 Conclusion

Historically, dataflow and von Neumann computing have
been viewed as radically different, and perhaps irreconcil-
able, models of computation. It is becoming increasingly
clear, however, that the two models are simply the extrema
of an architectural continuum. The von Neumann architec-
ture can be extended into a multithreaded model by replicat-
ing the program counter and register set, and by providing
primitives to synchronize among the several threads of con-
trol. The Denelcor HEP [14] interleaved up to 64 threads
per processing element in order to hide the latency of re-
mote memory references. More recently, researchers have
suggested rapid context switching among fewer threads to
mitigate the cost of occasional cache misses [15, 1]. While
useful for dealing with unpredictable memory latency, these
approaches do not fundamentally add to the basic von Neu-
mann programming model because only a small number of
threads can be managed efficiently by a processor. Thus,
these machines may not be able to exploit the same degree
of parallelism that is uncovered by a dataflow machine.

This has led some researchers to propose a kind of “vir-
tualization” of the von Neumann model wherein a proces-
sor can efficiently manage a very large number of sequen-
tial threads which interact frequently. The VNDF hybrid
machine maintains presence information on every memory
location, and a thread can suspend or proceed as a function
of the presence state [8]. P-RISC [10] attempts to reduce
the implementation complexity of the hybrid approach by
eliminating the presence bits in favor of explicit counting
semaphores which are manipulated only at the beginning of
a thread.

The model presented in this paper shares a number of the
properties of the multithreaded von Neumann machines, but
was derived by starting from a dataflow architecture and
providing added imperative control over the usually asyn-
chronous dataflow instruction scheduling rule. In the final
analysis, the difference among the approaches is really one of
emphasis. The multithreaded von Neumann models employ
new techniques to reduce the cost of fine-grain synchroniza-
tion while retaining the efficiencies of sequential scheduling.
The multithreaded Monsoon model tries to improve the effi-
ciency of computation while retaining the ability to perform
extremely rapid synchronization.

From another perspective, multithreading is an acknowl-
edgment of the empirical fact that instruction-level paral-
lelism is probably better exploited in the context of a sequen-
tial thread executing in a well-engineered pipeline [7] (e.g.,
superscalar RISC), rather than from the dynamic execution
of the equivalent dataflow graph. However, we must caution
against extending this line of reasoning too far. Clearly the
greatest leveraging of the sequential structure is for scalar
expressions where the timing of individual operations are
known at compile time, and where it is easy for the hard-
ware to relax the sequential order into parallel, pipelined
execution. It is much more difficult for the same com-
piler/hardware structure to handle the cases when the exe-
cution time is long or unpredictable, e.g., during a remote

memory reference. Sequential processors rely upon reducing
the probability of long latency operations with large caches,
and have become even more vulnerable to cache misses as
the processor cycle time in decreasing more rapidly than
main memory access delays. This argues that a machine
must, somehow, support multiple outstanding memory ref-
erences and provide for inexpensive and rapid synchroniza-
tion of the responses.

At the expression level, sequential threads will undoubt-
edly become preferable to pure dataflow graphs. A primary
engineering objective will be to strike the right balance in
the weight of the threads, both in terms of registers and
cache requirements, and the ability to support fine-grain,
rapid interactions among threads and between threads and
global memory.
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