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Abstract

Careful design of the processor-network interface can dra-
matically reduce the software overhead of interprocessor
communication. Our interface architecture reduces com-
munication overhead five fold in our benchmarks. Most of
our performance gain comes from simple, low cost hardware
mechanisms for fast dispatching on, forwarding of, and re-
plying to messages. The remaining improvement can be
gained by implementing the network interface as part of the
processor’s register file. For example, using our hardware
mechanisms a register-mapped interface can receive, pro-
cess, and reply to a remote read request in a total of two
RISC instructions. We have implemented an RTL model
of an off-chip memory-mapped interface which provides our
hardware mechanisms. Our industrial partner, Motorola,
is implementing a similar network interface on-chip in an
experimental version of the 83110 processor.

1 Introduction

To have a fast parallel computer, the wisdom goes, one needs
a fast processor and a fast network. This paper is not con-
cerned with either. The fastest processor and the fastest
network will not perform well if there is too much overhead
when the processor sends and receives network messages.
On machines in which sending and receiving takes even a
few microseconds, programmers carefully write their pro-
grams in order to avoid sending messages. In the process
they sacrifice parallelism and, ultimately, performance.

In this paper, we report on our work in designing a sig-
nificantly faster message sending and message receiving in-
terface. Our goal has been to reduce the software cost of
sending or receiving a message to the point where a pro-
grammer will not have to worry about sending a message
any more than about performing a floating point operation.
We have achieved this level of efficiency by handing the com-
piler explicit control over a very simple, user-level interface.
To speed up the interface, we propose folding frequent oper-
ations such as dispatching, forwarding, replying, and testing
for boundary conditions into simple hardware mechanisms.

*This research was supported in part by Defense Advanced Re-
search Projects Agency under contract no. N00014-89-J-1988
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In order to tightly couple sending and receiving into the pro-
cessor, we propose incorporating the network interface into
the processor’s register file.

We are concerned with improving the performance of sys-
tems which use the message passing model. Typical mes-
sages in this model are used for passing arguments and re-
sults between function invocations and for accessing remote
memory locations. Some of the earliest machines which sup-
ported the message passing model were the Cosmic Cube
[Sei85] and the Transputer [WS85].

Moreover, our study is mainly targeted toward short
messages. 1o efficiently handle short messages the start-up
and reception costs of messages must be extremely small.
As the size of messages increases, start-up and reception
costs become amortized over larger payloads. Our proposed
optimizations, though still helpful, become less important.
We do not address megabyte size messages typical of 1/O
or long data streams typical of systolic communication; for
these other communication mechanisms might be appropri-
ate.

To motivate the mechanisms we will propose, we first ex-
amine existing network interface architectures. Existing de-
signs can be broadly grouped into four categories: operating
system based DMA interfaces, user-level memory mapped
interfaces, user-level register mapped interfaces, and hard-
wired interfaces. We review each category separately.

1.1 OS-Level DMA-Based Interfaces

The first category of network interfaces which we consider
consists of parallel processors that relegate message han-
dling to the DMA interface under the operating system’s
control. Examples include the NCUBE [Pal88] and the
iPSC/2 [Bra88]. At the hardware level, both machines send
and receive messages by initiating a DMA transfer between
main memory and the node’s network channel. At the soft-
ware level, the sending of a message is accomplished by writ-
ing the message into the memory and executing a “send” sys-
tem call which initiates the DMA transfer from the memory
to the channel. Receiving messages also involves the operat-
ing system, and requires the program on the receiving node
to explicitly perform a “receive” operation.

Since these machines involve the operating system to
handle messages, the latency of sending messages can be
quite high. A simple send with small messages takes 267
ps on the iPSC/2 and 437 us on an NCUBE /four [Bra88].
Much of this time is due to high overhead operating sys-
tem routines [Nug88]. One group of users rewrote parts of
the nCUBE/2 operating system and reduced the overhead
by nearly an order of magnitude[vECGS92]. However, even
the remaining time was still quite large (11/15 us) due to



the expense of the DMA instructions and instructions which
switch to and from the operating system.

This leads us to believe that the network interface should
not invoke the operating system in order to handle a message
belonging to the currently active application. Involving the
operating system leads to large, and often unnecessary, over-
head. One justification for accepting this overhead is that it
is needed to provide protection among different applications.
However, we will show in Section 2.1.3 that protection be-
tween individual processes can be efficiently maintained by
user-level interfaces.

1.2 User-Level Memory-Mapped Interfaces

More recent processor-network interface designs make send-
ing and receiving messages user level operations. Most of
these interfaces are memory mapped. The important fea-
ture of these interfaces, however, is not that the hardware is
actually memory mapped, but that the bandwidth and la-
tency of accessing the network interface is similar to that of
accessing memory. Typically, messages are sent by the user’s
process composing the message and executing a SEND com-
mand. The processor finds out that a message has arrived
either by polling to check if a message has arrived or by an
interrupt which is generated on message arrival.

Examples of this approach include, among others, the
MDP Machine [DDF*92], the CM-5 [LAD%92], the mem-
ory communication of iWARP, and the message passing in-
terface of the MIT Alewife machine [ACD%91]. In these
machines, the interface resides either directly in memory or
in special purpose hardware attached to one of the memory
buses. In iWARP the processor accesses messages by di-
rectly reading and writing off-chip main memory. In Alewife,
the processor accesses messages in special purpose hardware
which sits on the off chip cache bus.! In the CM-5, the pro-
cessor accesses messages in special purpose hardware which
sits on the M-bus, the off-chip memory bus. In the MDP, the
processor writes outgoing messages to on-chip special pur-
pose hardware but reads incoming messages directly from
the on-chip memory.

Having eliminated the involvement of the operating sys-
tem, these interfaces are much faster than those of the previ-
ous category. For instance, sending a single packet message
in the CM-5 takes 1.6 microseconds [vECGS92]. Much of
this time is spent accessing the network interface over the
external message bus. The MDP is even faster since it ac-
cesses messages over an on-chip bus, and because it is able
to send two words of a message in a single cycle.

1.3 User-Level Register-Mapped Interfaces

The memory mapped network interface designs still leave
room for further improvement. In order to send a message,
these processors have to execute a series of store operations
to the memory mapped network interface. In order to re-
celve a message, they have to execute a series of load op-
erations from the memory mapped network interface. A
processor with an on-chip network interface could eliminate
these loads and stores by mapping the interface into the
processor’s register file rather than its memory. An arrived
message could implicitly appear in a predetermined set of
general registers. Words of an outgoing message could be
computed directly into other predetermined general regis-
ters.

'n Alewife, the arrival of a message is signalled by a supervisor-
level interrupt. However, accesses to the interface and the sending of
messages are under user-level control.

There are several existing interfaces which map the inter-
face directly into the register file. As far as we know, none of
these are used to support the message passing model. Two
examples which support other communication models are
the grid network of the CM-2[Hil85] and the systolic com-
munication in iWARP[BCC'90].

The CM-2 grid network supports synchronous, unbuff-
ered communication appropriate for the SIMD model. It
allows a node to communicate with its four nearest neigh-
bors. For each neighbor, a processor has one register which
can be read by that neighbor. A value written into one of
these registers can be read by the neighbor on the next cycle.

The systolic network interface in iWARP supports a sys-
tolic communication model. A one-way systolic connection
can be set up between any two nodes in the machine. The
connection includes a special gate register at each end. Any
write to this register by the sending node implicitly causes
the data written to be sent to the receiver. Similarly any
read from a special gate register by the receiving node auto-
matically returns the next piece of data received. Unlike the
CM-2, there is buffering of the data communicated between
nodes, so the processors need not execute in lock step.

By mapping the processor-network interface into the reg-
ister file, both these mechanisms allow for low-overhead,
high-bandwidth communication of data. Although these
particular interfaces are not used for a general message pass-
ing model, an interface designed to support a message pass-
ing model should be able to take advantage of a register
mapped interface as well.

1.4 Hardwired Interfaces

The final category of interface designs consists of those de-
signs which completely bind the sending, the receiving, and
the interpretation of arrived messages in hardware. Again,
designs which use this approach do not implement the gen-
eral message passing model. Examples of these designs in-
clude shared memory machines, such as the shared memory
interface of the MIT Alewife machine [Kub91], and dataflow
machines, such as the MI'T Monsoon machine [Pap90]. Since
the messages are controlled without software intervention,
they can be handled very efficiently. For example, a Mon-
soon processor can receive, dispatch on, and create messages
at the rate of one per cycle.

However these machines provide no explicit user-level
model of the network. The meaning of messages is bound
in hardware and the programmer has no control over when
and how communication occurs. In Alewife’s shared mem-
ory interface, any load or store instruction can initiate a
message, or a set of messages, in order to access a poten-
tially remote memory location and to maintain coherence
among its copies. In Monsoon, once a message (ie. token)
arrives at its destination, it becomes indistinguishable from
any local token.

We believe that these hardwired interfaces are not ap-
propriate for a general message passing model because they
take control away from the programmer and the compiler.
One premise of the message passing model is that the appli-
cation programmer, rather than the runtime system, is best
equipped to optimize the placement of data. Contrary to
this goal, hardwired shared memory interfaces migrate data
from underneath the programmer. Another common belief
of the message passing model is that the software system
should use all available information in order to efficiently
allocate resources. Not knowing which threads will generate
or receive communication may hinder the efficient use of the
network as well as the processors. Finally, without explicit



access to the network, the programmer cannot fine-tune the
generated network traffic by sending messages of the correct
size, as opposed to a cache line or an individual token.

However, just because the programmer is aware of the
sending and receiving of messages does not mean that the
hardware cannot assist in efficient message handling. Typ-
ically, software based message passing interfaces execute a
series of instructions to determine whether there is an in-
coming message and whether any abnormal conditions have
occurred, to determine the type of the arrived message, to
compute the corresponding message handler, and, finally,
to invoke that handler. Most do not provide any hardware
support for message handling. An exception is the MDP
network interface which can, in three cycles, read an IP
from a hardwired field of the arrived message and transfer
control to that IP. Optimizing message passing interfaces by
taking advantage of the same hardware mechanisms used by
the shared memory and dataflow models, should speed up
message passing programs and enable a fairer comparison
with competing computation models.

1.5 Summary

We have drawn four principles from examining existing net-
work interface designs:

e The processor-network interface should be user-mode
programmable. [t should not invoke the operating sys-
tem to handle messages belonging to the resident ap-
plication.

e The sending and receiving of messages should be un-
der explicit control of the user level program, giving it
the ability to control migration of data, to better in-
terleave computation and communication, and to op-
timize message traffic.

o The processor-network interface ought to map to pro-
cessor registers rather than memory, in order to avoid
needless loading and storing of message values.

e Frequent message operations, such as dispatching,
should be assisted by simple hardware mechanisms.

The first two of these principles are widely accepted by the
message passing community. One goal of this paper is to
quantitatively show the importance of the last two.

1.6 OQOutline

The rest of this paper describes our network interface archi-
tecture, details several implementations of this architecture,
and draws conclusions from a network interface performance
study we have carried out. In Section 2, we describe a ba-
sic interface architecture and extend it with our proposed
optimizations. This architecture benefits from the insights
gained in the above survey. In Section 3, we describe three
possible implementations of this architecture. These imple-
mentations differ in how closely the network interface is cou-
pled to the processor. In Section 4, we evaluate and compare
the various implementations of our architecture in terms of
the dynamic instruction overhead which they generate. We
show that simple improvements to the network interface can
have a significant impact on the performance of programs.
Finally, in Section 5, we conclude by summarizing the out-
come and lessons of our project.

2  Architectural Optimizations

In this section, we will describe our proposed network inter-
face optimizations and set up the background for evaluating
their effects. We start by outlining a very basic network in-
terface architecture which is comparable to existing message
passing network interfaces (Section 1.2). This basic archi-
tecture will serve as the basis for our performance compar-
isons. After describing the basic architecture, we proceed to
extend it with our proposed hardware support mechanisms.
We limit our discussion in this section to the programmer’s
model of the interface and leave implementation details to
Section 3.

2.1 Basic Architecture

The basic architecture described in this section provides
minimal network interface services to the programmer. It
lets the programmer compose a short message and send it. It
also lets the programmer examine the least recently arrived
message and dispose of it. The architecture takes no posi-
tion on whether the interface is polled or interrupt driven
and could be implemented as either for different types of
messages. We will assume a polled interface for the remain-
der of this paper.

Figure 1 shows the programmer’s view of the interface.
The interface consists of 15 interface registers together with
an input message queue and an output message queue. Five
of the interface registers, the output registers o0 through o4,
contain the words of the message being composed. Another
five, the input registers i0 through i4, contain the words of
a received message. The CONTROL register is used to set
values which control the operation of the network interface.
For instance, bits in the CONTROL register specify what
should be done if a new message is to be sent and the output
queue is full. The bits in the STATUS register indicate
the current status of the network interface. For instance,
one field in the STATUS register reports the number of
messages in the input queue. The remaining registers are
used for optimizing message dispatch and will be described
later. The mechanism by which the processor accesses the
interface registers is implementation dependent.

The queues provide buffering for messages. The input
message queue continuously receives messages from the net-
work and buffers them until the processor receives them.
Similarly, the output message queue buffers messages sent
by the processor until the network accepts them.

Each message has the same format (Figure 2). It consists
of five words, m0 through m4, plus a 4-bit type field which
is ignored by the basic architecture. The use of the type
field will be described in Section 2.2.1. The logical address
of the destination processor is specified by the high bits of
the first word of the message. The translation to a routing
address is implementation dependent.

The network interface is controlled by two commands,
SEND and NEXT. The SEND command forms a mes-
sage out of the contents of the output registers and then
queues the message for transmission in the output queue.
The NEXT command pops the next message from the in-
put queue, if there is one, and stores it into the input reg-
isters. The mechanism by which the processor issues these
commands is implementation dependent.

2.1.1 Flow Control

The network interface, together with the network, enforces
flow control at the sending processor. If the receiving proces-
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Figure 2: The message format defined by the architecture.

sor does not process messages as fast as the network delivers
them, its input message queue backs up into the network.
As the network becomes clogged, processors can no longer
transmit messages and eventually their output queues fill
up. When a processor’s output queue becomes full, no more
messages can be sent by that processor. Depending on the
CONTROL register settings, an attempt to send a mes-
sage when the queue is full will either signal an exception or
stall the processor until the output queue empties. Stalling
the processor should not be done if the processor needs to
participate in emptying the network.

2.1.2 Variable Length Messages

The basic architecture we have outlined can only handle
5-word messages. However, the architecture could easily
be extended to send and receive variable length messages
including infinite length systolic streams.

To handle messages longer than 5-words, we can view
the input and output registers as scrolling windows which
expose to the programmer a 5-word segment of the mes-
sage. An additional command, SCROLL-IN, scrolls the

next five words of an incoming message into the input regis-

type: —

wordO: address of the requested location

word1: FP of the thread which will handle reply
word2: IP of the thread which will handle reply
word3: —

word4: id of a remote read request message

Figure 3: The message format of a remote read request.

ters. Analogously, SCROLL-OUT, sends the five message
words in the output registers and continues composing the
same message.

2.1.3 Protection

Although none of our performance studies measures the
cumulative performance of multiple applications, it is im-
portant to note that our basic architecture could be easily
extended to handle a multi-user environment. Moreover,
the necessary extensions would not affect the optimizations
which we will propose.

There are two types of messages which require special
handling in a multi-user environment: messages destined for
the operating system, and messages destined for processes
other than the currently active process. Messages destined
for the operating system must be treated as privileged mes-
sages. To guarantee protection, the arrival of a privileged
message could interrupt the processor or the message could
be stored in privileged state until the operating system can
handle it.

There are two basic mechanisms for handling messages
destined for inactive processes. If all processors context
switch synchronously, or time-slice, then such messages can
be avoided by draining the network in between time-slices.
This is the strategy used by the CM-5[LAD%92]. On the
other hand, if each processor context switches independently,
then each message must be tagged with its process identi-
fication number (PIN). As a message arrives, the network
interface will check whether its PIN matches the PIN of the
currently active process. If not, the network interface will
treat the message as a privileged message.

2.1.4 Example

We conclude our description of the basic architecture with a
simple example - a remote read message. Consider the fol-
lowing remote read protocol. When a computation thread
needs a remote value, it sends out a non-blocking remote
read request message. This message carries the address of
the remote value as well as the identity of the thread to be
invoked when the reply value arrives. On receiving this mes-
sage, the destination processor reads the requested location
from its local memory and sends a reply. When the reply
message arrives, the thread whose identity is supplied by the
message is invoked. This thread saves the reply value and
reschedules any threads waiting for the reply.

Let us consider one convention for remote read and reply
messages. Figures 3 and 4 show the assumed format for
these messages. For all messages, the type of message being
sent is identified by the fourth word of the message. All
other words of the messages are interpreted differently for
each type of message. In case of a remote read request,
the first word of the message contains the remote address
of the requested memory location; Words 1 and 2 identify
the thread which will handle the reply message. Word 1



type: —
wordO: FP of the thread which will handle reply
word1: IP of the thread which will handle reply

word2: reply value
word3: —
word4: id of a reply message

Figure 4: The message format of a remote read reply.

contains the procedure frame pointer (FP) of the thread;
Word 2 contains the instruction pointer (IP) of the thread.
In case of a reply message, the first two words send back
the FP and IP of the thread which will handle the arrived
message; Word 2 contains the reply value.

Let us consider what happens as a remote read request
message advances into the input registers of the destination
processor’s network interface. Figure 5 shows the polling,
dispatching, and processing of the arrived remote read mes-
sage as performed by the destination processor. Each line
in this basic sequence corresponds to one logical step which
must be taken to process a remote read request. It does not
directly correspond to any number of processor instructions.
For instance, the explicit reading and writing of network in-
terface registers is not meant to imply memory loading and
storing. As we will see in Sections 3 and 4 the number of in-
structions for each step will vary with each network interface
implementation.

The processor first polls to see if a new message has ar-
rived (Lines 1-2) It checks a bit in the network interface’s
STATUS register to determine if the input registers con-
tain a valid message. If so, the processor goes on to dispatch
the arrived message (Line 3) This dispatch routine computes
the instruction pointer of the message handling thread using
the message’s id (Lines 4-5) and jumps to it (Line 6). In our
example, the processor jumps to the remote read message
handler.

The remote read message handler generates and sends
a reply to the read request. Lines 7-10 copy from the in-
put message into the output message the FP and IP of the
thread which will serve as the message handler for the reply
value. Lines 11-13 read the requested memory location and
write its value to output register 03. Lines 14-15 generate
the message id of a remote read reply message and write
the id to output register 4. Finally, Lines 16-17 send the
reply message and load the next incoming message into the
network interface input registers.

2.2 Optimized Architecture

Having described a basic network interface architecture, we
next extend this architecture with several optimizations. We
illustrate the benefits of these optimizations by rewriting our
example using these optimizations. Figure 6 shows the new
and shorter sequence of steps necessary to receive and pro-
cess a remote read request. We will refer to this optimized
handler throughout this section.

2.2.1 Encoded types

We have seen in the previous example that each message had
to identify its message handler. When sending a message
the processor had to explicitly generate a 32-bit identifier
and store it into the fourth word of each message (Lines 14—
15.). Our first optimization will remove this overhead for the
most common message types. We will allow the processor

poll:

1. read STATUS into stat

2. check a flag in stat to find out if there is a message
in the input registers

3. if there is a message, goto dispatch

dispatch:
4. read 14 into msg_id
5. compute address of message handler from msg_id

6. Jump to the message handler

remote read message handler:
7. read il into reply _FP
8. write reply _FP into 00
9. read 12 into variable reply _IP
10. write reply IP into ol

11.  read i0 into variable address
12.  load from memory address into variable value
13.  write value into 02

14. generate the reply _msg_id
15.  write reply _msg_id into 04
16. SEND

17. NEXT

Figure 5: The logical sequence of actions necessary to re-
ceive and process a remote read request using only the basic
architecture.

poll and dispatch:
1. read MsgIP into msg_ip
2. jump to msg_ip

remote read message handler:

read 10 into variable address

load from memory address into variable value
write value into 02

SEND -reply type=reply_msg_id

NEXT

OO W

Figure 6: The logical sequence of actions necessary to receive
and process a remote read request using proposed architec-
tural optimizations.

to supply a 4-bit compile-time constant, the message type,
as part of each SEND instruction. This new 4-bit message
field will be transmitted with the rest of the message and
will show up in the STATUS register when the message is
being processed.

Since, in many message passing models the number of
frequently invoked handlers is relatively small, most mes-
sages will no longer need to generate and send a 32-bit iden-
tifier. In systems where there are more message identifiers
than can be represented in four bits, an “escape” type can be
be stored in the four bit field when one of the less common
message types is to be sent.

Lines 14-15 of the basic example can now be omitted.
Instead we can specify the type of the message directly in

the SEND command (Line 6 of the optimized handler).



2.2.2 Fast Reply/Forward

Our next optimization optimizes the common case of reply-
ing to or forwarding part of a message. When replying to
the remote read request in our example, the processor had to
explicitly copy fields from the incoming message into fields
of the outgoing message (Lines 7-10). In general, every han-
dler which replys to a message will have to copy the FP/IP
pair of the reply handler from the incoming message to the
outgoing message. Similarly, every handler which forwards
part of a message will have to copy the data fields from the
incoming message into the outgoing message.

In order to avoid this overhead, we have defined two spe-
cial modes of the SEND command: REPLY and FOR-
WARD. When one of these modes is used, the SEND
command composes an outgoing message using certain input
registers in place of certain output registers, thus removing
the need to copy. For example, in the REPLY mode, the
SEND command composes a message using registers i1 and
i2, in place of 00 and ol.

This feature allows us to remove Lines 7-10 of the basic
example and replace them by the “-reply” option to the

SEND command (Line 6 of the optimized handler).

2.2.3 Hardware Assisted Message Interpretation

The basic architecture we have described so far dispatches
arrived messages completely in software. To dispatch an ar-
rived message, the software must get the type of the arrived
message, use this to compute the instruction address of the
handler for that message, and then jump to that handler.
These steps correspond to Lines 4-6 of the basic handler.
In contrast, shared memory and dataflow architectures can
analyze the type of the arrived message and invoke the cor-
rect message handler in hardware. There is no reason why
a programmer visible interface could not do the same.

We achieve hardware efficiency via an additional regis-
ter, the Msglp register. The Msglp register precomputes
in hardware the instruction address of the handler for the
current input message. To dispatch an incoming message to
the correct message handler, we only need to jump to the
contents of the Msglp register.

To compute the address of the handler we must have
some conventions on where the handlers are stored. First,
we use an additional register: IpBase. This register should
be loaded with the starting address of the area in which
the message handlers are stored. To compute Msglp, the
network interface replaces certain bits of the IpBase register
with the type bits of the arrived message. This allows each
message type to dispatch to a different handler. We must
also handle messages, such as the remote read reply message,
which specify the address of their handler in the message.
We mark these messages type 0. For type 0 messages, the
Msglp register assumes that the address of the handler is
given by Word 1 of the message, and that is the value it
returns.

As described so far, before using the value in Msglp we
must first check to make sure that a message has arrived.
(This corresponds to Lines 1-3 in the above example.) When
there is no new message, MsglIp will return a special han-
dler address, corresponding to replacing bits of the IpBase
register with type bits 0000.

Using these features, we can now replace Lines 1-6 of the
example by simply reading and jumping to MsglIp. These
commands are shown in Lines 1-2 of the optimized handler.

The code of the optimized handler may experience delays
after Lines 1-2. There may be a delay after Line 1 caused by

Case 1:
31 14 13 1211 8 7 0
Msgl P: |1 p-Base[31:14] [4 [, |handier 1D[0 . . . ©
-iafull
oaf ul |
iafull =1 if input queue is almost full
oafull = 1 if output queue is alnost full
handler ID =

0000 if there is no arrived nessage
0001 if an exceptional condition exists
input nmessage type otherw se

Case 2:
31 0
I nconi ng Message Word: i1 |

Msgl P |

Figure 7: Hardware computation of MsgIP. Typically case
1 applies. If there are no exceptional conditions, neither
queue is over its threshold, and the arrived message is of
type 0, then case 2 applies.

the latency between the read and use of the Msglp value.
The jump at Line 2 may cause additional delay because we
cannot fill any delay slots after the jump. We can mask these
delays by overlapping the processing of one message with the
dispatching of the next message. However, without further
optimizations, this is not always possible. In our example,
we cannot read MsglIp of the next message until the next
message has advanced into the input registers. This does
not happen until the last instruction of this handler.

With an additional register, NextMsglp, we can fill
additional delay slots in the dispatch routine. NextMsglp
computes the handler address for the next message, just as
the MsglIp computes it for the current message. Dispatch-
ing to NextMsglp instead of Msglp, allows the software
to always overlap the processing of one message with the
dispatching of the next.

2.2.4 Optimized Boundary Conditions

In addition to message handling, we also use hardware assis-
tance to handle infrequent boundary conditions. For exam-
ple, we use hardware assistance to avoid network clogging.
Recovering from a clogged network can be very costly as
multiple processors take exceptions to handle overflow of
their output queues. One way to keep this situation from
happening is by frequently reading the STATUS register to
determine the size of the input and output queues. If either
queue starts getting too full, we can take actions to ease the
network load. For example, if the input queue starts getting
too full, we may want to handle all queued messages before
vielding the processor to other computation. If the output
queue starts getting too full, we may want to stop sending
messages for a while.

However, continuously checking queue lengths in soft-
ware in order to prevent the, hopefully, rare condition of
network overflow is very inefficient. We have not even in-
cluded this step in our basic handler. To do this efficiently,
we provide hardware assisted checks through the Msglp
register.

Figure 7 illustrates the computation of Msglp, including
the checking of queue lengths. Whenever the input queue



length or the output queue length exceeds a certain thresh-
old, the iafull or the oafull bit in the MsgIp register gets
set. The queue threshold at which these bits get set can be
set independently for each queue in the CONTROL regis-
ter. We have chosen to define four versions of each message
handler instead of defining two new message handlers to han-
dle the special condition of a queue exceeding its threshold.
While this choice uses up more memory to hold the han-
dler code, it allows each message handler to independently
decide how to respond to these conditions. For instance, a
message handler that does not send any new messages may
ignore the state of the output queue. A short message han-
dler may process its message even when the input queue is
getting full.

There are also other rare conditions which we do not
want to continuously check for in software (such as an error
in the message input port). The hardware also checks for
and reports these exceptional conditions through the STA-
TUS register. To be able to report exceptional conditions
through the Msglp register, we disallow messages of type
1. Whenever there is an exception, the four handler ID
bits of MsglIp are set to 0001. This forms an instruction
pointer to the exception handler. The exception handler
can then check the STATUS register to see precisely which
exceptional condition has occurred.

3 Three Implementations

Section 2 described the programmer’s view of a network in-
terface, not the implementation. This section will suggest
several possible implementations, and outline their costs and
benefits. We will refer to these implementations in our per-
formance studies of Section 4.

The architecture we have described in the previous Sec-
tion could be implemented in several different ways depend-
ing on:

o the encoding of network interface commands into pro-
cessor’s instruction set, and

e the mapping of network interface registers into proces-
sor’s storage.

There are many possible ways in which a given implementa-
tion could encode network interface commands. These com-
mands could be incorporated into the processor’s instruc-
tion set. They could be assigned new opcodes or assume
reserved coprocessor opcodes. Since these commands, in-
cluding SEND’s 4-bit type and forward/reply mode, take
up only seven bits, they could also be incorporated into the
unused bits of many existing instructions. For implementa-
tions which do not wish to modify the processor instruction
set, the NEXT and SEND commands could be memory
mapped. A store into a certain memory location(s) could
initiate a NEXT or a SEND command.

There are also several ways in which a given implemen-
tation could access the network interface registers. We have
already discussed several of these in our survey. The inter-
face registers could be included in the processor register file
and accessed by the register field of any instruction. They
could also sit in separate storage and be accessed via new op-
codes or reserved coprocessor opcodes. Finally they could be
mapped to certain memory locations in the processor cache
Oor main memory.

For example, the 83110MP microprocessor [Gre92] [Bec92]
contains an on-chip network interface with dispatch hard-
ware optimizations similar to those described in this pa-
per. The 88110MP network interface sits on the processor’s
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Figure 8: An off-chip cache based implementation of the
network interface.

| Address Lines | Information

5:2 interface register number
9:6 type of message to be sent
11:10 01 — SEND command

10 — SEND reply command
11 — SEND forward command
00 — Don’t perform a send

12 NEXT command

Figure 9: Encoding of network interface commands and reg-
ister number into a memory address.

source and write-back buses along with all the other func-
tional units. The 88110MP is dual issue and the network
interface can execute two coprocessor network instructions
per cycle. Each network instruction can send two values or
read one value from the interface.

We have chosen three likely implementations for our per-
formance studies. These are:

o Off-chip cache mapped interface registers with memory
mapped commands.

e On-chip cache mapped interface registers with memory
mapped commands.

o Register-file mapped interface registers with commands
encoded in unused bits of triadic instructions.

Each of our three implementations has different design im-
plications in terms of processor chip real estate and com-
plexity of processor design. The instruction sets of all three
implementations are based on the 88100 Motorola proces-
sor - a typical RISC processor. We believe that other RISC
instruction sets should yield similar performance results.

3.1 Off-Chip Cache-Based Implementation

The first implementation we consider maps the network
interface into a second level off-chip cache (Figure 8). This
interface becomes another chip on the processor’s external
data cache bus. The interface chip follows the cache inter-
face protocol and behaves, from the viewpoint of the proces-
sor, as another data cache chip. A processor’s load or store
instruction is processed by the interface if the upper bits on
the address bus match a preset constant. In a single load or
store instruction, the processor can do any combination of
the following: access one interface register, execute a SEND
command, and execute a NEXT command. The command



to the network interface is encoded in the low order bits of
the memory address, as shown in Figure 9.
Consider a typical RISC load instruction:

load r3 r1 C

This instruction sign extends the 16-bit constant, C, to a 32-
bit value and adds it to the contents of register r1 in order
to compute a memory address. The processor outputs this
address on the address bus. The value returned on the data
bus is then stored in register r3. Consider the case where
the address r1 + C transmitted along the address bus is:

11...11 1 100111 0110 00

Interface register = 6 (il)
Message type = 7

SEND = 2 (Reply Mode)

NEXT = 1 (get Next nessage)
Address of Interface

sume that the address to which the interface is mapped con-
sists of all 1’s. This load request will activate the network
interface instead of a data cache. The low order bits of the
address will direct the network interface to:

-

e return the contents of the sixth interface register, i,
to the processor along the data bus,

e send a reply message of type 7, and
e load its input registers with the next message.

This interface is easy to implement; of the three network
interface implementations which we present in this section,
this is the only implementation which requires no modifi-
cations of the processor chip. We designed such a network
interface chip, NIC, for use with the 88100 processor. We
designed, simulated, and thoroughly tested NIC at the RTL
level[HJO1].

The modularity of NIC’s design is both a strength and a
weakness. Because this network interface is not part of the
processor chip, it is slower than an on-chip interface. Access
to an off-chip interface is likely to take several processor
cycles. For example, in the 88100 processor, a loaded value
cannot be used in the two cycles following the load. We
expect this weakness to get worse in the future as processor
speeds further outpace off-chip memory latency.

3.2 On-Chip Cache-Based Implementation

The second implementation we consider maps the network
interface into an on-chip cache. This implementation is iden-
tical to the previous one, except that the network interface
now sits on an internal data cache bus rather than an exter-
nal one (Figure 10).

This network interface implementation is only slightly
more intrusive than the previous one. Although, we have
added a new module - the network interface - to the pro-
cessor chip, we have not modified the processor core. The
network interface only communicates with the rest of the
processor via its internal cache bus. The processor’s instruc-
tion set, its control, and its datapaths remain unchanged.
Moreover, because the network interface is on-chip, network
interface accesses are somewhat faster. Access to an on-chip
interface is likely to take only a single cycle.

The cost of this approach is that additional I/O pins
and chip area are needed on the processor. Most of the area
taken up by the network interface is memory, namely the
message queues and, to a lesser degree, the interface regis-
ters. The area needed for control, including the proposed
optimizations, is negligible. If, for example, each message
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Figure 10: An on-chip cache based implementation of the
network interface.
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Figure 11: A register-file based implementation of the net-
work interface.

queue is 16 messages long, the total memory needed is about
3/4 of a kilobyte. This corresponds to only a small fraction
of the die on current microprocessors.

3.3 Register-File-Based Implementation

The final network interface implementation that we consider
maps the network interface into the processor’s register file.
The network interface registers take up part of the register
file and can be accessed as any other scalar register. The net-
work interface commands, NEXT and SEND, are encoded
into the unused bits of every triadic (three-register) 88100
instruction. Figure 11 illustrates the register-file-based im-
plementation.

Although the cost of this implementation in terms of
processor size and [/O count is comparable to that of the
on-chip cache version, the increase in design complexity is
much greater. Comparing Figure 11 to Figure 10, we see
that this implementation is more intrusive than the previ-
ous implementation. The processor’s decoder must be mod-
ified to forward SEND and NEXT fields of each triadic in-
struction to the network interface module. Moreover, some
register file registers must contain an additional port. Net-
work interface input registers must contain one more write
port from the input queue; network interface output regis-
ters must contain one more read port to the output queue.
Since the decode and register read stage of today’s RISC
processors tends not to be the critical one, these modifica-
tions are realistic. However, to the degree that these mod-
ifications increase the complexity of the processor design,
their performance benefit must be carefully weighed against



increased design time.

Of the three interfaces we have considered, the register-
file-based interface is the most efficient. As long as other
useful work can be performed in the same instruction, it
takes no additional cycles to access up to three network in-
terface registers and to send either or both commands to
the network interface. For instance, consider the following
triadic 88100 instruction:

add ol il i2, SEND type=5, NEXT.

In one cycle, this instruction adds the contents of two in-
put registers, stores the result in an output register, sends
a message of type 5, and advances a new message into the
input registers. The preceding memory mapped implemen-
tations require four 88100 RISC instructions to accomplish
the same.

4 Performance Evaluation

This section examines the performance implications of our
architecture. We consider the effects of two variables: the
placement of the interface (off-chip cache, on-chip cache,
register) and the presence or absence of our optimizations.
To evaluate the impact of different interface placements, we
consider the three implementations described in the previous
section. To evaluate the impact of our proposed optimiza-
tions, we consider each implementation with and without
the optimizations of Section 2.2. Without our optimiza-
tions, the memory mapped implementations of Sections 3.1
and 3.2 correspond closely to existing network interfaces
(Section 1.2) and form a good basis for comparison.

We take two approaches to evaluating the performance
of network interfaces. First, we compare the dynamic num-
ber of RISC cycles necessary to send, dispatch, and handle
typical types of messages. Second, we evaluate the dynamic
cycle counts of two parallel, scientific programs.

4.1 Software Cost of Each Message

We first look at how the cost of sending, receiving, and
processing a typical message is influenced by the network
interface. As our measure of cost, we use the number of cy-
cles necessary to perform each task. We derive these num-
bers from code segments which we have handwritten for the
88100 Motorola RISC processor.

We include here the instruction counts for several com-
mon types of messages. These include all message types
necessary to communicate arguments and results between
procedures, to access remote memory, and to access remote
memory with presence bits. They are:

Send The Send message is the most general message we
consider®. It is used to send procedure arguments
and results and replies to all other message requests.
The Send message invokes a thread whose procedure
frame pointer and instruction pointer are supplied by
the message. By convention, this thread first stores 0O,
1, or 2 words of the message in the procedure frame.
We do not consider its behavior after this point since
it varies with each thread. An example of a Send mes-
sage was the reply to the the remote read request, as
described in Section 2.1.4.

21t is identical to the Start message in the proposed Start archi-
tecture [NPA92]

Read The Read message is used to request a read of a re-
mote memory location. We showed the message han-
dler for this message as an example in Figures 5 and
6.

Write The Write message writes a value to a remote mem-
ory location.

PRead The PRead message requests the value in a remote
array location with presence bits. If the word has al-
ready been written (the presence bits are set to “full”)
the receiving handler replies right away. If the word is
yet to be written, the handler defers the PRead re-
quest. The response will be sent as soon as the word is
written. PRead and PWrite are used to implement
[-Structures [ANP&9].

PWrite The PWrite message writes a value to a remote
array location with presence bits. If there are deferred
readers waiting for the value, the PWrite message
handler forwards the value to each of the n deferred
readers.

Table 4.1 shows our results. It gives the dynamic instruc-
tion counts for sending a message, for dispatching an arrived
message to the appropriate handler, and for processing the
arrived message. The comparison somewhat favors the basic
implementations in that the basic implementations, unlike
the optimized implementations, do not check for abnormal
conditions when dispatching a message.

In the sending of messages using the register based model,
the number of instructions needed may depend on whether
the values in the message can be computed directly into the
output registers, or whether they must be saved for future
use. In these cases we have given a range of values. We
expect that the cost will typically be in the low to middle
part of this range.

Table 4.1 shows substantial improvement from a basic,
off-chip implementation to an optimized, on-chip implemen-
tation. Several instructions are saved when sending out a
message. These savings come from not having to write out
the message type in a separate instruction and from not hav-
ing to store the message fields to memory. Typically, the
largest number of instructions are saved in dispatch. Most
of these savings come from using the hardware assisted mes-
sage interpretation. Savings in processing a message can be
attributed to the fast reply/forward modes, and to not hav-
ing to load (and store) message words from memory.

It is important to note that the results of Table 1 are in-
dependent of the particular program being executed and the
granularity of parallelism in the programming model. Any
program which sends these types of messages will experience
these savings.

4.2 Impact of Interface on Program Speed

The different software costs of sending, dispatching, and pro-
cessing a message impact the final speed of a parallel pro-
gram. In this section, we estimate this impact by comparing
the total number of RISC cycles to execute a parallel pro-
gram under each of the six models.

We have examined the dynamic cycle counts of several
scientific programs. We report the results of two: Matrix
Multiply and Gamteb; the rest give similar results. The
matrix multiply program subdivides matrices into 4 by 4
blocks and computes their products. Gamteb performs a
Monte Carlo photon transport simulation. Both programs
have been written in Id [Nik90], a high level imperative lan-
guage which implicitly uncovers parallelism.



Network Interface Implementation
Message Optimized Basic
Action Type Register | On-chip | Off-chip | Register | On-chip | Off-chip
Mapped | Cache Cache | Mapped | Cache Cache
Send (0 words) 2 3 3 3 4 4
Send (1 word) 2-3 4 4 3-4 5 5
Send (2 words) 2-4 5 5 3-5 6 6
SENDING PRead 2-4 5 5 3-5 7 7
PWrite 0-3 3 3 1-4 5 5
Read 2-3 4 4 3-4 6 6
Write 0-2 2 2 1-3 4 4
[ DISPATCHING ] - | 1 2 | 2 | 5 | 7 | 8 |
Send (0 words) 1 1 3 1 1 3
Send (1 word) 2 3 5 2 3 5
Send (2 words) 3 5 6 3 5 6
PROCESSING | Read 1 3 5 4 8 8
Write 1 3 4 1 3 4
PRead (full) 9 12 13 12 17 17
PRead (empty) 19 23 23 19 23 23
PRead (deferred) 15 19 19 15 19 19
PWrite (empty) 14 17 17 14 17 17
Pwrite (deferred) 15+6n 19+8n 19+8n 16+6n 20+8n 20+8n

Table 1: The number of 88100 RISC processor cycles it takes each network interface implementation to send a message, to
dispatch an arrived message to the appropriate message handler, and to process a message. Basic implementations only use the
basic network interface architecture and do not check for abnormal conditions at dispatch. Optimized implementations make
use of special features: the immediate type field, fast forward and reply modes, and hardware assisted message interpretation.

4.2.1 Environment

Both programs have been compiled to Berkeley’s Threaded
Abstract Machine (TAM) [CSST91]. TAM is targeted to-
wards performing fine-grain parallel computations. Both
programs were compiled so that any two procedure invo-
cations would communicate across the network. To illus-
trate the grain size, there were, on average, 3 floating point
operations performed for every message sent in our matrix
multiply program.

We computed the total number of TAM instructions exe-
cuted by each parallel program using a TAM instruction set
simulator developed at Berkeley. This simulator reported
the number of times each TAM instruction, or class of TAM
instructions was executed. It computed these results by se-
quentially executing each thread of the parallel program.
The simulator did not model any number of processors or
any network latency. Both of these could introduce idle cy-
cles due to communication delay and load imbalance. Our
results do not include any idle cycles.

We determined the ratio of deferred, full, and empty
PReads and PWrites by running the same programs on a
simulator of the Monsoon dataflow processor, Mint, using

LIFO scheduling of dataflow tokens [Sha89].

4.2.2 Scope of Program Speed Results

The results of this section are more limited in scope than
the instruction counts reported in Table 1. First, as with
any benchmark results, they only report the performance of
specific programs. In additions, they reflect the types and
frequencies of messages used by the TAM model running Id.
However, we think that these programs are fairly typical
of fine-grain parallel programs and expect that results from
other fine-grain parallel models should be similar.

For coarser grained models the message types and fre-
quencies may be substantially different from those of our
fine-grain model; so the results of this section do not directly
apply. But the results of Table 1 are still relevant. Namely,
register based implementations will out perform non-register
based implementations, and implementations with our opti-
mizations will outperform those without. How much of an
effect these choices have will greatly depend on the model.

4.2.3 Program Speed Results

Figure 12 shows the total number of 88100 instruction cycles
for the two programs under each network interface model.
We computed these by simulating each program and replac-
ing the dynamic instruction count of each TAM intermediate
instruction by the appropriate number of RISC instructions.

Each bargraph in Figure 12 is divided into several com-
ponents. The bottom component corresponds to the to-
tal amount of cycles spent performing non-message passing
work. The number of cycles spent performing communica-
tion related work is broken into two parts. The lower of the
two components shows the amount of time spent dispatch-
ing. The top component shows the time spent on all other
communication work, namely the sending and receiving of
message values.

One result, and not a surprising one, is that for these
fine-grain parallel programs, the cost of communicating has
a first order effect on the total number of instructions. Al-
though the dynamic frequency of executing a message send-
ing instruction, such as Send or PRead, is under 10%; each
sending and each receiving of a message expands into a large
number of RISC instructions. As a result, in some exper-
iments, more time is spent performing communication in-
structions than non-communication instructions.

More importantly, the gains achieved by using an opti-



Matrix Multiply 100x100

Reg On Of
Optim zed Basi c

Reg On Of

Reg = Interface mapped to Register
On = Interface mapped to On-chi p cache
Of = Interface napped to O f-chip cache

H
N

Reg On Of

Optim zed Basi c

Reg On Of

<\—Oorrrruni cation (except D spatch)
~~— Di spatch

Non- conmruni cat i on

Figure 12: Dynamic instruction counts for 100 by 100 matrix multiply and 16 Gamteb using the six different network interface

implementations.

mized, register-based interface as opposed to an unoptimized
off-chip interface are substantial. The cost of sending, read-
ing and dispatching messages decreases as much as five fold
as we optimize the network interface and incorporate it into
the register file. Total execution time of these fine-grain par-
allel programs is cut by about 40%. And the percentage of
the execution time due to message passing overhead is re-
duced from 51% to only 17%. This result supports our hy-
pothesis that substantial performance gains can be achieved
relative to existing processor-network interfaces.

Other interesting results can be obtained by contrasting
the gains due to placement versus the gains due to opti-
mizations. Although both significantly cut down on network
overhead, we see that hardware optimizations of the network
interface are more important than the actual placement of
the interface. Even the slowest optimized implementation is
better than the fastest unoptimized implementation. This
result suggests that effective parallel computers can be built
with existing processor designs. Simply by attaching an op-
timized network interface to the cache bus, today’s proces-
sors can considerably lower their network interface costs.

Although the optimizations currently seem somewhat
more important than placement, we do not expect this to
remain true for long. In Figure 12, the performance of the
on-chip and off-chip memory mapped interfaces are fairly
close. But as processors get faster, the latency of perform-
ing an off-chip operation will increase. Figure 12 assumes
a two cycle latency for reads from the off-chip interface.
If, however, the latency is increased to 8 cycles instead of
2, then the communication costs of the off-chip optimized
model will double. As a result, relegating the network inter-
face off-chip will not remain a viable alternative for future
generations of multiprocessors.

5 Conclusion

In this paper, we have advocated a tighter, more optimized
coupling of the network and the processor. We have enumer-
ated a set of principles which an efficient message passing
processor-network interface should follow, and we have de-
tailed an architecture which follows them. The most impor-
tant features of our architecture are simple, low-cost hard-
ware mechanisms for fast dispatching, forwarding, and re-
plying to messages. When mapped into the processor’s regis-
ter file, our processor-network interface allows a remote read
request to be received, processed, and replied to in a total of
two RISC instructions. We have also demonstrated, through
our performance studies, that our architecture could signifi-
cantly reduce communication overhead as compared to that
of existing network interface designs. By making use of our
hardware mechanisms, and by mapping the network inter-
face into the processor’s general-purpose registers, we have
been able to reduce communication overhead about five fold
in our benchmarks.

Another significant outcome of our study is that, for the
TAM execution model, most of the performance gain comes
from our hardware mechanisms rather than from the place-
ment of the network interface inside the register file. Even
if the network interface resides off-chip, our hardware mech-
anisms improve its performance two fold. We conclude that
even existing processors could significantly benefit by incor-
porating our hardware mechanisms into an off-chip network
interface. We have designed and simulated at low level such
an interface, NIC, for the Motorola 88100 processor. In-
fluenced by our work, our industrial partner, Motorola, is
implementing a similar network interface on-chip in an ex-
perimental version of the 83110 processor.
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