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Abstract

Synchronizing access to shared data structures is
a difficult problem for simulation programs.  Fre-
quently, synchronizing operations within and between
simulation steps substantially curtails parallelism.
This paper presents a general technique for perform-
ing this synchronization while sustaining parallelism.
The technique combines fine-grained, exclusive locks
with futures, a write-once data structure supporting
producer-consumer parallelism. The combination al-
lows multiple operations within a simulation step to
run in parallel; further, successive simulation steps
can overlap without compromising serializability or
requiring roll-backs. The cumulative effect of these
two sources of parallelism is dramatic: the erample
presented in this paper shows almost 20-fold increase
in parallelism over traditional synchronization mecha-
nisms.

1 Introduction

Simulation programs present a difficult challenge
for parallel computing. Although many simulations
have a large parallel component, controlling the inter-
action between simulation steps can become a signif-
icant bottleneck. For example, the behavior of parti-
cles in a PIC simulation are largely independent, so
many particles may be simulated in parallel. How-
ever, correctly modeling particle interactions requires
synchronizing particles at each time step. When the
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J-1988. The author is supported by a fellowship from Schlum-
berger Technology Corporation.

density of particles is low, this synchronization limits
achievable parallelism.

This paper presents a general technique for increas-
ing the parallelism of simulation programs. The tech-
nique combines locking techniques developed by the
database community with futures, a write-once data
structure supporting producer-consumer parallelism.
This uncovers two important sources of parallelism.
First, multiple operations within a simulation step can
run in parallel. Second, and more important, futures
allow simulation steps to overlap without compromis-
ing serializability or requiring roll-backs. The com-
bined effect of these two sources of parallelism is dra-
matic: the example presented in this paper shows al-
most 20-fold increase in parallelism over traditional
synchronization mechanisms.

2 Atomic Data Structures

Synchronizing parallel operations on shared data is
a well-recognized problem. Traditional synchroniza-
tion mechanisms, such as semaphores [4] and moni-
tors [6], protect shared data by ensuring that update
operations run under mutual exclusion. This type
of synchronization can be a bottleneck in a parallel
simulation program involving operations on a shared
data structure. For example, simulating particles in
a shared space may yield little parallelism, because
synchronization is required to properly model particle
interactions.

The database community has addressed these issues
with a myriad of locking protocols that ensure atom-
icity while sustaining parallelism. In [2, 3], the author
applies database principles to shared data structures
by introducing a new class of data structures called
M-structures. M-structure operations are implicitly
synchronized for atomicity: reading an M-structure



element locks the element before returning the value;
similarly, writing an element replaces the value and
unlocks the element. This synchronization is fine-
grained. each M-structure element has its own lock,
so operations on different elements in the same data
structure may operate in parallel.

Reducing the granularity of locks is a well known
technique for improving concurrency. Each operation
on a shared data structure acquires just the locks it
needs; contention arises only when two operations re-
quire the same elements of the data structure. How-
ever, even this degree of contention can become a bot-
tleneck. For example, if a simulation occurs in discrete
steps, all updates from one step must complete before
the next step begins. In this case, any local contention
delays the execution of successive simulation steps. To
eliminate this bottleneck, this paper describes a way
to combine M-structures with another kind of atomic
data structure, futures[b, 1].

A future is like a promissory note for a value: it
represents a value that will be defined later. Futures
can be passed and stored as ordinary values, but pro-
cedures requiring a future’s value must wait for the
value to be defined. In the examples below, the func-
tion future allocates a future and spawns a process
that assigns it a value. The touch function reads
the value of a future, suspending until the future’s
value has been assigned. Thus, futures are implic-
itly synchronized, like M-structures, thereby eliminat-
ing read/write races. Futures can be implemented by
write-once data structures such as I-structures[1].

3 TSP and Simulated Annealing

To illustrate this technique, consider using simu-
lated annealing to solve the traveling salesman prob-
lem (TSP). The objective of TSP is to find the short-
est tour of n cities in which each city is visited exactly
once, returning to starting city at the end of the tour.
TSP is typically implemented as a graph algorithm,
where nodes represent cities and weighted edges rep-
resent the distance between cities.

Since TSP is NP-complete, approximate techniques
such as simulated annealing are used. In this ap-
proach, an initial tour of the cities is generated and
then permuted to converge to a locally optimal so-
lution. To avoid convergence on a poor local mini-
mum, the simulation admits some permutations that
increase the tour length, in hopes of entering a region

containing better solutions. The frequency of such
non-improving permutations is governed by the “tem-
perature” of the simulation. Initially, the system is
at a very high temperature and almost all permuta-
tions are accepted. As the simulation progresses the
temperature “cools,” allowing only permutations that
reduce the cost of the tour.

In this version of the simulated annealing algo-
rithm, each temperature tries several permutations of
the tour in parallel. Each permutation exchanges the
position of two cities in the tour. These permutations
may execute in any order, as long as each updates the
tour atomically. However, permutations from differ-
ent temperatures must be serialized to ensure that the
system stabilizes. The following program implements
this algorithm:*

def tour n = atomic M-array of cities from 1 to n

H

def anneal temp ncities nswaps =

{ templock = atomic (tour ncities) ;

In
{ parallel while (not_frozen temp) do
{atomically a_tour = templock update

{ parallel for j from 1 to nswaps do
swap two random cities } } ;

next temp = cool temp } } ;

def swap i j a_tour temp =
{atomically tour = a_tour update

{ old_i = tour![i] ; % read and lock
old_j = tour!'[j] ;
new_i, new_j = permute old_i,old_j ;
tour![i] = new_i; % write and unlock
tour![j] =new_j } } ;
Templock
Atomic Tour

clo|ale]s]| Tour

This program uses M-structures for synchronization
and updates. The tour M-structure has two parts:
an M-structure array (M-array) of cities, and a single
M-structure cell for access control. The atomic func-
tion creates an access control lock for its given argu-
ment. For example, updates between temperatures is

! The pseudo-language used here is based on Id[7], an implic-
itly parallel programming language.



controlled by templock, another M-structure cell that
references the atomic tour.

The anneal function takes three arguments: the
initial temperature (temp), the number of cities in the
tour (ncities), and the number of permutations to
perform at each temperature (nswaps). The parallel
while loop spawns multiple, parallel iterations until
the system freezes. The atomically expression in-
side the loop is called an atomic region. This region
uses the access control lock of the given atomic object
(templock) to guarantee the atomicity of the region.
In this case, this region consists of a parallel for loop
that issues the swaps—atomicity means that all swaps
from one temperature complete before the next tem-
perature begins.

The swap function also uses an atomic region, in
this case to ensure that each permutation is atomic.
Without atomicity, the same city could be simulta-
neously moved to two different positions in the tour,
yielding an invalid tour. Swap also illustrates Id’s im-
plicit parallelism: the statements in a block may ex-
ecute in parallel unless constrained by data depen-
dence. For example, tour positions i and j are locked
in parallel, then permute is called, and finally i and j
are unlocked in parallel. Implicit parallelism is a pow-
erful feature of Id, but is not central to the techniques

described here.

4 Synchronizing Atomic Regions

The nested atomic regions in this example high-
light an important problem in parallel simulation. Al-
though each permutation only affects a small fraction
of the shared data structure, ensuring the atomic-
ity of each permutation requires careful synchroniza-
tion. The rest of this section describes three different
synchronization strategies for ensuring atomicity, and
compares their performance.

Barrier Synchronization: The traditional
method of synchronizing atomic regions involves bar-
riers. In this case, the body of an atomic region is
surrounded by synchronization operations. These op-
erations (typically semaphores) lock the atomic object
before the atomic region begins and release the lock
when the region completes. In this strategy, all par-
allel processes spawned inside the atomic region must
complete before the lock is released.

Lock-Coupling: A technique developed by the
database community, called lock-coupling, ensures

atomicity but unleashes more parallelism than barrier
synchronization. In lock-coupling, the shared data is
structured as a tree of locks. Every operation on the
data acquires the locks in tree order, releasing the par-
ent lock after the child is acquired.

To implement lock-coupling in this example, a lock
is associated with every position in the tour array. Un-
der lock-coupling, swap locks the tour, acquires the
locks of the two cities to be updated, then releases the
lock on tour. This allows other swaps to begin while
the two cities are being updated. Similarly, anneal
releases the temperature lock as soon as the last swap
process has locked the tour.

Futures: Parallelism can be further increased by
using futures. A future is a “placeholder” for a value
that is being computed by some process. If a process
tries to read the value of a future before it is defined,
that process is suspended; when the value is written,
any suspended processes are resumed.

In the TSP example, each element of the tour is a
future containing a city. The swap function calls touch
and future to read the cities and update the positions
with new futures, as follows (lock-coupling operations
are excluded for brevity):

def swap i j a_tour temp =
{atomically tour = a_tour update
{ old_1i = touch tour![i] ;
0ld_j = touch tour![j] ;
new_i, new_j = permute old_i,old_j ;
tour![i] = future new_i ;
tour![j] = future new_j } } ;

Templock
Atomic Tour
AN

In this version of swap, the current cities in posi-
tions i and j are read by locking these positions and
touching the futures; permute is called and, in parallel,
new futures are placed in positions i and j. (Recall
that Id statements execute in parallel, and the future
function returns future before its value has been as-
signed.) Thus, all locks are released well before the



new values for the cities are computed. In turn, the
tour is locked only long enough for new futures to be
allocated—even when swap operations contend for the
same position! If some position becomes a “hot-spot,”
swaps involving other positions can run in parallel.
Futures allow significant parallelism between swaps,
even between swaps in different temperatures.

Experimental Results

The behavior of the TSP program was tested on
a parallel simulator called GITA[8]. This simulator
measures potential parallelism under many conditions.
Using a graph of 100 cities, the following data reflect
the performance of annealing for five temperatures,
where each temperature spawns 40 swaps:

Synchronization | Total Critical | Average

method instructions | path parallelism
executed

Barrier 237,119 | 105,973 2.2

Lock-Coupling 239,424 19,240 12.4

Futures 241,424 6,417 37.6

The first column gives the total number of instruc-
tions executed, which is comparable for all three meth-
ods. Note that GITA measures idealized performance
to demonstrate the maximum achievable parallelism.
One important idealization is that memory allocation
(including allocating futures) takes a single instruc-
tion. Although very low overhead allocation schemes
have been developed[9], real systems will not real-
ize this assumption. However, increasing the cost of
future allocation does not significantly curtail paral-
lelism; rather, the additional overhead is masked by
parallel computation.

Clearly, traditional barrier synchronization yields
the least parallelism of the three. Lock-coupling im-
proves on this,; allowing permutations on different el-
ements to proceed in parallel; however, when there is
contention, the access lock of the tour remains locked
until the contention is resolved. Futures eliminate this
bottleneck, unleashing the most parallelism.

4.1 The Critical Path of Shared Data
Structures

The examples above demonstrate that atomicity
barriers and futures enable a program to tolerate con-
tention. But how close is this to optimal? Can more
concurrency be wrung from this program?

To address these questions, consider the critical
path of the tour M-array. The annealing process posts
t x n swaps against the tour, where ¢ is the number of
temperatures and n is the number of swaps per tem-
perature. The critical path of the tour is the time
it takes for all swaps to complete. For the TSP pro-
gram, the tour position involved in the most number
of swaps gives a lower bound on the critical path of
the tour.

For example, consider annealing a tour of 25 cities
in three steps, where each temperature attempts 10
swaps. Thus, a total of 30 swaps are performed against
the tour. The histogram below shows the distribu-
tion of swaps against the tour positions. Position 7 is
swapped 6 times, the most of any position in the tour.
Since each swap takes 500 cycles to update the posi-
tions, the minimum critical path for the tour is 3000
cycles (500 cycles x 6 swaps).

Histogram of Swaps/Position
25 cities, 3 temperatures, 10 swaps/temp

number of swaps

6 |

5

4

tour position

Figures 1 through 3 depict the history of swaps for
each of the three algorithms. In these diagrams, the
x axis represents time (cycles), while the y axis repre-
sents each of the 25 tour positions. For each position,
horizontal lines indicate update intervals. The start
of an interval indicates when a swap has acquired the
position’s old value, e.g., when a position has been
locked. The interval ends when a new value put back
into the position. The three different line patterns
associate the intervals with the three annealing tem-
peratures.

Figure 1 shows the swap history when barriers are
used. Note that there is no overlap between swaps:
each locks and updates a pair of positions before the
next swap begins. Given this serialization, the crit-
ical path of the tour cannot be less than 30x500
cycles = 15,000 cycles. The actual critical path is
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Figure 1: Swap history of the tour using barriers.

slightly longer, due to synchronization overhead be-
tween swaps.

Figure 2 shows the swap history when lock-coupling
is used to synchronize atomic regions. Here, many
swaps within a temperature execute in parallel. Note
that unlike Figure 1, these intervals are of different
lengths. Long intervals indicate contention: for exam-
ple, consider positions 20, 18, and 4. The first posi-
tions swapped are 20 and 4, from interval 0 to 500.
At time step 10, the program attempts to swap po-
sitions 18 and 4. Position 18 is successfully locked,
but position 4 is deferred until the first swap updates
its value. Note that while position 4 is deferred, the
tour remains locked and no other swaps begin. The
first swap unlocks position 4 at time 500; after this,
the swap on positions 18 and 4 begins computing their
new values, and other swaps on the tour begin.

Parallelism between temperatures is quite minor.
This is because the next temperature cannot begin un-
til the last take in the previous temperature completes.
Thus, the maximum overlap between temperatures is
500 cycles, as occurs between cycles 3800 to 4300.

The critical path of the tour when atomicity barri-
ers are used is 5400 cycles. This is a dramatic improve-
ment over completion barriers, but still 80% longer
than the lower bound of 3000 cycles. Note that all po-
sitions have “gaps” between update intervals; in par-

ticular, position 7 has 3 gaps totalling more than 1500
cycles, and one contention delay (as described above)
from cycle 1100 to 1700.

Figure 3 illustrates how futures allow these gaps
to be filled and delays to be masked. By cycle 200,
all swaps for the first temperature have replaced their
tour positions with futures. Similarly, the second tem-
perature inserts all its futures by cycle 400, and the
third temperature by cycle 600. In this figure, inter-
vals indicate the time between touching an old future
and filling a new one. Note that there are no gaps in
the intervals, because all the swaps are initiated by
time step 600. In particular, position 7 has no gaps
or delays, and is finished with all 6 updates by cycle
3000.

However, delays are not eliminated; rather, they are
masked. For example, the conflict between positions
20, 18, and 4 cited above is still present. Position 18 is
again delayed until position 4 is updated by its swap
with 20. However, no other swap is affected by this
delay (unless it involves positions 18 and 4). In fact,
while position 18 is delayed, swaps in temperatures 2
and 3 are proceeding!

The critical path when futures are used is 3400 cy-
cles, just 13% above the lower bound. It is interest-
ing that the critical path does not involve position 7.
Rather, position 15 incurs enough delay to make it the
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critical path. This points out that futures do not guar-
antee that updates occur in the optimal order; rather,
futures opportunistically fill gaps in the swap history.
If parallel swaps fill these gaps in a different order, a
shorter critical path may be achieved. Scheduling up-
dates to achieve an optimal critical path is analogous
to bin-packing, and is not considered further.

4.2 Implicit Futures

Using futures in M-structures can be viewed as an-
other form of queuing. In this view, the return of the
future is an acknowledgment that an update has been
enqueued, while touching a future indicates that an
update has completed. Since the updates are seen in
the order received, futures implement a FIFO queue.

Given this perspective, it is natural to ask whether
M-structures should provide the functionality of fu-
tures implicitly. That is, each M-structure read can
implicitly touch a future for the value, and every write
can replace the old future with a new one. Although
technically possible, this strategy places important
limitations on how M-structures are implemented.

Consider the changes required to incorporate fu-
tures into M-structure operations. First, each M-
structure read must return a signal indicating that it
has been enqueued on a list of processes waiting for
an element. Second, reads and writes must respect
a FIFO queuing protocol. With these two changes,
atomic regions could synchronize on the enqueuing of
M-structure reads, rather than their completion, thus
yielding the behavior of futures. FIFO ordering en-
sures that reads from different atomic regions occur in
order to avoid deadlock. Thus, availability is increased
without rewriting a program with futures.

Unfortunately, this design places some important
restrictions on the implementation of M-structure op-
erations. First, requiring a FIFO order on reads and
writes precludes simple implementations such as spin-
locks and stacks. Also, the additional acknowledg-
ment returned by M-structure reads induces addi-
tional memory traffic, or requires special capabilities
of the network. These restrictions make an efficient
implementation more difficult and costly, and so fu-
tures are coded explicitly.

5 Conclusions

Atomic data structures provide a clean model for
synchronizing processes that share data. By coupling

two types of atomic data structures—M-structures
and futures—simulation programs can exploit sub-
stantial amount of parallelism. This technique is
widely applicable, enabling updates to a shared data
structure to be posted in constant time (the time al-
locate the futures), even in the presence of conflicts.
The strategy maintains serializability, so algorithms
requiring this property can also benefit.

The examples in this paper demonstrate the benefit
of futures in the presence of cheap, fine-grained lock-
ing. Generalizing this mechanism for coarse-grained
locking over large data structures is a topic of further
research.

References

[1] Arvind and R. E. Thomas. I-structures: An Effi-
cient Data Type for Parallel Machines. Technical
Report TM 178, Computation Structures Group,
MIT Lab. for Computer Science, Cambridge, MA
02139, September 1980.

[2] P. S. Barth. Atomic Data Structures for Paral-
lel Computing. PhD thesis, Laboratory for Com-
puter Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, January 1992. LCS
Technical Report 532.

[3] P. S. Barth, R. S. Nikhil, and Arvind. M-
structures: Extending a Parallel, Non-strict Func-
tional Language with State. In Proceedings of
the Fifth ACM Conference on Functional Pro-
gramming Languages and Computer Architecture,
Springer-Verlag Lecture Notes In Computer Sci-
ence, Volume 523, pages 538-568, August 1991.

[4] E. W. Dijkstra. Hierarchical Ordering of Sequen-
tial Processes. Acta Informatica, 1:115-138, 1971.

[5] R. Halstead. Multilisp: A Language for Concur-
rent Symbolic Computation. Transactions on Pro-
gramming Languages and Systems, October 1986.

[6] C. A. R. Hoare. Monitors: An Operating Sys-
tem Structuring Concept. Communications of the

ACM, 10(10):549-557, October 1974.

[7] R. S. Nikhil and Arvind. Programming in Id: «a
parallel programming language. 1990. Textbook
on implicit parallel programming. In preparation.



(8]

R. S. Nikhil, P. R. Fenstermacher, J. E. Hicks,
and R. P. Johnson. Id World Reference Man-
ual. Computation Structures Group Memo, M.I.T.
Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA, Nov. 1989.

K. M. Steele. Implementation of an I-Structure
Memory Controller. Technical Report TR-471,
M.I.T. Laboratory for Computer Science, 545
Technology Square, Cambridge, MA, May 1990.
(MS Thesis, Dept. of EECS, MIT).



