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Abstract

In this paper, we examine the performance of Id, an implicitly parallel language,
on Monsoon, an experimental dataflow machine. One of the precepts of our work is
that the Id run-time system and compiled Id programs should run on any number
of Monsoon processors without change. Our experiments running Id programs on
Monsoon show that speedups of more than seven are easily achieved on eight processors
for most of the applications that we studied. We explain the sources of overhead that
limit the speedup of each of our benchmark programs.

We also compare the performance of Id on a single Monsoon processor with C/Fortran
on a DEC Station 5000 (MIPS R3000 processor), to establish a baseline for the effi-
ciency of Id execution on Monsoon. We find that the execution of Id programs on one
Monsoon processor takes up to three times as many cycles as the corresponding C or
Fortran programs executing on a MIPS R3000 processor. We identify the sources of
inefficiency on Monsoon and suggest improvements, where possible. In many cases,
however, improving single processor performance will reduce parallel processor perfor-
mance.

1 Introduction

The Monsoon Dataflow Multiprocessor, built jointly by MIT and Motorola, is a small shared
memory multiprocessor. The motivation behind building Monsoon research prototypes was
to demonstrate the feasibility of general purpose parallel computers, suitable for both nu-
merical and symbolic applications. Since writing parallel programs is itself a research issue,
an inseparable part of this project was the demonstration of the implicitly parallel program-
ming language Id, which allows the user to write parallel programs without worrying about
the details of parallelism. In this paper, we evaluate the performance of Id programs running
on Monsoon.



Our goal was to show that one could easily write parallel programs in Id and that these
programs would run efficiently on Monsoon. The first part of this goal was fairly straight-
forward. We took programs written in Id by various people, and showed that they had
parallelism on Monsoon. It was easy to determine how much Id programs sped up on one to
eight processors, which was the largest Monsoon configuration constructed. Since the Mon-
soon processor, like the Denelcor HEP [36], consists of an eight-stage interleaved pipeline,
an 8-processor Monsoon requires at least 64-fold parallelism to achieve 100% utilization.
Thus, even experiments on a small 8-processor configuration reveal important issues, such
as the amount of parallelism that programs are able to exploit, contention for network and
processor resources, and to a lesser degree, the issues of work distribution, load balancing,
and data structure distribution. We have had considerable experience with speedup studies
from our experimentation with TTDA [2, 3]. Not surprisingly, the results in this area turned
out to be very encouraging — we easily achieved speedups of more than 7 on 8 processors
for most of the benchmark programs (see Table II).

The second part of the goal — showing that Id programs run efficiently on Monsoon —
was rather daunting. We wanted to understand why programs did not speedup perfectly, i.e.,
by a factor of 8 on 8 processors. Was the limit on speedup due to a lack of parallelism in the
programs? We thought that this limitation was highly unlikely because of the overwhelming
evidence to the contrary from the previous experiments on TTDA. Did a defect in the
architecture or the run-time system prevent perfect speedups? This paper sheds some light on
the aspects of the architecture and the run-time system that limited the achieved speedups.

Between November, 1990 and September, 1992, we spent a lot of time tuning the Id
compiler and the Id run-time system (RTS) to improve absolute performance and speedups.
This tuning resulted in approximately a factor of 3 speed improvement over our first success-
ful execution of benchmarks on a single processor Monsoon system (see Table I). The effort
deepened our understanding of some of the short comings of the Monsoon (or perhaps any
pure dataflow) architecture, and also illustrated the inherent cost of asynchronous execution
which underlies our compiling strategy. It also confirmed some of the well known problems
of generating efficient code from “non-strict”! languages like Id. Again, the salient aspects
of this effort are documented in this paper.

Regardless of the speedups we were able to achieve, however, a skeptic of dataflow ar-
chitectures would want to know how the Monsoon architecture compares to commercial
architectures, and how Id compares to C/Fortran. But there are many obvious difficulties
in making such comparisons. The development cost of Monsoon, a research project, is mi-
nuscule in comparison with the development cost of commercial machines. Consequently
it runs at 10 MHz, a clock speed 3 to 5 times slower than commercial machines from the
same time period. Some respectable computer architects hold the view that any comparison
of machines with such major differences is meaningless because implementation limitations
determine the architecture of commercial machines. We think otherwise — we think it is
possible to normalize over implementation technologies up to a point and learn about the
intrinsically good and bad properties of architectures. The greatest difficulty in compar-

!Non-strict: The body of a procedure can start to execute before all of its arguments have arrive.



ing the Monsoon architecture with commercial machine architectures, however, is not these
technology issues but software.

Conventional
Architectures

Dataflow
Architectures

Figure 1: Compilation Paths

Consider the diagram in Figure 1 to understand the full dimension of our problem.
One needs to run more or less the same programs on two different machines to compare
performance. This implies that either Id should be run on some other parallel machine
or some version of Fortran or C should be run on Monsoon. Both of these paths pose
serious practical problems. To begin with, we are not aware of any compiler that takes
standard Fortran or C programs and compiles them for commercial parallel machines with
any success. (The results published in [9], for example, shows that poor speedup is achieved
for most of the programs in the Perfect Benchmarks suit when a parallelizing compiler is
used to parallelize the programs for the Alliant/FX80 system.) Instead, every vendor has
its own version of parallel extensions to Fortran and C which allow a user to express his
algorithm for a particular architecture or a specific configuration of the machine. In fact,
the underlying architecture has such a profound influence on the way users write parallel
programs that the language choice is of secondary importance.

The development of the data-parallel programming model offers a good example to il-
lustrate the above point. The model was developed in the context of the Connection Ma-
chine [18], and Thinking Machines provides data-parallel extensions for Fortran and C. How-
ever, data-parallel programming in these extended sequential languages does not resemble
sequential programming except in some superficial syntactic sense. It may be possible to
develop a set of benchmark data-parallel programs to evaluate parallel machines from a data-
parallel point of view. However, such an evaluation would not be suitable for Monsoon which
has very different goals. The data-parallel model is not a general-purpose model for parallel
programming, and data-parallel programming remains significantly harder than sequential



programming. In fact, the difficulty of writing parallel programs is the raison d’etre for our
approach.

Id, the language we use on Monsoon, is an implicitly parallel language — the compiler
merely exposes the parallelism implicit in the program. The programmer is not required
to write his program for a specific machine architecture or configuration. In fact, to a
degree, the programmer does not even have to be aware of the parallelism in his program.
Id programs on Monsoon are compiled to be executed in parallel — the same object code
runs on any number of processors. Id is a high-level declarative (functional) language with
extensions for single assignment data structures (called I-structures [7]) and for updateable
data structures with fine-grain synchronization (called M-structures [8]) [25]. Using Id, it
may one day be possible to treat high-level sequential programming as a special case of
parallel programming!

Going back to Figure 1, another way to establish the performance of Monsoon was to
develop Id compilers for commercial parallel machines. Compiling Id for commercial paral-
lel machines, however, also had problems. Id-like languages offer expressivity but generally
are difficult to compile efficiently for systems based on conventional processors. The non-
strictness of Id makes it easy to generate a multitude of parallel threads? but makes it
very hard to sequentialize these threads for efficient sequential execution (Strict implicitly
parallel languages like Sisal [11], on the other hand, suffer from fewer compilation prob-
lems but generally exploit less parallelism.) Improper over-sequentialization of threads can
lead to deadlocks, while under-sequentialization of threads leads to poor performance. The
functional languages community has made very significant progress in the last few years
in compiling non-strict languages for conventional architectures [20]. Compilation of Id on
stock hardware has been pursued by Culler et al. [34] and Nikhil [26]. Results, however, are
still preliminary. The initial performance figures of Id on CM-5 as reported by Culler [37],
for example, suggest that Id on a 64-processor CM-5 may do just about as well as Id on
an 8-processor Monsoon! Besides the fact that the Id compilers for stock hardware are
still immature and lack many optimizations, such a comparison only points out that Mon-
soon has much better support for non-strictness and parallelism than stock processors; this
comparison does not help us establish a base line performance of Monsoon.

Our final decision was to compare Id running on a single-processor Monsoon with C or
Fortran running on a standard workstation to establish some base line performance. Barring
hand-tuned assembly code, one cannot get code more efficient than C and Fortran programs
compiled with good compilers for conventional uniprocessors. Though the comparison is
unfair to us — our software is meant to run in parallel, and thus, has overheads that se-
quential C and Fortran implementations do not have — it gives us an idea of the amount of
overhead we incur. We show that Id on Monsoon takes 2 to 3 times as many machine cycles

as Fortran/C on MIPS R3000 (see Table VII), and we analyze the causes of this overhead.

Finally, the reader may wonder how well Fortran or C would run on a single processor
Monsoon. Running sequential code efficiently was not a goal of the Monsoon project. For

2A thread is simply a sequential fragment of code, where each instruction executes after the one before
it.



sequential programming, Monsoon instruction set may be viewed as a single-accumulator
type of instruction set (reminiscent of the earliest von Neumann machines) [30]. We did not
need any experimental evidence to show that Monsoon cannot compete with a modern RISC
processor in executing Fortran or C!

1.1 Overview

In Section 2, we discuss our execution model for parallel programs, the Monsoon system,
including its hardware and software, and our implementation of Id on Monsoon. In Section 3,
we describe the benchmark programs that we ran to measure performance. The source
code for these benchmark programs are available upon request to jamey@lcs.mit.edu. In
Section 4, we discuss the ways in which the Id compiler and run-time system were improved
in order to get better performance on a single processor Monsoon. In Section 5, we discuss
the scalability and implicit parallelism studies, and in Section 6, we establish Monsoon’s
baseline performance by comparing the execution efficiency of Id running on Monsoon with
that of Fortran/C running on a MIPS R3000. We also discuss our comparison methods and
rationales. Finally, in Section 7, we present our conclusions and discuss some strategies for
the future.

2 Id on Monsoon

To understand our results, it is necessary to understand our parallel execution model,
dataflow and split-phase transactions, the Monsoon architecture, and the implementation
of Id on Monsoon, including the resource management issues. Each of these topics is dis-
cussed in this section.

2.1 A Parallel Execution Model

One often thinks of the execution of a high-level language program on a sequential machine
in terms of a stack of activation frames and a global heap of objects. An activation frame
is allocated when a procedure is called and reclaimed when it terminates. A data structure
resides in the heap if its life-time can be longer than the procedure activation that creates it.
This model can easily be generalized for parallel execution by turning the stack of activation
frames into a tree of activation frames. A procedure may spawn multiple procedures or
loops in parallel, but the activation frames of child procedures may not be allocated on a
stack because they may finish in an order unrelated to that in which they were invoked.
When a procedure finishes, it is guaranteed to be a leaf in the activation tree because all
of its children must already have completed, and thus, it is safe to remove its frame from
the activation tree and reclaim it for reuse. This basic parallel execution model is shown in
Figure 2.



All of the frames (not just the leaves) in the activation tree are potentially active. The
code associated with each frame will generally have more than one “thread” of execution
running simultaneously. There are three levels of parallelism to exploit in this model: proces-
sor level, consisting of procedure activations on separate processors, thread-level, consisting
of multiple threads active on each processor, and instruction-level, consisting of instructions
within a thread. It is this last type of parallelism that is exploited by super-scalar processors.
Dataflow computation on the other hand tries to exploit all three types of parallelism.

Tree of

=< 2 Global Heap of
Activation Frames Shared Objects
f:
—
g h:

i S

loop

Figure 2: Fully Parallel Execution Model

The reader should note that this execution model has nothing in particular to do with Id;
it should be applicable to parallel execution of just about any high-level language. However,
Id exploits this model to the fullest. The non-strictness of Id permits the execution of a
child procedure to begin even before all of its arguments have been computed. It also allows
loops to unfold dynamically, constrained only by data dependencies. Id, via I-structures and
M-structures, also allows very fine-grain producer-consumer parallelism between parent and
children procedures and between sibling procedures. In fact, because of all these properties,
Id tends to expose too much parallelism, often exhausting machine resources, especially frame
memory, if not controlled. A simple way to limit the amount of resources required is bounded
loops, where a bound is specified to indicate how many loop iterations can occur in parallel.
Though currently the user must input the loop bounds either as parameters or by computing
them at run time, we hope to greatly reduce if not eliminate that requirement using compiler



analysis and run-time system support in future.

The execution model presented above has a natural mapping on shared memory MIMD
machines: the frames reside in the local memory of the processor where they are assigned
to execute, and the heap objects reside in the global shared memory, which can be accessed
from any processor. Since a frame is accessed only locally, it is straightforward to cache
frames. Caching of heap store, however, raises the usual multiprocessor cache coherence
issues. To exploit parallelism effectively in this model, two architectural issues — memory
latency and synchronization — have to be addressed [5, 27]. Dataflow architectures offer a
solution to these problems as will be discussed in the next section.

Whenever a procedure is invoked, a frame or a set of frames (in case it is a loop procedure)
needs to be allocated. Since the frame store is tied to processors, distribution of work
depends upon how and where the frame manager allocates frames which cannot migrate. If
the heap storage has non-uniform access time, then the heap manager can try to allocate
storage to maximize locality. Thus, the issues of resource management and load balancing
are intimately tied in such a model.

2.2 Split-Phased Transactions and Dataflow Execution

Interprocessor communication generally takes much longer than local communication. For
example, fetching data from a frame usually is much faster than fetching data from remote
memory. However, a processor may hide the latency of a remote request by doing other
work while the request is in progress. In order for this latency toleration to be successful,
the processor must be able to switch between activities very quickly and it must be able to
deliver a response to the activity that made the request. Furthermore, the program must
have sufficient parallelism for the processor always to have something to do while a request
is in progress.

In the dataflow model, remote requests are structured as split-phased transactions so
that multiple requests may be in progress at one time. An instruction issues a request
to the processor or memory module containing the desired data, and then executes other
instructions which do not depend upon the result of the request in progress. The request
carries a tag, continuation, indicating the procedure activation and the instruction at which
the computation should be continued when the response arrives. In our dataflow model a
tag, or context, is composed of an instruction pointer (IP), a frame base pointer (FP), and
a node number. Since responses to requests from a processor can be reordered due to the
network and synchronization, tags are essential to match requests and responses correctly.

When processors communicate, they also need to synchronize to ensure that valid data
is used and to avoid race conditions. Id I-structures and M-structures provide high-level
semantics for fine grain synchronization, and can be implemented efficiently by providing a
few presence bits for each word of memory [19, 36]. An I-structure has the property that
a read-request that arrives before the write to that location is deferred until that element



has been written. A deferred request can be memorized simply by saving its continuation
(the return-tag). Once the value is present, it can be sent to the requesters using the saved
return-tags [6]. Because of this synchronization, the latency of a request may be much longer
than the actual network delay. However, this synchronization allows us to write deterministic
programs, and the split-phased nature of remote requests allows us to hide the extra latency,
given enough parallelism in the program.

In order for split-phased transactions to be effective in hiding latency, the overhead of
issuing a remote request must be very low. Most commercial microprocessors have very poor
network interfaces, and can take hundreds of cycles just to put the message, corresponding
to the first-phase of a split-phased memory request, on the network. On the other hand,
dataflow architectures, including Monsoon, Sigma-1 [19], and EM-4 [33], have network in-
terfaces that blend seamlessly with the processor pipeline, and can produce a message for
the network basically every cycle.

On a conventional processor, if some needed data is not available, the processor must
either wait for the data to arrive or switch to another thread, occasionally polling for the data
arrival or waiting for an interrupt announcing the arrival of the data. On a parallel computer,
more than one thread may have to be executed while a request is in progress in order for
the processor to stay busy. This adds the additional constraint that thread-switching must
have low overhead, and that there must be a mechanism for resuming the execution of a
thread when the required response arrives. Commercial microprocessors generally have very
large context switching time and expensive interrupts due to large processor state. Dataflow
architectures solve these problems by executing all instructions in a data-driven manner, and
by making threads very light weight. The state of a dataflow thread is just a single token:
a data value along with its continuation. Light-weight threads, together with hardware
management of thread queue, allows threads to be switched in a single cycle! However, as
can be expected, the small state of a thread in a pure dataflow machines is detrimental to
good sequential performance.

For split-phased transactions to work efficiently, the overhead of synchronizing the re-
sponse with the consumer must also be very low. High-performance sequential computers
make some use of split-phased transactions by allowing a load instruction to issue a request,
and continuing execution until an instruction that makes use of the register that was the
target of the load is encountered. In this case, synchronization of the response and the
consumer is done through the hardware register scoreboard and is very efficient. But these
systems typically do not allow load requests to complete out of order. Furthermore, these
techniques are of little use when the data to be read may be missing; the requesting task
has to release the processor to avoid deadlocks in case of a synchronizing read [27].

Dataflow architectures employ a very general and efficient synchronization mechanism
which is used in all instructions requiring two operands or instructions waiting for a remote
fetch to complete. In a dataflow machine, in contrast to a von Neumann machine, an
instruction is scheduled for execution when all of its operands are available. For example,
the expression (a + b) is evaluated when the values, carried by tokens, for both a and b
become available. The tokens carrying a and b can arrive in arbitrary order, and therefore



whenever a token arrives the processor must check the availability of its partner. If the
partner has not arrived, the token must be saved until the arrival of the partner [6]. In
modern dataflow machines this type of synchronization is performed using an explicitly-
addressed token store [15, 32]. Tokens synchronize at a compiler ordained offset into an
activation frame. Thus, when a token is processed, only the presence bits of the specified
memory location are examined to see if the token’s partner has already arrived. When the
second token of an add instruction arrives, the value of the first token is fetched and the
addition is performed. The result of (a 4 b) is then packaged into a token and sent to the
instruction or instructions that need it.

This style of execution allows dataflow architectures to exploit all the parallelism inherent
in a particular program modulo system software and hardware constraints. In the next
section, we discuss how all these mechanisms are implemented in Monsoon.

2.3 Monsoon Hardware

The largest Monsoon multiprocessor constructed is made up of eight processing elements
(PE) and eight I-structure processors (IS) connected by a two-stage, packet-switched, but-
terfly network composed of 4 x 4 switches. Each PE in the current implementation runs at
10 MHz, and is capable of processing up to ten million tokens per second. It has 128 kilo-
words of instruction memory, where each instruction word is 32 bits; 256 kilowords of frame
memory, where each data word is 64 bits, plus three presence bits and eight type bits, the
last of which are currently not used. It also has two token queues which can hold up to 32K
tokens each. (A token is roughly twice the size of a data word). The current implementation
of Monsoon’s processor has no caches, and thus is implemented using SRAMs exclusively.

Global memory on Monsoon is implemented with I-structure processors [38]. Access to
global memory always occurs over the network, and every global read or write is a split-phased
operation. A PE may also access the frame memory of another PE by sending split-phased
requests to that processor. Global addresses are interleaved across the IS nodes. Each IS
contains 4 megawords of 64-bit data memory with associated presence and type bits, and is
implemented using DRAMs.

The network interface to each node (which is either a PE or an IS) has a bandwidth of
100 Mbytes per second. This translates to about four million tokens per second for each
node. When Monsoon’s network is unloaded, a token takes about 13 cycles to go from one
node to another. Monsoon’s network interface is capable of delivering a token to the network
every cycle, though the network is not capable of delivering that many tokens at a sustained
rate. Token formation, that is packaging up the destination and the value, is performed
automatically in most cases. Though token formation and delivery to the network interface
is extremely efficient, compiled code rarely, if ever, saturates the network.



2.3.1 Monsoon’s Processing Element

The Monsoon processor has a 8-stage pipeline as shown in Figure 3. It consists of an in-
struction fetch stage, an effective-frame-address computation stage, a presence-bits operation
stage, a frame operation stage, a three stage ALU, and a form token stage. The instruction
fetch, effective-frame-address, and ALU stages perform the tasks specified by their names.
The presence-bits operation stage can read, modify, and write presence bits in one cycle. The
frame operation stage either reads a value from a frame, writes a value in a frame, exchanges
a value (takes 2 cycles), or does nothing. The form-token stage generates zero, one, or two
tokens each cycle.
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Figure 3: Conceptual View of Monsoon’s Pipeline

Tokens are kept in token queues while waiting to be processed. Each PE has two token
queues one for system tokens and the other for user tokens. The system token queue is
needed to ensure that some critical tokens, such as a token to halt the system, can always
be processed.
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During each cycle, the processor tries to execute a recirculating token coming from the
bottom of its pipeline. If no recirculating token was produced the last cycle, it pops a token
from its own token queues to execute. Execution results in either zero, one, or two tokens
at the end of the eighth cycle. These result tokens are either: (i) circulated to the head of
the pipeline; (ii) sent to the network to be delivered to either another processor’s system
queue or an I-structure board; or (iii) enqueued in either the local processor’s system or user
token queue, depending on the operation. If no token is produced, then one is taken from
the system or user queue to be executed next. If no token is available, then the processor
idles for one cycle.

The eight tokens being processed at any given time are independent of each other — that
is, no token in the pipeline could have created another token that exists in the pipeline at
the same time. This is so because the “next” instruction is not computed until the 8th cycle
of the pipeline, Thus, keeping an eight processor Monsoon busy (non-idle) requires at least
64-fold parallelism.

Since Monsoon accepts only one token at a time for processing, the first token of a 2-input
instruction to arrive will cause the execution unit of the processor to idle. Since the second
token could not have arrived yet, there is no work for the processor to do, other than to store
away the value from the first token. This idling of the execution stages is called a bubble in
the pipeline. Bubbles are unavoidable whenever synchronization is implemented as a stage
of a pipelined machine that takes only one token per cycle.

Monsoon can execute a sequential thread of instructions which are scheduled at every 8th
cycle. Except for the first instruction, each instruction in this sequence must take only one
input token which comes from the previous instruction in the thread (via the recirculating
path). Furthermore, each instruction except the last must be annotated as critical, which
ensures that another thread cannot enter the original thread’s pipeline slot. In the absence
of the critical annotation on an instruction, a network token can displace the original thread
from its pipeline beat. Such “critical” threads are broken by either synchronization points,
trap instructions or split-phased transactions. An instruction in the middle of a critical
thread can produce two output tokens, but only one of the output tokens can be critical.
The other token must be pushed onto the token queue or sent to the network. Only a
restricted subset of Monsoon’s instruction set can be used in critical threads.

To enhance the performance of such critical sequential threads, each Monsoon processor
has eight register sets of three temporary registers each. Each register set is associated with
one of the eight interleaved threads. Registers are not saved or restored implicitly, and can
only be used within an unbroken, eritical thread of instructions. Currently only RTS code
makes use of these registers. Notice, if a single, sequential thread of computation is executed
on Monsoon, the pipeline utilization would be 12.5%, because seven of the eight pipeline
stages would be idle. Again this 1/n utilization will be true for any processor pipeline design
with fixed interleaving and n-stages.

It is possible to simulate I-structure operations in the Monsoon processor’s frame memory
because it also has presence bits. This allows the compiler and the run-time system to allocate
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some heap objects locally. Reading and writing to [-structures located in processor memory
requires the second phase of the split-phased transaction to be executed on the processor
containing the structure.

In addition to join, I-structure and M-structure types of synchronization, Monsoon sup-
ports synchronization through spin-locks. If an instruction attempts to acquire a spin-lock
on a location which is already locked, a token to reexecute the same instruction is recircu-
lated in the pipeline until the lock is freed. Only the frame and heap managers spin-wait,
because, if used improperly, spin-waiting can cause deadlocks. Fight threads simultaneously
spin-waiting on one processor will cause a live-lock in the pipeline, because no thread will
ever be able to unlock any of the locations on which they are spinning. However, spin-waiting
in some instances is much more efficient than M-structure synchronization.

A structural hazard: Because of limited board space and resources, Monsoon has a
structural hardware hazard that affects token movement to and from its token queues and
network interface (please refer to Figure 4). Essentially, the path from the token queues to
the top of the processor pipeline and the path from the bottom of the processor pipeline
to the network queues are the same path — the implementation uses a single bus for both
paths. If an instruction generates two tokens, one that will recirculate and one that goes to
the network, everything is fine. On the other hand, if an instruction generates a single token
destined for the network, it must get a token from the token queues in order to keep the
processor busy. Since the path to the network is the same as the path from the token queues,
the processor cannot send a message to the network while pulling-off a token from the token
queue. The network token always has higher priority for the shared bus, since results from
the pipeline will be lost if the network token is delayed and a token from the queue is fetched
first. Thus, when an instruction produces a single token which goes to the network, the
pipeline must idle for one cycle in which the token is delivered to the network interface. A
token is then read from the token queue in the next cycle, unless the next instruction in the
pipeline also excites the hardware hazard.

The maximum number of idles that can be caused by the hardware hazard is 50% of the
total cycles, but we have never seen any thing close to this amount. A similar hazard exists
when the network tries to put a token into a token queue.

Most reads destined for the I-structure processors generated by the Id compiler create a
network token, but no local token, forcing the structural hazard to insert an idle cycle in the
processor pipeline. We will see the effect of this structural hazard in the statistics presented
later.

2.3.2 Monsoon’s Instrumentation

Monsoon has hardware instrumentation for performance measurement. Each processor has
64 statistics counters and each cycle of execution on Monsoon is accounted for by incre-
menting one statistics counter. The decoded instruction specifies the statistics register to be
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incremented. In order to account for every cycle of execution time, idle cycles also increment
a statistics counter.

Monsoon’s instrumentation also allows us to define between 1 and 64 groups of proce-
dures, where each group is called a color. Procedures can either be specified to be in a specific
color or to inherit the color of the procedure that called it. Statistics for each color are col-
lected independently; thus, we can generate statistics divided into separate categories for
each procedure group. More details on Monsoon’s instrumentation are available in [24, 29].

For statistics collection, Monsoon’s instructions, or rather cycles, are divided into a small
number of categories. We explain these next.

Monsoon Operation Categories: The integer and floating-point operation categories
are self-explanatory. The fetch and store categories refer only to the cycle in which an in-
struction issues remote memory requests. Tag operations are instructions that manipulates
continuations, such as for sending arguments to and results from a called procedure. [dentity
operations include moves (frame fetches and stores), jumps, forks and joins. Miscops instruc-
tions consist of control flow, data conversion and control register operations. The remaining
cycles on Monsoon may be classified into 4 categories: idle cycles, bubbles, second-phase
operations and recirculate cycles.

Idle cycles occur when the first stage of the pipeline does not get a token to execute.
They are caused either by empty token queues or by the hardware hazard that prevents a
token from entering the pipeline.

Bubbles, as described earlier in Section 2.3.1, are caused by the arrival of the first token
of a dyadic operation. The instruction cannot execute until the second token arrives, so the
first value is stored into the frame and the rest of the pipeline does nothing for this particular
token.

Second-phase cycles are due to the handling of read and write requests for the I-structures
stored in a Monsoon processor’s frame memory. Accesses to these objects cause the second-
phase of the instruction also to be executed on the Monsoon processor. Normally the second
phase executes on the I-structure board.

Recirculate cycles are due to the spin-lock instructions. The cycle in which the instruction
acquires the lock is counted as a fetch instruction, but all the other cycles are counted as
recirculate cycles. These cycles, which are devoted to “busy waiting”, are like idle cycles.

2.4 Compiling Id for Monsoon

The Id compiler for Monsoon was created by retargetting the TTDA Id compiler [39, 6] to
generate Monsoon object code. Like the TTDA code, each procedure and loop is compiled
into a separate dataflow graph; instances of procedures are connected together at run-time by
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dynamic dataflow arcs according to some calling convention. The extra step in the Monsoon
compiler is that of assigning a frame for each procedure. A frame is a contiguous block of
memory and has the matching locations used by tokens of a particular procedure invocation.
(For people familiar with TTDA, a frame serves the same function as a private waiting-
matching store for a procedure invocation.) A frame is also used for storing constants and
loop invariants.?

Code executing on Monsoon is divided into code-blocks corresponding to procedure bodies
or loop iterations. The compiler may also split a procedure into several smaller code-blocks
to reduce code-block size or “inline” procedures to create larger code-blocks. All tokens
belonging to the same code-block invocation have the same frame pointer, which is the base
address of the block. A frame always resides in the local memory of a single processor, and
thus, all instructions belonging to a code-block invocation are executed on the PE where the
frame is allocated.

The code generator for Monsoon has to satisfy a number of constraints imposed by the
hardware. For example, instruction fanout is limited to two in most cases and one in the
other cases. The compiler must add fanout or fork instructions to explicitly distribute a value
if too many instructions require the output of an instruction. The instruction encoding also
constrains the location in instruction memory of a destination instruction relative to its
source instruction. A destination instruction can be at most 512 instructions away from
its source instruction. For instructions that allow two destinations, one of the destinations
is further constrained to reside at the instruction address immediately following the source
instruction. In some cases, the compiler must insert jump instructions to generate correct
code for large procedures or loop bodies. The compiler also splits large code-blocks in order
to satisfy this constraint.

Although the Id compiler generates dataflow-style code for Monsoon, it is also possible to
write threaded-style code for Monsoon. This can cut down the synchronization cost by elim-
inating some bubbles. The frame manager, for example, makes heavy use of threaded-style
coding. Threaded-code generation requires more analysis and can also make use of Mon-
soon’s temporary registers. However, Monsoon’s instruction set was optimized for TTDA
style code and is not optimal for the threaded style. For a discussion of threaded execution
model on Monsoon, see [31].

2.5 1Id Run-Time System and Resource Management for Mon-
soon

The run-time system (RTS) for Id consists of a frame manager and a heap manager. The
frame manager allocates and deallocates the activation frames in which code-blocks are
executed, and the heap manager allocates and deallocates dynamic storage for tuples, arrays,

3The compiler does not allocate frames, it only decides on the structure of the frame template for a
procedure. The frames are allocated at runtime.
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and other aggregate objects. The Id RTS for Monsoon was written from scratch, and involved
considerable research and experimentation. On the TTDA emulator, GITA, the Id RTS was
faked by passing all the resource management calls to the underlying Lisp system. The
issues of parallelism, efficiency, contention, the length of the critical section, etc. were not

addressed in the design of the Id RTS for TTDA. In the following we describe the current

resource managers on Monsoon. Some more discussion of these may be found in Section 4.2.

2.5.1 Frame Management

When a procedure P calls a child procedure C, the parent procedure first executes a get-
context instruction. The get-context instruction traps to an exception handler which allo-
cates a frame, possibly on another processor and returns a continuation consisting of the
instruction pointer (IP) of procedure C’s entry point, and the node and base pointer of the
newly allocated frame [12]. We sometimes refer to this continuation as a context. The frame
manager chooses the processor on which to allocate the frame, so that the distribution of the
work load does not have to be specified in the compiled code. The frame manager also colors
the child’s context for statistics gathering before returning it to the parent procedure. Pro-
cedure invocation then continues with the parent procedure sending the required arguments
to its child procedure using the context. Each argument is directed to a specific instruction
by some preset procedure calling convention.

In order to minimize external fragmentation, only a limited number of frame sizes are
provided. For each frame requested, the smallest available frame large enough to satisfy the
request is returned. The current frame manager has sixteen different frame sizes, each a
multiple of 64, and employs a version of the quick-fit algorithm [40]. Each quick-list contains
free frames of a specific size, linked together through the first word of each frame.

Besides the storage allocation algorithm, a crucial unknown parameter in the early stages
of the frame manager development was the number of managers needed for good performance.
Should we have one frame manager for the whole machine, or one for each processor, or have
eight (one for each pipeline beat) per processor? More resource managers reduce the con-
tention between frame requests but may suffer from fragmentation of resources. It is possible
for a resource manager to request resources from another when it runs out of resources, but
this may increase the overhead of processing each request.

After some experimentation, we settled on a single set of quick-lists per processor. Since
Monsoon has eight-way interleaved pipeline, up to eight independent frame requests per pro-
cessor can be active at the same time, and thus contention is possible. Chiou investigated
frame managers that have eight sets of resources per processor, and found that, although
these frame managers rarely waited for a critical resource, they had difficulty sharing re-
sources between the different sets [12].

For maximum efficiency, the frame allocator is written in threaded-style in Monsoon
assembly language, and uses some instructions written specifically for the frame manager.
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Work Distribution: The frame manager is also responsible for partitioning work among
the processors on a code-block granularity. Currently, the frame manager distributes work in
a round-robin fashion. Each processor has a set of round-robin counters, one for each frame
size, that it uses to distribute work to other processors. Since each processor has its own
round-robin counters, work distribution decisions can be made locally. Such a distributed
approach to load balancing does not ensure a globally even distribution of work. However,
because many frames are allocated during the execution of most programs and the amount
of work done in each frame is relatively small, we feel that a round-robin scheme will balance
the load reasonably well. Our results so far have supported this intuition.

2.5.2 Heap Management

Requests for heap memory, like requests for frame memory, are made by special instructions
which trap to run-time system procedures. These run-time system procedures are written
in Id. The same heap manager code runs on the various configurations of Monsoon.

The Id run-time system places all aggregate object storage (such as arrays and tuples)
on the I-structure processors. This storage is interleaved so that adjacent logical addresses
are actually on different I-structure processors. Interleaving is used to reduce the contention
on individual I-structure processors and hence the average latency of access. As pointed out
in Section 2.3.1, I-structures can also be allocated in a Monsoon processor’s local memory.
These local I-structures, however, are not interleaved.

Each processor manages its own partition of [-structure storage in order to reduce RTS
contention and to improve throughput. The current heap allocator uses the quick-fit algo-
rithm to manage each partition, and keeps 15 quick-lists for object sizes of 2 through 16
words. Larger objects are managed by the first-fit algorithm. Detailed analyses of various
heap allocation algorithms are presented in Iyengar’s thesis [21].

[-structure objects have presence-bits associated with each word. These presence bits are
initially empty on all words of an object, and are set to full by [-Store operations. In our
implementation, the presence-bits of a piece of storage are cleared when that storage is first
cut off of the tail (pool of unused memory), and then cleared again whenever the storage is
returned to the heap manager for reuse. The heap manager keeps around storage that has
been cut from the tail rather than returning it to the tail. Presence bits are cleared upon
deallocation in order to minimize the latency of subsequent allocation requests.

Even though each processor has a heap manager, if too many requests to allocate or
release heap objects come bunched-up together in time, the heap manager can stil become
a temporary bottleneck. We will see some evidence of this in the statistics presented later.

2.5.3 Parallelism Control and Resource Management

Our eventual goal is to have both parallelism and storage management be implicit in Id.
Such an Id program will contain no user annotations to direct where to exploit parallelism
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or how to manage storage. Unfortunately, our current system has not reached this goal
yet, and the Id compiler and RTS are not able to run a program efficiently without some
user help. To deal with the current situation, we have added two kinds of annotations to
programs to control the amount of parallelism and the amount of resources used by them.
The first annotation, loop bounds, which were briefly introduced in Section 2.1, controls how
many iterations of each loop are executed in parallel. The second annotation causes heap
storage to be reclaimed when it is no longer needed. This storage annotation is not discussed
in this paper; the interested reader is referred to [17].

Currently, the user must specify loops as either sequential, bounded, or unbounded. The
compiler generates specific code for each kind of loop. A sequential loop executes one itera-
tion at a time and uses only one frame. A bounded loop executes a specified number (k) of
iterations in parallel, and uses k frames. k& can be computed at run time but must be greater
than or equal to 2. An unbounded loop is compiled into a recursive call so all loop iterations
can potentially execute in parallel. The sequential loop schema incurs less overhead than the
bounded loop, which has to allocate and initialize more frames. However, it also exploits less
parallelism than a bounded loop. It is usually used for the inner-most loops where it is more
important to achieve smaller instruction counts than parallelism. Parallelism is, instead,
provided by the outer loops.

Each iteration of a loop that is executing in parallel consumes a frame and, perhaps,
some heap storage. By controlling the number of iterations executing in parallel, one can
control how much storage is used. Generally, the number of iterations executing in parallel
must be large enough to keep the machine busy but small enough not to exceed the storage
available on the machine. Culler [14] presents some heuristics for selecting loop bounds.

Categorizing loops as sequential, bounded or unbounded and determining how many
bounded loop iterations to execute in parallel is currently perhaps the only tedious part
of achieving good performance on Monsoon. It is partly due to the relatively small size
of Monsoon’s frame memory. Some prior research has been done in this area, notably by
Culler [14]. We had not automated this process as we needed more experience to see what
impacts such choices have on an actual system (Culler’s work was done on GITA, a simulator
for TTDA). We plan to take the results of our studies and of Culler [14], and automate this
process through a combination of compiler analysis and run-time mechanisms. We believe
that this should get us good performance in most cases without user intervention.

3 The Benchmarks

We studied four benchmarks on Monsoon: Matrix-Multiply, Gamteb, Simple, and Paraffins.
These benchmarks are described in this section. Members of the Computation Structures
Group (CSG) and collaborators of CSG have written other applications as well. We will not
discuss the performance of those applications in this paper. One of the largest Id applications
currently being developed is a version of the Id compiler written in Id. Another is the Monte
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Carlo Neutron Photon (MCNP) application being written by our collaborators at Los Alamos
National Laboratory.

All Id programs described in this document were written in Id90.1 with some annotations
for storage deallocation [25]. These programs are available from the authors upon request.
Our Matrix-Multiply benchmark was written in Id, C, and Fortran by experts in each of
these languages. Our two large benchmark programs, Simple and Gamteb, were originally
written in Fortran. These programs were ported to Id by programmers familiar with both
Id and the applications. Paraffins was originally written in Id and was then ported to C by
an expert.

The following sections describe our benchmarks in great detail. Readers who are not
interested in the details can skip to Section 4.

3.1 Matrix-Multiply

This benchmark creates two matrices of size n x n, multiplies them, and returns the sum
of the elements of the product matrix as its result. The matrices contain double-precision
floating point numbers. The Id version of Matrix-Multiply is written as a straightforward
triply-nested loop. In early versions of this benchmark, run before September 1991, the
innermost loops of the matrix creation, multiplication, and summation routines were all
unfolded ten times by the compiler to ameliorate the overhead of loop iteration. Compiler
improvements since then have reduced the overhead of loop iteration by a large amount.
We scaled unfolding down to four times as further unfolding increases code and frame sizes
without providing much improvement in performance.

The Matrix-Multiply program is invoked by supplying a matrix size n and several loop
bounds. Our Matrix-Multiply runs are of size 500 by 500. The loop bounds control how
much parallelism is exposed in the outer loops of the matrix creation, multiplication, and
summation routines.

This benchmark has been coded in C to compare the performance of Id with the perfor-
mance of C. The Id code implementing Matrix-Multiply is about 130 lines long, including
comments. The corresponding C code is 152 lines long.

We also have a version of this benchmark written in both C and Id in a 4 x 4 blocked
style. This blocked version simultaneously computes the value of 16 elements that form a
4 x 4 block in the final matrix. The net effect is to reduce the number of fetches that we
perform on the two source matrices. Thus, each time we execute the innermost loop, we fetch
8 matrix elements, 4 from each source matrix, and use them to update 16 elements of the
product matrix. The unblocked version needs 32 fetches to support the same computation.
Blocking in this manner reduces the number of fetches by a factor of four. Although the
numbers reported here for Id are obtained by changes to the source code, work is underway
to have the compiler automatically perform this transformation as an optimization.
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3.2 Gamteb

Gamteb [10] statistically simulates the trajectory of particles (photons) through a carbon
rod that is partitioned into cells. Each particle is statistically weighted to emphasize particles
that are in the right-most cells. Each particle can be simulated in parallel. Gamteb was
written by researchers from Los Alamos National Laboratories as a standard supercomputer
benchmark derived from MCNP, a real application.

We have two versions of Gamteb, corresponding to two different rod geometries. In
the first version, gamteb-2c, which corresponds to the Fortran benchmark code, the rod is
divided into 2 cells with 4 surfaces. In the second version, gamteb-9c, the rod is divided into
9 cells and 11 surfaces. The second version is much more computationally intensive than the
first because each particle is split many more times.

The simulation considers n particles independently, where typical problem sizes are forty
thousand to several million particles. Particles enter the simulation through the front surface
and may exit the simulation in one of four ways: escaping through the cylindrical surface,
backscattering through the front surface, transmitting through the back surface, or dying
due to lack of statistical significance. The result is three histograms of the energies of the
particles that exited, plus counts of particles that underwent various processes.

This program is storage intensive. It operates on particles and counts functionally, so
whenever a new particle or count of events is needed, a new nine-tuple is allocated. This
code has been hand annotated with storage reclamation pragmas which direct the compiler
to insert heap deallocation calls.

Our Gamteb runs are of forty thousand particles, which is a small but standard bench-
mark size. Real program runs would be in the millions or tens of millions of particles. The
Id code implementing Gamteb is about 750 lines long, including comments. The Fortran
code is 720 lines long.

3.3 Simple

This application is a hydrodynamics and heat conduction simulation program known as the
Simple code [13]. The Simple document, along with the associated Fortran program, was
developed as a benchmark to evaluate various high performance machines and compilers.
Although Simple is supposed to reflect some “real applications,” it is contrived to reflect a
more complex mix of numerical methods than the usual problems in that class.

Simple uses a Lagrangian formulation of equations to simulate the behavior of a fluid
in a sphere. To simplify the problem, only a semi-circular cross-sectional area is considered
for simulation. The area is divided into parcels by neighboring radial and axial lines. Fach
parcel is called a zone. The intersection of radial and axial lines are called nodes. In the
Lagrangian formulation, the nodes are mapped onto a two-dimensional logical grid where
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grid points have coordinates (k,l) for knin < k < kpazylnin < 1 < lpaz. The product,
(kmaz — kmin + 1) X (lpaz — lmin + 1), is the grid size of the problem. A parameter of
ghost zones is added around the rectangular grid to incorporate the appropriate boundary
conditions. For each time step, the simulation computes the following nine quantities based
on the values of these quantities in the previous time step: the velocity and position of each
node; and the area, volume, density, pressure, artificial viscosity, energy and temperature of
each zone. Some additional calculations are performed to compute the size of the time step
to be taken and to check the energy balance.

The simulation is performed a specified number of cycles. Simple runs reported here are
of 100 cycles with a grid size of 100 x 100. The Id and Fortran codes implementing Simple
are about 1000 and 2400 lines long, respectively.

3.4 Paraffins

The Paraffins benchmark [4] enumerates all of the distinct isomers of each paraffin of size
up to n. Paraffins are molecules with chemical formula C,Hy, 5, where C and H stand for
carbon and hydrogen atoms, respectively, and n > 0. A paraffin is essentially an unrooted
4-ary tree. Thus the problem of generating distinct paraffins is the same as the problem of
detecting isomorphism in labeled free trees. The number of paraffins grows exponentially
with n.

Paraffins is an example of a non-numeric program. The program generates lists of paraf-
fins and finally returns an array filled with the number of distinct paraffins of each size up
to and including the maximum size specified by the user.

Paraffins runs are of size 22, meaning paraffins up to and including those of size 22 are
generated. This came up to a total of 3807508 paraffins. The Id code implementing Paraffins
is about 300 lines long. The C code is 370 lines long.

4 Monsoon Software Improvements

The software running on Monsoon has improved greatly over the lifetime of the project,
as shown in Table I. The improvement in the benchmarks’ run times is entirely due to
improvements in the code generated by the compiler, and the implementation of the RTS
(although RTS improvements mostly affected multiprocessor times.) The numbers were
produced on a single processor Monsoon system.

The following sections describe compiler and run-time system improvements. The casual
reader may skip to Section 5 for the speedup results.
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Table I: Single Processor

Monsoon Performance

Program Feb, 91 Aug, 91 Mar, ’92 Jun, 92

(hr:min:sec) | (hrimin:sec) | (hrimin:sec) | (hrimin:sec)
Matrix-Multiply (500 x 500) 4:04 3:58 3:55 2:57
1 x 4 Blocked MM (500 x 500) n n n 146
Gamteb-9c (40,000 particles) 17:13 10:42 5:36 -
(1,000,000 particles) 7:13:20 4:17:14 2:36:00 2:22:00
Simple (100 x 100, 1 iteration) 0:19 0:15 0:10 0:06
(100 x 100, 1000 iterations) 4:48:00 - - 1:19:49
Paraffins (n=19) 0:50 0:31 - 0:02.4
Paraffins (n=22) - - - 0:32.2

4.1 Compiler Improvements

Over the past year, we made a large effort to improve the Id compiler. In addition to general
improvements to the quality of the back end, we worked on a few key areas.

Reducing Heap Allocations: Tuples are often used in Id to package multiple values to
return to the calling procedure. Such tuples are allocated on the heap, though frequently,
they are just initialized by the callee and immediately read and then discarded by the
calling procedure. We can avoid allocating heap objects in such cases by passing each of
the component values individually to the calling procedure. In this way, relatively expensive
heap allocation and deallocation operations are avoided. While it may seem that passing
many values explicitly is expensive, the original code which allocates and uses a new structure
incurs even more overhead. This optimization, which is performed automatically, provided
a large part of the improvement in the performance of Simple and Gamteb seen between the

August, 91 and March, 92 columns of Table I.

Improving the Sequential Loop Schema: Sequential loop efficiency has a great impact
on the overall performance of a program because most inner loops are sequential. Although
the iterations of a sequential loop are serialized — each iteration must terminate before the
following one may begin — the body of each iteration actually executes in parallel. Therefore,
we must execute synchronization code at the boundary of each iteration to guarantee that
all the threads executing in each iteration have terminated before any thread in the next
iteration begins execution. This synchronization code is quite tricky to write. It can also be
quite expensive in terms of execution time, if the compiler does not perform crucial analysis

and optimization. Interested readers are referred to [1] for more details.

We discovered in early 1991 that our implementation of sequential loops had a relatively
large overhead when the loop body was small and there was a fair number of “nextified”
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variables. Matrix-Multiply, for example, had an innermost loop that took 34 cycles per
iteration, more than half of which were spent ensuring that the sequential loops executed
sequentially. Out of the 34 cycles, 9 were bubbles, 5 were fanouts, 5 were gates and joins,
2 were switches. There were only 2 Floating point operations and two fetches from the
heap! Our first fix was to unroll the loop ten times which increases the useful work done in
each iteration of the unrolled loop while incurring the same overhead as one iteration of the
original loop. The overhead is thus amortized over ten iterations. When unrolled this way,
Matrix-Multiply took an amortized 19 cycles per iteration. This run-time statistic suggested
that the original code incurred a 16 cycle overhead during each iteration.

Unrolling the loop reduced the overhead in terms of cycle counts, but also increased
the frame and code sizes of the loop. We devised a much more efficient implementation of
sequential loops in August, 1991, which reduces the overhead itself without loop unrolling,
and hence without increasing the frame size. This new loop schema reduced the cycle counts
for the generic Matrix-Multiply to 19 cycles per iteration without any loop unrolling. This
one had only 3 bubbles, 2 fanouts, 1 join and 1 switch while the rest of the instructions
remained the same. A modest loop unrolling of four times further reduced this to 16 cycles
per iteration. The overhead of the new loop schema is 4 cycles compared to the original
overhead of 16 cycles. The improved sequential loop implementation reduced the running
time of both Paraffins and Simple by 6%.

The overhead of sequential loop execution is proportional to the number of variables that
are updated each loop iteration. This overhead is significant only when the loop body is
small relative to the number of nextified variables. Thus, the new sequential loop schema
only shows appreciable improvement if there are small loops in the code. This however does
not diminish the importance of having efficient sequential loops as loops with small loop
bodies often form the innermost loops of programs.

Lifting Loop Initialization Code: We improved the code generated for loops by adding
a compiler transformation module that lifts the initialization code of inner loops in a loop
nest as far as possible into the outer loops. Loop initialization code includes the allocation of
frames and the storing of loop-constants. This transformation has the greatest impact when
there is a large number of loop-constants and, on each call of the inner loop, the number of
iterations executed is not large.

Consider, for example, a triply-nested loop where the outer two loops are executed a
large number of times and the innermost loop is executed only a few iterations each time it
is called. Overall, the initialization of the inner loop becomes significant since it is amortized
over very few iterations but is executed many times. Lifting the inner loop initialization out
of the outer loops will reduce run time, especially if there are many loop constants. Simple
is a program that benefited from this optimization. Lifting the initialization as described
above reduced Simple’s run time by almost 10%.

Work in Progress: Currently, we are augmenting the compiler to automatically perform
blocking. The compiler would detect cases where we can reduce the number of fetches in the
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body of a loop through a combination of loop unrolling and loop merging. The interesting
cases are those involving a loop nest, where the fetches are in the innermost loop, but the
loops that are to be unfolded are the outer loops. The blocking transformation merges the
inner loops after unfolding the outer loops of the loop nest. Matrix-Multiply and some
relaxation codes are examples of programs that take advantage of blocking. Our goal is to
have the compiler automatically transform the generic Matrix-Multiply code into the blocked
version described in Section 3.1. This work has not been completed as of Mar 93.

We have also experimented with allocating [-structure objects with deterministic lifetimes
in frames. Doing so requires that the heap object being allocated is small and that the
lifetime of the heap object can be determined at compile time. Certain versions of the
compiler already have this feature implemented.

4.2 Run-time System Improvements

Our early run-time systems processed memory requests with very low throughput. Since the
frame manager is written in a threaded style, the low throughput was caused in part by the
eight-way interleaving of the pipeline. As mentioned earlier, the interleaving multiplies the
execution time of critical sections by eight since only one instruction in a particular thread is
executed every eight cycles. In addition, initial RTS implementations used a single free-list
which forced the sequentialization of critical sections. Increasing throughput requires either
a reduction in the critical sections or an increase in the number of resource sets or both.

Reducing Critical Section Size: An example of the problems encountered when critical
sections were long was discovered when writing this paper. Matrix-Multiply had a large
percentage of idles. Most of them, but not all, were due to the hardware hazard. After some
investigation, it was discovered that the heap manager had unusually long critical sections
making it a bottleneck. We found that it was locking the heap tail pointer, allocating the
heap object by incrementing the tail pointer, clearing the presence bits of the newly allocated
heap object, then unlocking the heap tail pointer. The heap tail pointer could have been
unlocked right after it was incremented. After the heap manager was changed to reduce the
critical section, the number of idles decreased significantly

Paraffins is another benchmark which revealed the weakness of a low-throughput heap
manager. Paraffins was analyzed after the dismal runs in February and August 1991. We
discovered that the processor was 50% idle, and spent 30% of the time in heap management,
10% in frame management and only 10% running Paraffins itself. We further discovered by
looking at the C code that it hardly generated any garbage, that is, all the allocated storage
remained in use through out. Since the heap manager was not running at the necessary
throughput, we wrote a faster heap manager that did not handle deallocation of memory.
Furthermore we wrote it in assembly code. (We used the assembly code heap manager for
Matrix-Multiply as well.)
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The assembly-coded heap manager starts with a large contiguous chunk of memory, and
cuts memory from one end to satisfy heap allocation requests. It takes only three instructions
in its critical section. These three instructions are guaranteed to execute one right after
another. In contrast, the critical section of the general heap manager written in Id takes at
least tens of instructions. In the worst case, when the general heap manager has to coalesce
the free storage into larger blocks, the critical section lasts thousands of instructions. Thus,
the throughput of the Id heap manager is often not sufficient for codes that allocate many
heap objects.

Splitting Resources among Managers: Splitting resources to create more resource sets
can cause poor utilization of available resources. Thus, most of our effort has been directed at
reducing critical sections to increase throughput. Nevertheless, some division of resources are
made — for instance, there are several free-lists in each set of resources, and each processor
has its own set of resources for both the frame and the heap managers. The frame and heap
managers communicate with managers on other processors, allowing them to share resources.

5 Scalability and Implicit Parallelism Studies

In this section we study the scalability of Id programs on Monsoon. The same object code
is run on all machine configurations from one processor to eight processors. We also use
the same run-time system for one processor and multiple-processor systems, even though we
could write a more efficient RTS for specific use with single-processor configurations. We
estimate that such an RT'S would save up to 50% of the frame and heap management overhead
compared to the multiprocessor RTS. However, run-time system overhead on Monsoon is
usually less than 30%, so total run times would only be reduced by 15%. Since our goal was
to write an RTS that would run on any number of processors, we did not think the effort
required to write a specialized uniprocessor RTS was worthwhile.

We saw in Section 2.5.3 that currently the programmer must add loop bound annotations
to control how much parallelism is exploited in each loop. Optimal performance is tied to
the choice of loops to execute in parallel and the loop bounds for those loops. Since our
compiler and RTS do not automatically choose loop bounds yet, in order to do this study,
we tried a number of loop bounds and chose the ones that performed the best.

For our speedup studies, we ran the four benchmarks on 1, 2, 4, and 8 processor Monsoon
configurations. Our speedup results are shown in Table II, which contains the critical path
for each program on each configuration. We define the critical path to be the total number
of cycles executed by the processor which starts and ends the execution of the program. All
other processors will always execute fewer instructions, because they must start after and
end before the first processor.

Tables I1I to VI give the detailed breakdown of the dynamic instruction counts for each of
the four benchmarks. Each table shows the total dynamic opcode mix for a single benchmark
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Table IT: Speedup Results: Id on Monsoon

Configuration 1 PE 2 PE 4 PE 8 PE
x 10° x 10° x 10° x 10°
Program % critical % critical % critical % critical
path path path path
4 x 4 Blocked-MM || 1 1057 1.99 | 531 3.90 | 271 7.74 | 137
500 x 500
Gamteb-2¢ 1 590 1.95 | 303 3.81 | 155 7.35 | 80.3
40000 particles
Simple 1 4681 1.86 | 2518 3.45 | 1355 6.27 | 747
100 iters, 100 x 100
Paraffins 1 322 1.99 | 162 3.92 | 82.2 7.25 | 444
n =22

on all four machine configurations. The column for each configuration shows the sum of the
statistics, including idles, from all of the processors in the configuration.

5.1 Why Linear Speedup was not Achieved

Ideally, a program exhibiting perfect speedup would execute the same number of total cycles
(summed over all processors in the configuration) regardless of the number of processors.
However, there is always some overhead associated with exposing more parallelism, so the
total number of cycles executed always increases with the number of processors in the con-
figuration. Most of the overhead on multiprocessor configurations of Monsoon shows up as
additional idle cycles executed, but some shows up as additional instructions executed. In
this section we discuss the causes of these overheads.

5.1.1 Additional Instructions in the Multiprocessor Case

Loop bounds: In order to keep more processors busy, a program needs to expose more
parallelism. We increase the loop bounds in order to increase the parallelism exploited
by a program. The overhead of a k-bounded loop consists of allocating and initializing
the iteration frames, and is directly proportional to the loop bound k. Thus, a program
on a larger machine configuration requires larger loop bounds and executes more overhead
instructions than on a single processor system.

Resource management: As mentioned before, each processor in the system has a set of
frame and heap resources and associated managers for these resources. Due to differences in
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scheduling and available resources, the resource managers on two different machine configu-
rations may process requests at different rates. Furthermore, increasing loop bounds causes
more frame requests to be made and so may increase contention for frame managers. This
increase in frame manager contention shows up as the increase in the number of tokens re-
circulated. The number of tokens recirculated indicates the cycles spent waiting for a frame
manager lock.

Deferred reads: An I-structure fetch request may arrive at an I-structure element before
the corresponding I-structure store completes (see Section 2.2). In the case of an I-fetch
before an I-store, a small sequence of instructions are executed to enqueue the deferred
requests on a linked-list. When the I-store finally occurs, a few more instructions are executed
respond to the deferrred reads by distributing the written value. Whether an I-fetch is
deferred or not depends upon scheduling, and hence on machine configuration. We suspect
that a multiprocessor system will defer more reads than a single-processor system executing
the same program, because it will do more computation in parallel.

5.1.2 Causes of Idle Cycles

Idles tend to be the largest contributor to increased total cycle counts on Monsoon. Idles
on Monsoon are caused either by its hardware hazard, or by a lack of work on one or more
processors. Multiprocessor Monsoon systems are guaranteed to have more idles than single
processor systems due to both of these reasons. Multiprocessor configurations require more
network tokens, increasing the number of idles due to Monsoon’s hardware hazard. Too little
parallelism, which results in lack of work, is much more likely on a multiprocessor since more
parallelism is required to keep it busy. Load imbalance, a problem only on multiprocessor
configurations, causes idles because some processors will not have enough work to do. These
causes are explained in greater detail below.

Hardware Hazard: As explained in Section 2.3.1, Monsoon has a hardware hazard caused
by a shared bus between the token queues and the network interface. This hazard prevents
any token from being enqueued or dequeued from the network input or output queues while
a token is enqueued or dequeued from the user or system token queue, and vice versa. Any
time there is contention on this shared bus, an idle cycle occurs.

Fetches and Tag operations can excite the hardware hazard in two ways. If an instruction
produces exactly one token that goes to the network, an idle is forced because that token will
be sent to the network while the token fetch from the token queue is delayed one cycle. The
fetches executed by the frame manager have local destinations and, therefore, do not cause
idles. But the benchmarks are all compiled and our compiler, which produces dataflow-style
code, stops a thread after every split-phased instruction. Hence, all compiled fetches and
tag instructions excite this hazard.
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Once a token arrives at its destination processor, the token may cause an idle by interfer-
ing with an operation being performed on the token queue of the destination processor. The
hardware implements a fair policy between processor-pipeline and network tokens. When a
network token arrives, it is placed in the network input queue. If network input queue con-
tains tokens, and the processor pipeline is kept busy by recirculating tokens, then every other
cycle, a processor token is enqueued in the user queue, and a network token is popped from
the network input queue. This causes an idle cycle to be placed in the processor pipeline. If
the processors are always busy, then the fraction of network tokens that will cause an idle
on the destination processor is one half. Thus, we estimate the number of idles due to the
hardware hazard to be roughly 1.5 times the sum of the number of fetches and the number
of remote send operations, in the worse case (assuming that the processor is always busy.)
If the processor is idle due to lack of work, then this ratio will be somewhere between 1.0

and 1.5.

Lack of Work: A processor also executes an idle cycle when its token queues are empty
due to lack of work. A processor can have a lack of work because of: (i) load imbalance, (ii)
lack of parallelism due to RTS sequentialization, (iii) lack of parallelism during startup and
termination of program, or (iv) lack of parallelism in the algorithm.

Load tmbalance can cause a lack of work on one or more processors even though there
is enough work in the machine to keep all processors busy. The RTS cannot balance load
perfectly, because it cannot know which processors need work at a given moment, and which
may need work in the future. However, by definition load imbalance cannot occur on single
processor configurations.

The run-time system can artificially reduce parallelism by taking a long time to satisfy a
frame or heap object request. A processor may need the frame or heap memory in order to
continue computation and thus may idle if that object is not returned by a specific time. To
see how long a typical RTS request takes, we describe the steps involved in allocating frame
memory, giving an instruction count for each step.

Under the best scenario, allocating a frame requires executing 31 or 32 instructions
sequentially. It takes 16 instructions to read a frame request, choose a processor, and forward
a request to that processor. If a frame is available on that processor’s free-lists, it then takes
7 instructions to pop a frame, and another 8 or 9 more instructions to form a context by
combining the frame pointer, instruction pointer and statistics color of the called code-block.
On Monsoon, the actual latency will be eight times as long because of processor pipeline
interleaving.

If no frames are on a free-list, the cost of allocation is much higher, because the presence-
bits of a new frame will have to be cleared. Allocating a new frame takes eight instructions
plus about & instructions to clear out the presence bits of an n word frame. We clear frame
presence-bits sixteen words at a time using a block clear instruction. We only clear the
presence bits the first time we allocate a frame because procedures automatically clean their
own frames before returning them.
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The execution of Id on Monsoon starts with the invocation of a top level procedure on one
processor which spreads work to other processors. The computation ends in a similar way,
but in reverse order. Thus during the startup and termination phases, the parallelism ramps
up and then ramps down again and there is not enough parallelism to keep all the processors
busy. The length of the startup and termination phases are affected by the rate at which
the program exposes parallelism, the latency of RTS requests, the latency of interprocessor
communication, and the number of processors. Notice this cost is non zero even on a single
processor due to the 8-way interleaved pipeline. In our experiments, increasing the number
of processors linearly increases the length of the startup and termination phases.

Finally, a lack of parallelism may occur because the algorithms used in a program are
inherently serial in nature. In these cases, the program must be rewritten to use a more ap-
propriate algorithm. However, we think that all of our benchmarks had sufficient parallelism
for an eight processor Monsoon machine.

On Monsoon, it is difficult to differentiate idles caused by a lack of parallelism, load
imbalance and the hardware hazard, because neither the sizes of the token queues, nor the
number of cycles when they are empty can be measured while running a program. If we had
this information, we could determine whether it was lack of work or the hardware hazard that
was causing the idles in our programs. By periodically sampling this information on each of
the processors, we may be able to distinguish between a temporary load imbalance and the
lack of parallelism. For these statistic to make sense, we have the additional requirement
that the statistics be collected from all the processors at exactly the same time, something
that is impossible to do on Monsoon in particular, and difficult on any (large) asynchronous
system in general.

In the following sections, we will try to explain the idle cycles for each of the benchmark
runs; the precision of our explanation is limited by the ways in which we can gather statistics.

5.2 Analysis of Benchmarks

5.2.1 Blocked-MM

Our matrix multiplication benchmark running with a problem size of 500 by 500 achieves
an excellent speedup of 7.74 on 8 processors. It achieves an efficiency of 97%, where we define
efficiency to be the speedup divided by the number of processors. The dynamic opcode mix
for Blocked-MM is given in Table III, which shows that the total cycle count increases very
little from the 1 PE to 8 PE configuration. The more interesting issue here is why there are
any idle cycles in the 1 PE case to start with.

On this configuration, about 6% of the total cycles executed are fetches and 9.4% are
idle cycles. All of the fetches in the Blocked-MM occur in compiled code, and thus, excite
the hardware hazard. We believe the additional 3.5% idles are caused by startup and end
costs as well as incoming network tokens. This probably contributes to the slightly rising
percentage of idles as we go from the 1PE to the 8PE configuration.
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Table III: Blocked-MM Opcode Mix

Configuration 1 PE 2 PE 4 PE 8 PE
Op category cycles | fraction || cycles | fraction | cycles | fraction || cycles | fraction
x 106 % || x10° % | x10° % || x10° %0
Intop 77.0 7.28 77.0 7.25 77.1 7.11 7.2 7.06
Floatop 250.3 23.66 || 250.3 23.55 || 250.3 23.07 || 250.3 22.90
Fetch 62.8 5.93 62.8 5.91 62.8 5.79 62.9 5.76
Store 1.5 14 1.5 14 1.6 14 1.6 15
Identity 289.4 27.36 || 289.4 27.23 || 290.0 26.73 || 290.7 26.60
Tag 0.5 .05 0.5 .05 0.7 .06 0.9 .08
Miscop 7.5 71 7.5 71 7.7 71 7.9 72
Bubble 269.2 25.45 || 269.2 25.34 || 269.6 24.85 || 270.0 24.70
Second Phase 0.1 .01 0.1 01 0.2 .02 0.4 .04
Recires 0.0 .00 0.0 .00 0.0 .00 0.0 .00
| Idles | 995 941 1042] 981 1251 [ 11.53] 131.1] 12.00 |
| Total | 1057.7 | 100 [ 1062.5 | 100 [[1084.9 | 100 [ 1093.0 | 100 |
Speedup 1.00 1.99 3.90 7.74
Efficiency 100.0% 99.5% 97.5% 96.8%

5.2.2 Gamteb

Gamteb is actually an “embarrassingly parallel” program, so we expected it to show excellent
speedups on Monsoon. It does so, achieving a 92% efficiency on 8 processors, with a speedup

of 7.35.

Gamteb actually executes fewer idle cycles than fetch instructions. We have determined,
through code-block coloring, that about two thirds of the fetches are performed by the frame
manager and thus do not excite the hardware hazard. For a single processor, therefore,
all idles are accounted for. The additional idles for multiprocessors come from the tag
operations, most of which are used to send arguments to other procedures. The number of
procedure calls in Gamteb is proportional to the total number of particles generated, and
usually 6 to 7 times the number of initial particles in our data set. With runs that start
with 40000 particles, the number of procedure calls, and consequently the number of tag

operations, can be very substantial.

When there is only one processor, all of the tag operations send their arguments back
to the same processor. When the number of processors p increases, however, the number

(p;l) (assuming perfect distribution). Thus,

about of the Send operations (a subset of the tag operations) send a token to the
network but none back to the same processor, causing a hardware hazard. This explains

of remote procedure calls go to approximately
(p—1)
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Table IV: Gamteb Opcode Mix

Configuration 1 PE 2 PE 4 PE 8 PE
Op category | cycles | fraction || cycles | fraction || cycles | fraction || cycles | fraction
x 106 % || x10° % || x10° % || x10° %
Intop 47.5 8.05 47.5 7.85 47.5 7.68 47.6 7.40
Floatop 40.4 6.84 40.4 6.67 40.4 6.52 40.4 6.28
Fetch 27.6 4.69 27.6 4.57 27.6 4.46 27.6 4.30
Store 13.3 2.26 13.3 2.20 13.3 2.15 13.4 2.08
Identity 171.6 29.07 || 171.6 28.36 || 171.7 27.72 || 171.8 26.72
Tag 43.6 7.40 43.7 7.21 43.7 7.05 43.7 6.80
Miscop 83.6 14.17 83.7 13.82 83.7 13.51 83.7 13.02
Bubble 119.2 20.21 || 119.3 19.71 || 119.3 19.27 || 119.4 18.57
Second Phase | 25.7 4.35 25.7 4.24 25.6 4.14 25.6 3.98
Recires 2.3 .39 1.8 .29 1.9 .30 1.9 .30
| Idles | 152 257 307| 5.07] 445 719 67.9[ 10.56 |
| Total | 590.1 ] 100 | 6053 | 100 ] 619.2] 100 [ 642.9 [ 100 |
Speedup 1.00 1.95 3.81 7.34
Efficiency 100.0% 97.5% 95.3% 91.8%

most of the increase in the number of idle cycles as we move to configurations with more
processors.

For eight processors, Gamteb’s idles are a little higher (around 6.7 million cycles or
about 10.6%) than expected according to this formula. This excess is probably due to
the start up cost not being amortized when the problem size is small. This hypothesis is
partially confirmed by the fact that the fraction of idle cycles decreased dramatically when
we increased the problem size from 40000 particles to 1,000,000 particles. On smaller runs (8
PE Monsoon took only 8 seconds for 40,000 particles), there is also a significant perturbation
of the statistics by the skew in the timing of when each processor is started and halted by
the the front end processors. Because of this skew, some of the processors may be idling
while waiting for tokens from processors that are not yet running.

5.2.3 Simple

We ran Simple for 100 iterations of 100 by 100 grid. The best speedup we have achieved
for Simple is a factor of 6.2 on an 8 processor configuration, giving an efficiency of 78%.
We believe that this is mainly because of a throughput problem in our current general heap
manager. It is also possible that data dependence in the user code (the time step calculation
between iterations) contributes to the sequentialization of computation between iterations.
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Table V: Simple Opcode Mix

Configuration 1 PE 2 PE 4 PE 8 PE
Op category cycles | fraction || cycles | fraction | cycles | fraction || cycles | fraction
x 106 % || x10° % | x10° % || x10° %0
Intop 591.2 12.63 || 593.0 11.77 || 593.2 10.94 | 600.4 10.05
Floatop 334.8 7.15 | 334.8 6.65 || 334.8 6.18 || 334.8 5.60
Fetch 399.6 8.54 | 400.0 7.94 | 399.8 7.38 || 403.6 6.75
Store 79.2 1.69 80.0 1.59 80.3 1.48 82.6 1.38
Identity 1194.3 25.51 || 1201.0 23.84 || 1199.9 22.13 || 1235.6 20.68
Tag 265.2 5.67 | 267.9 5.32 || 268.1 4.95 | 280.7 4.70
Switch 270.9 5.79 || 2734 5.43 || 272.8 5.03 || 287.6 4.81
Bubble 937.1 20.02 || 942.2 18.71 || 941.3 17.36 || 967.8 16.20
Second Phase | 146.2 3.12 | 143.3 2.84 | 142.7 2.63 || 149.3 2.50
Recires 12.2 .26 9.4 19 9.7 18 10.0 A7
| Idles | 451.0 |  9.63 | 791.8| 1572 [[1178.4 [ 21.74 [ 16222 ] 27.15 |
| Total | 4681.7 | 100 [ 5036.8 | 100 [[5421.0 | 100 [ 5974.6 | 100 |
Speedup 1.00 1.86 3.45 6.27
Efficiency 100.0% 92.9% 86.4% 78.4%

Together, they result in a lack of parallelism which was observed by looking at the front-
panel LEDs on Monsoon which indicate computation and network activities. They dim in a
periodic fashion, the same number of times as the number of iterations executed. Table V
shows the dynamic operation mixes for Simple running on the four Monsoon configurations.

The total cycles that Simple executes increases with the number of processors. We
believe that this is due to the rising number of frame allocations performed on multiprocessor
configurations.

5.2.4 Paraffins

Our current Paraffins runs had speedups of 7.25 for eight processors, giving an efficiency
of 91%. One through four processor runs of Paraffins actually execute fewer idles than
fetches. About half of the fetches were due to critical instructions in the frame manager and
half were due to fetches in Paraffins itself, revealing that the idles were due to the hardware

hazard.

We believe a lack of parallelism in the tail of the computation reduces the efficiency of
each processor in the eight processor case. This theory is supported by manually observing
the front-panel LEDs on the Monsoon hardware that indicates processor and pipeline ac-
tivities. Towards the end of the computation, the work lights on all processors get dimmer
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Table VI: Paraffins Opcode Mix

Configuration 1 PE 2 PE 4 PE 8 PE
Op category | cycles | fraction || cycles | fraction || cycles | fraction || cycles | fraction
x 106 % || x10° % || x10° % | x10° %
Intop 774 24.01 774 23.94 774 23.54 7.4 21.82
Floatop 0.0 .00 0.0 .00 0.0 .00 0.0 .00
Fetch 15.6 4.85 15.7 4.84 15.7 4.77 15.7 4.42
Store 49.8 15.46 49.8 15.41 49.8 15.16 49.8 14.05
Identity 73.6 22.85 73.7 22.80 73.7 22.43 73.8 20.79
Switch 42.0 13.05 42.1 13.02 42.1 12.81 42.1 11.88
Tag 16.0 4.97 16.1 4.97 16.1 4.90 16.1 4.55
Bubble 33.4 10.36 33.4 10.34 33.4 10.17 33.5 9.43
Second Phase 0.5 A5 0.6 A8 0.6 19 0.6 18
Recircs 4.4 1.37 4.5 1.39 4.6 1.40 4.9 1.37
| Idles | 95 294 100[ 310[] 152] 4.62[ 409 11.52]
| Total | 3223 ] 100 | 323.3| 100 328.8] 100 [ 354.8[ 100 |
Speedup 1.00 1.99 3.92 7.27
Efficiency 100.0% 99.7% 98.0% 90.8%

simultaneously, indicating a lack of work. A larger problem size will probably amortize the
tail and increase efficiency. Another possibility would be to change some of the sequential
loops to bounded to expose more parallelism.

6 Establishing the Baseline Performance

In this section, we present and discuss experiments comparing the execution efficiency of
Id on Monsoon with that of Fortran and C on a MIPS R3000. Each Fortran program was
compiled with the DEC Fortran (£77) compiler with full optimization (-04), while the C
programs were compiled using the stock MIPS cc compiler with full optimization (-03).

Since commercial processors do not have hardware support to count the number of in-
structions a program executes, we used the pizie tool for gathering this information on the
MIPS R3000 processor. The R3000 executables were preprocessed by the pizie program
provided by MIPS. The programs were then run on a DEC Station 5000 which contains an
R3000 processor, and the resulting data was processed by the program pizstats, which is also

provided by MIPS.

Table VII include both cycle counts and run times for MIPS and Monsoon runs of each
program. On the MIPS processor, cycle counts are produced by pixstats, and run times are
the sum of user and system times as measured by the Unix time command. When using Unix
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Table VII: MIPS R3000/Monsoon critical path comparison

Program MIPS R3000 1PE Monsoon
(x10° cycles) | seconds || (x10° cycles) | seconds
Matrix-Multiply, 500 x 500
double precision 1198 202.3 1768 176.8
single precision 915 153.1 - -
4 x 4 Blocked-MM, 500 x 500
double precision 954 61.4 1058 105.8
single precision 741 44.9 - -
Gamteb-2¢ 265 11.1 590 59.0
40000 particles
Simple, 100 iters, 100 x 100
double precision 1787 86.5 4682 468.2
single precision 1745 84.1 - -
Paraffins 102 12.0 322 32.2
n = 22

time, the original binary is run, not the pixie-processed one. On Monsoon, the total cycle
count is measured by Monsoon’s hardware statistics counters, and run times are calculated
by dividing the total cycle count by 107, because Monsoon issues instructions at 10 MHz.
Both sets of cycle counts are in millions of cycles, while the run times are in seconds.

Our comparison is complicated by the fact that we are comparing two different systems
that include different source languages, compilers, RTS’s and hardware. Aside from the
algorithms, which stay the same, all the other system components are changed at the same
time. The rationale of making this study despite the difficulties has been discussed in
Section 1. In the next section, we will describe the architectural differences between Monsoon
and the MIPS R3000 and motivate the use of cycle counts as the basis for comparison.
Section 6.2 describes the differences in run-time system overheads between Id and C/Fortran.
In Section 6.3, the remaining overhead is examined and is shown to come mostly from
asynchronous fine grain parallel execution.

6.1 Dynamic Cycle Counts as the Basis of Comparison

We want to compare architectures, not implementations. Consequently, we need to factor
out the differences in performance that are artifacts of the implementations. The biggest
difference between the implementations is the clock speed. Monsoon, as mentioned before,
runs at I0MHz, while the MIPS R3000 that we used runs at 25MHz. The two machines have
different cycle times because they are implemented using different technologies — Monsoon
is a board-level design and the MIPS R3000 is a VLSI chip set. We believe, however, that
we could build a Monsoon with clock speeds comparable to the MIPS processor given the
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design and manufacturing resources used to build the MIPS processor. We account for the
different cycle times by collecting statistics in terms of number of cycles executed in addition
to absolute execution times.

Of course there are obvious and unadjustable differences between the respective instruc-
tion set architectures (ISA). Monsoon’s ISA is good at synchronization but poor at threaded
performance, while the MIPS’s ISA is good at threaded performance but poor at synchro-
nization. The MIPS, in executing imperative languages, uses long threads and almost never
synchronizes. Monsoon, on the other hand, runs mostly short threads and synchronizes fre-
quently in executing compiled Id code. Thus, the ISA of two processors is optimized for
different purposes. We will discuss these differences in greater depth in later sections.

The next few paragraphs explain the architectural differences. We compare the pipeline
stages of Monsoon and MIPS and suggest ways to implement the Monsoon processor pipeline
stages so that each stage is no more complex than a MIPS pipeline stage. We also discuss
memory system differences and word size differences.

Making a Monsoon with a fast clock: Comparing cycle counts is fair only if the
complexity of a stage of the Monsoon pipeline is similar to that of a stage of the MIPS
R3000’s pipeline. Looking at Monsoon’s pipeline, every stage save the presence bit stage is
similar to a MIPS R3000 pipeline stage. By changing the presence bit stage into two stages,
we can reduce its complexity to that of a normal RISC pipeline stage. Splitting the presence
bit stage into two stages can be done using a dual-ported cache memory for the presence bits,
one read port and one write port. The first stage of the split stage will read the presence
bits while the second stage of the split stage will write back modified presence bits.

This two-ported cache memory is not that complex — the size of the memory will increase
by no more than 4 times (2 times for the row lines, 2 times for the column lines) and should
run at the same speed, especially if we take advantage of the fact that we are always writing
to the location we read the cycle before. Also, since presence bits require only 3 bits per
word, less than 100 kilobytes of this memory is necessary. It is important to remember
that “unfamiliar” does not necessarily mean “more complex”. Thus, our processor’s pipeline
stages are of reasonable complexity compared to the MIPS R3000. If compared to modern
superscalar pipelines with extensive hazard detection, our processor is considerably simpler.

Memory System Differences: The memory systems on the two machines are very differ-
ent — Monsoon has no virtual memory and uses static RAM for local memory. It, therefore,
has an advantage in that it does not incur cache miss or page fault overheads. Monsoon’s
memory, however, is very small (2 megabytes) which is smaller than the first-level caches in
some modern RISC processors. Thus, Monsoon’s lack of a cache does not make it an unreal-
istic machine — in reality, Monsoon can be thought of as having a compiler-managed cache,
the frame store, in which compiled code explicitly reads and writes its long latency main
memory, the I-store. In fact, our fetches from I-structure memory take approximately 26
cycles in the best case, making fetches to main memory worse than most conventional RISC
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machines. This method of split-phase transactions and using parallelism to hide memory
latency is actually extremely effective. For example, even though the cycle count of Matrix
Multiply on the R3000 is less than the cycle count on Monsoon and the MIPS clock is 2.5
times faster, the MIPS run time is actually longer than the Monsoon run time.

Fortunately, pixie-generated statistics do not include cache miss or page fault overheads,
allowing us to completely sidestep this issue. Memory system support for parallel processing
is a very important issue but is not the subject of this comparison study. Adding caches to
Monsoon, however, is straightforward since our frames are totally local and our heap objects
are write-once.

Word Size Differences: The final architectural difference is that Monsoon is a 64-bit
architecture and the MIPS R3000 is a 32-bit architecture. This difference shows up most
clearly as the difference between the execution times for 32-bit and 64-bit floating point
arithmetic. The MIPS R3000 floating point processor performs 64-bit arithmetic at almost
the same speed as 32-bit arithmetic, but it requires twice as many cycles to load 64-bit
floating point values. To quantify the effect of this architectural difference, we ran Matrix-
Multiply, Blocked-MM and Simple on the MIPS R3000 with 32-bit floating point. We were
unable to run Gamteb with 32-bit floating point numbers. The resulting execution times
are reported in Table VII. Paraffins does not use floating-point values and is, therefore
unaffected by this difference.

Having accounted for the discrepancies due to implementation differences, we can now
start the more interesting part of the comparison. Overall, Table VII shows that Id programs
on Monsoon take about three times as many cycles to execute as corresponding C or Fortran
code on the MIPS R3000. While three times as long may seem very large, the same code
supports parallel execution on multiple processors with almost perfect speedup, as reported
in Section 5. Nevertheless, it is important that we understand the source of this overhead
and identify means of improvement.

One immediately apparent source of overhead is the Id run-time system. Run-time sys-
tems supporting parallel computation are by necessity more complicated and more expensive
to run than those supporting sequential computation. This overhead is quantified and com-
pared in the next section. The remaining overhead comes from the style of parallel execution
adopted in Monsoon. This is examined in Section 6.3.

6.2 Accounting for the Differences due to the Id /Fortran-C Run-
time Systems

The fine grain parallel execution of Id programs demands a more sophisticated RTS than
is found in the implementations of sequential languages such as C or Fortran running on
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Table VIII: Frame and heap management overheads on 1 PE Monsoon and cost of similar
operations on the R3000.

Frame Management | Heap Management Total RTS
Program x10° % of total || x10° | % of total || x10° | % of total
cycles cycles || cycles cycles || cycles cycles
4 x 4 Blocked-MM | Id - - - - 1.03 0.10%
C .006 0.00% 0.13 0.02% || 0.136 0.02%
Gamteb-2¢ Id 104.1 17.61% 78.0 13.20% || 182.1 30.85%
F77 1.63 0.62% 0.71 0.26% 2.34 0.88%
Simple Id 557.1 11.90% || 198.4 4.23% || 755.5 16.32%
F77 | 9.45 0.54% 0 0% 9.45 0.54%
Paraffins Id - - - — || 165.8 51.45%
C 7.62 7.47% 49.5 48.5% || 57.12 56.0%

uniprocessors. The RTS overheads incurred by Id on Monsoon will probably be incurred in
other general purpose parallel processing systems as well.

Id activation frames cannot be stack-allocated because more than one child of a given
procedure may be executing at once, and these children may terminate in an order unrelated
to the order in which they were invoked. The storage management problem for activation
frames of arbitrary size that may be allocated and deallocated in arbitrary order is essentially
the same as the heap management problem and is much more expensive than the stack
allocation of activation frames used for sequential languages.

Another difference between the Id and Fortran run-time systems is that Id programs
dynamically allocate memory from the heap, while Fortran programs use statically allocated
storage. The Fortran version of Gamteb explicitly stack-manages a large block of statically
allocated storage. Part of the dynamic heap allocation and deallocation overhead incurred
by Id programs is in clearing the presence-bits associated with each word of the storage.
This cost is proportional to the size of the object.

Table VIII shows the percentage of run time spent on frame and heap management for
each of the benchmarks. For Paraffins and Blocked-MM, the frame and heap management
overheads are combined because we used a heap manager coded in Monsoon assembly code,
which prevented us from gathering these statistics separately. Precise determination of the
cost of frame management for C and Fortran is difficult because these are tightly integrated
into user’s code. We estimate this by noting the number of procedure calls, and assume that
frame management for each call costs two cycles. (One to increment the stack pointer at the
beginning of the call, and another to decrement it at the end of the call. We assume that
stack overflow is taken care of by the underlying virtual memory system.) Heap management
is virtually non existent in the Fortran version of Simple as heap objects are allocated on
the stack. “Heap” space needs to be allocated for the particles in Gamteb. We estimate
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Table IX: Dynamic Cycle Counts Excluding RTS code.

Program Monsoon | MIPS R3000

x10° cycles | x10° cycles
Blocked-MM 500 x 500 1057 741
Gamteb-2¢ (40,000) 408 263
Simple (100 x 100, 100) 3926 1735
Paraffins (n = 22) 156 45

the heap management overhead for the Fortran Gamteb by multiplying the total number
of particles generated by 4 (load pointer, increment pointer, test pointer for overflow, store
back new pointer.)

The figures in Table VIII show that RTS overhead is insignificant for Blocked-MM for
both the Id and C code. This is to be expected as the program allocates only three matrices,
and makes a small number of procedure calls. The RTS overhead for Gamteb-2c and Simple

are however significant for the Id code, but negligible for the Fortran code. In particular,
the 1d version of Gamteb-2c spends about 31% of its cycles in the RTS.

Paraffins, on the other hand, is intensive in its usage of heap memory. This is reflected in
the statistics. The C code performs heap storage management by calling an optimized routine
written by the programmer. Both the Id and C allocators use the same heap management
algorithm: start with a large chunk of memory and allocate storage by incrementing a pointer
indicating start of the free region. The only difference is that the Id allocator must clear
the presence-bits on the allocated storage, at a cost proportional to the amount of storage
allocated, in addition to performing standard heap management tasks. Because of this and
Monsoon’s accumulator style instruction set, the Id code ends up executing about 3 times
as many cycles as the C code to perform all RTS functions.

While RTS differences can be significant at times, they do not account for all of the cycle
differences. To continue our investigation, we factor out the RTS cost from the run time
statistics. The result is shown in Table IX. It shows that even if we discount the frame and
heap management overheads, Id code running on Monsoon still executes more cycles than C
or Fortran code on the MIPS system. In the next section, we explain where the remaining
overhead is coming from.

6.3 The Cost of Asynchronous Parallel Execution

Asynchronous parallel execution is generally less efficient than sequential execution in terms
of the total amount of work that has to be done. There is a considerable amount of overhead
involved with running in an asynchronous fashion on a synchronous machine. It is important,
however, to understand the overhead of our execution model, what overhead is avoidable and
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what is not. If the overhead is a small constant and if we can get good speedups from the
programs we write, executing asynchronously would be worth it.

We examine the specific costs caused by asynchronous parallel execution[2]. These over-
heads are incurred by forks and joins used to spawn and synchronize tasks, tags used to
send arguments to threads, bubbles which are a synchronization cost, running loops in par-
allel, termination detection, conditionals, and structure handling. These overheads, though
reducible, are not completely removable without change to the execution style. We have not
worked to reduce these overheads because of manpower reasons. In the following we describe
some of these costs.

Forks and Joins: These instructions explicitly split and combine computation and are
the overhead of spawning tasks and rejoining tasks. Fork instructions spawn new threads
within the same frame and consequently, on the same processor, while join instructions can
join data arriving from any processor. When code executes in parallel towards a common
goal, work must be spawned to keep processors busy and results must be joined to share the
computation?. Spawning and joining threads is necessary to run a program in parallel but
completely unnecessary to run one sequentially since there is only one thread for the whole
computation and operations produce results in the order in which they are specified in the

instruction stream®.

Tag: The cost of spawning threads depends upon whether we are spawning to another
processor or to the local processor. In the former case, send instructions are needed for
sending arguments and results between the cooperating processors and are not required in
conventional sequential execution. Though one may argue that sequential procedure calling
conventions may require some data movement akin to tag operations, tag operations involve
movement of data across the network and are thus more expensive.

Bubbles: These represent the cost of synchronization in collecting arguments to start a
thread. Our compiler performs most dyadic operations in a “dataflow” style which produce
a bubble for each useful operation. Dyadic instructions are heavily used throughout our
compiled code and include arithmetic instructions, switches to control dataflow through
a conditional, loop protocols, and producer/consumer parallelism using I-structures and
deferred reads. The code our compiler generates allows computation to progress as much
as possible given the available data, but requires very frequent synchronization, incurring
bubbles in the process. Using threaded code will reduce the number of bubbles, but not
eliminate them since there will still be synchronization when entering a thread.

4Though SIMD or data parallel machines do not do “spawn” tasks they must perform barrier synchro-
nizations which are also expensive.

5Modern RISC processors can produce results out of order, but use complicated hardware mechanisms
to insure that it seems like everything is executing in order.
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Parallel loops: Such loops can execute each iteration of the loop on a potentially different
processor. This requires sending data from one iteration of the loop to the next over the
network. Like sending arguments to a thread spawned on another processor, this is expensive
not only in terms of having to send the arguments and results, but also in synchronizing
the data. We also use sequential loops in our programs, particularly in the innermost loops.
As mentioned in Section 4.1, asynchronous execution within each loop iteration incurs the
overhead of synchronization at the end of each iteration.

Termination signals: Termination signals are needed in an Id implementation to indicate
that all side-effecting operations in a basic block have completed, so that frame or heap
objects may be reclaimed. Termination detection for n threads is achieved through an n way
join, at a cost proportional to n. Termination detection costs are not incurred in normal
sequential languages because we know that a side-effect is completed by the execution of the
instruction sequence. Termination signals are different from joins in that only the presence
of the tokens are used, not the values carried by the tokens.

Conditionals: Conditionals in data-driven execution must direct data to the code of the
correct arm of the conditional, and require a switch instruction for every free variable that
is needed in the conditional. A switch instruction takes two inputs, the value to be switched
and a predicate, and has two possible output destinations corresponding to the “then” and
“else” parts of the conditional. The number of switch instructions in a conditional is equal
to the number of free values used in the conditional. A conventional implementation of a
conditional, on the other hand, executes a single branch instruction regardless of the number
of free variables in the conditional. All the free variables are carried either on the stack or
in registers. The overhead of using switch instructions is significant in the heap manager
written in Id. In addition, part of the overhead of loops in Id on Monsoon is the switch
instructions used to circulate values from one iteration to the next.

Split-phase heap requests: These also cost more than normal memory reads. At least
two instructions are executed to make a I-structure request — one instruction to make the
request and another to actually do the read/write. Even more instructions are executed if
the read is deferred.

Fine Grain Synchronization with Presence bits: While the use of presence bits help
fine grain synchronization, particularly between producer and consumer, it incurs the cost
of clearing the presence bits before a heap object is allocated. This cost can be significant
as 1t is proportional to the size of the object.

Our compiler produces code to expose maximum parallelism. It would be more efficient
to expand the parallelism just enough so that the cost of exploiting the exposed parallelism is
no more than the gain obtainable from running in parallel — however, achieving this precise
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balance is very difficult. We only allow dynamic control over parallelism via loop bounds,
and but otherwise pay the parallelism overhead throughout the compiled code.

By paying the price of asynchronous parallel execution, however, we are able to obtain
parallelism from a wide range of programs, particularly programs with complicated control
structures. In addition, we can fairly easily simulate code written in a synchronous style with
good efficiency[35]. Due to the overheads involved with general asynchronous code, however,
we expect Id code, even without RTS cycles, to require more run time than C/Fortran code
running the same program. This fact is obvious from Table IX which gives execution cycle
times with the RTS cycles removed. Our higher run times are caused by the non-strictness
of 1d, the parallel code our compiler generates as well as architectural constraints that make
certain operations harder to perform on Monsoon.

Next we attempt to quantitatively estimate the cost of parallel execution. We do so
by examining the dynamic opcode mixes and analyzing some samples of compiled codes.
Though such analyses can be carried out for each benchmark with some degree of accuracy,
it is difficult to generalize across benchmarks.

6.3.1 Dynamic Opcode-Distributions

Tables X and XI show the dynamic distribution of instructions on a 1-PE Monsoon and
the MIPS R3000 respectively. We show statistics from single-precision runs for the MIPS
R3000 where possible. These opcode categories were chosen for a reason but in retrospect,
we wish we had categorized the operations differently.

Intop and Floatop are the same on both machines. Fetch and Store instructions on Mon-
soon are only used for accesses to I[-structures, while on the MIPS architecture Load and
Store instructions are used to access both the frame and the heap stores. The instructions to
move data in and out of frame memory on Monsoon are included in the Identity instructions.
Identity instructions on Monsoon are however used in other ways too: as forks and joins, and
jumps instructions. The Others category contains switches, data conversion and the SVC
instructions used to invoke the RTS. Finally, there are instructions which are “penalties”
when we are not able to exploit as much parallelism as the hardware is meant to handle. Idle
cycles on Monsoon correspond roughly to Nop and Interlock cycles on the R3000. Interest-
ingly, the R3000 incurs a substantial number of Nop and Interlock cycles when floating point
operations are involved. In 3 out of 4 of our benchmarks 25% of cycles on R3000 are used
up in these penalties. We will use the R3000 numbers after subtracting Nops and interlocks
as an estimate of base line work on a sequential machine.

Bubbles, Tag, Others are all operations that are identified as the overheads of asyn-
chronous execution in the previous section. In addition, all of the identity instructions except
those used as conventional move instructions are additional costs of asynchronous execution.
The total number of cycles spent in these categories gives us a quantitative indication of
the cost of asynchronous execution. Unfortunately, the Monsoon instruction set normally
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Table X: Dynamic Opmix of Execution on Monsoon

Program | 4 x 4 Blocked-MM Gamteb-2¢ Simple Paraffins
x10° % of || x10° % of || x10° % of || x10° % of
Op category | cycles total || cycles total || cycles total || cycles total
Intop 7 7.28% 48 | 8.05% 591 | 12.63% 771 24.01%
Floatop 250 23.66% 40 | 6.84% 335 | 7.15% 0] 0.00%
Fetch 63 5.93% 28 | 4.68% 400 | 8.54% 16 | 4.85%
Store 2 0.14% 13 ] 2.26% 79 1.69% 50 | 15.46%
Identity 289 27.36% 172 1 29.06% || 1194 | 25.51% 74 | 22.85%
Tag 1 0.05% 44 | 7.39% 265 | 5.67% 16 | 4.97%
Others 8 0.72% 112 | 18.91% 429 | 9.17% A7 | 14.56%
[ Bubble | 269  25.45% [ 119 ]20.19% || 937 [20.02% | 33 [10.36% |
[ Idles | 100 | 941% [ 15| 2.62% || 451 9.63% | 9] 2.94% |
| Total | 1058 | 100% | 590 | 100% || 4682 | 100% | 322 100% |
Table XI: Dynamic Opmix of Execution on MIPS R3000
Program | 4 x 4 Blocked-MM Gamteb-2¢ Simple Paraffins
x 10° % of || x10° % of || x10° % of || x10° % of
Op category | cycles total || cycles total || cycles total || cycles total
Intop 57 7.65% 25| 9.51% 316 | 18.09% 37 | 36.33%
Floatop 250 33.77% 60 | 22.74% 426 | 24.43% 0] 0.00%
Load 150 20.19% 65 | 24.39% 291 | 16.70% 21 | 20.58%
Store 79 10.66% 35 | 13.21% 131 ] 7.52% 29 | 27.97%
Branch 9 1.21% 15 ] 5.54% 73| 4.16% 8| 7.54%
Jump 0 0.00% 0] 0.06% 10 | 0.55% 8| 7.44%
Nop 1 0.15% 17| 6.59% 118 | 6.75% 0| 0.14%
Interlock 195 26.36% A7 | 17.95% 381 | 21.80% 0] 0.00%
| Total | 741 ] 100% | 265] 100% || 1745 ] 100% | 102 100% |
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collects the number of all types of Identity instructions, including mowves, in a single statis-
tics category. Also, as can be seen in Table X, Identity instructions account for the largest
numbers of cycles executed in almost every program. Thus, in order to accurately measure
the costs of asynchronous execution, we must be able to measure the moves separately from
the other identities.

So far, we have done that only for Gamteb-2c. The initial analysis shows that the
29% of total processor cycles spent executing identities is subdivided into: (i) 5% dataflow
synchronization (Joins) overhead; (ii) 15% dataflow-style Fanouts, (iii) 3% architecturally-
imposed Jump instructions, and (iv) 11% conventional Move instructions. If we assume that
this subdivision of the identity cycles in Gamteb-2c is representative, i.e., that approximately
1/3 of all identities are conventional moves as opposed to asynchronous execution overhead,
the cost of asynchronous execution works out to be 44% for Blocked-MM, 66% for Gamteb-
2¢, 52% for Simple and 45% for Paraffins. Overall, it looks like about 1/2 of the cycles
executed on Monsoon are overheads of asynchronous execution.

The overhead incurred by parallel execution is reasonably high, increasing total run time
by up to a factor of 2. The speedups seen, however, seem to indicate that we can about
eight times faster for many programs. Thus, the overhead cost is dwarfed by the observed
and potential speedups and makes viable the asynchronous parallel execution model which
we call dataflow.

One last question that we studied is whether there are ways of lowering the overhead
of asynchronous parallel execution while preserving most of its benefits. In particular, we
studied the effects of threading on Paraffins and Blocked-MM. Fach of these benchmarks
has an inner loop which dominates the run time. Our study involves hand-coding the inner
loop in a threaded style.

In the case of Paraffins, the compiled Id code for the inner loop took 35 cycles per
iteration to execute on Monsoon. The corresponding loop from the C program executed in
14 cycles per iteration on the MIPS processor. The hand-coded Monsoon version, written
in threaded style, took 21 cycles per iteration. A threading Id compiler should be able to
produce the same code for the inner loop. Comparison of this hand-coded inner loop with
our current compiled code shows that the 14 cycles overhead in the compiled code comes
from: fanout and join instructions, and sequential loop overhead, all of which are the costs
of highly asynchronous execution.

Blocked-MM with hand-coded inner loop ran about 20% faster faster than the compiled
version, executing in 814 million cycles. This execution time compares very favorably to that
of the C code executing on MIPS listed in Table VII, which is 954 million cycles. Again, we
see that threading can decrease the overhead of asynchronous parallel execution. However,
the effect of threading on parallelism has not been fully explored. We will be exploring this
issue in the future.
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7 Discussion and Conclusions

7.1 Monsoon performance

Monsoon has proven itself to be an effective parallel architecture, achieving close to perfect
speedups on the applications we ran. Even though the largest Monsoon configuration consists
of 8 processors, this configuration actually executes 64 threads in parallel because of the eight-
way pipeline interleaving on each PE. Few other machines have had this kind of success in
exploiting 64-fold parallelism.

Id also proved to be effective at exposing parallelism inherent in the ordinary algorithms
we used. The dataflow style code our compiler generated is pretty efficient, even when
compared to MIPS compilers. Generating better code for Monsoon would require generating
threaded code which would give us at most 15% to 20% improvements in speed. Since the
effort to add threading to our compiler would be substantial and the benefits small, we
decided to wait until our next machine to implement threading. When we do generate
threaded code, we must consider the impact of long sequential threads on the parallelism
available in a program — the scheduling of these long threads, for example, may have adverse
effects on the ease of performing load balancing.

Monsoon gave us our first real chance to explore run-time systems. We found that naive
frame management and work distribution strategies that our RTS uses to be adequate to
achieve seven-fold speedups on eight processors. We also found that oblivious work distri-
bution schemes balanced the load well. Although work distribution is, in general, a difficult
issue, a round-robin scheme works well for us because work distribution is done at a very
fine granularity, resulting in many distribution decisions.

On the other hand, Monsoon’s default instruction set is not geared towards a threaded
style of execution, making the writing of the run-time system difficult. Run-time systems
have critical sections that are most efficiently written in threaded code. Though there are
enough threaded instructions in Monsoon to write a run-time system, a more suitable in-
struction set would make the system coding much easier. Monsoon also suffers from rather
weak addressability. Three-address instructions will greatly improve code efficiency, partic-
ularly when executing threaded code. Finally, eight way interleaving of the pipeline has the
disadvantage of making critical paths and critical sections longer than they need to be.

Our experiments have led us to the conclusion that instruction level parallelism achieved
by explicit fanout and joining is expensive, and would be better exploited by hardware
mechanisms. We want to emphasis, however, that superscalar architecture alone will not
expose enough parallelism. Monica Lam’s work [23] shows this to be the case for a large
number of benchmark programs.

On the positive side, our experiments with Monsoon have shown that fine-grained par-
allelism, split-phased memory accesses, and fast context switching can hide memory latency
and synchronization waits when there is sufficient parallelism. The experiments also verify
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that there is sufficient parallelism in most programs. We reach this conclusion from the fact
that all of the benchmarks ran with very few idle cycles aside from idles caused by hardware
hazards.

The adoption of split-phased operations for global memory access allows computation to
overlap memory access latency. This technique, which has been used in Id implementations
for many years, achieves the memory-latency toleration goal confirmed to be important by
researchers at Stanford [16]. The same paper expressed doubt that hardware techniques for
hiding memory-latency are practical because these techniques dynamically reorder instruc-
tions within a large instruction window. The use of split-phased transactions, implemented
by a combination of software and hardware, shows that memory-latency toleration is achiev-
able without a large investment in hardware.

High network bandwidth and low network latency are crucial to fine grain parallel exe-
cution and must be supported by hardware. Overlapping computation with communication
and synchronization would be impossible if the processor/network interface was not tightly
integrated. Monsoon’s tight processor-network integration allows programs to perform fre-
quent communications with very low overhead. Furthermore, Monsoon’s pipeline has a stage
for formatting messages (tokens), so even at the instruction set level Monsoon overlaps com-
munication and computation.

A single processor Monsoon running Id is still not competitive with a single RISC pro-
cessor running C or Fortran code. Once we move to multiprocessor systems, however, the
overhead we see on a single processor is spread out over many processors. Also, more con-
ventional parallel processors will see much of the overhead that we see since there is always
overhead in generating parallelism and sychronizing that parallelism. Monsoon should be
very competitive with other parallel systems in terms of performance and ease of use.

7.2 Future Work

One can look at future work in two lights: what we would do if there were no commercial
processor market and what we would do since there is a commercial market. The reason
for splitting in this fashion is simple. Though we have ideas about what should be done to
execute our paradigm efficiently, there is great momentum pushing conventional processor
design forward. The amount of resources at our disposal is a very small fraction of what
the industry is using to develop their systems. Thus, though we are capable of designing
systems from scratch, we would be further ahead in terms of performance and price if we
modified conventional architectures.

We will first discuss some possibilities for a machine unconstrained by the forces of the
commercial world. We then focus our attention on a more feasible system that leverages
conventional hardware by adding novel modifications to a commercial processor.
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7.2.1 No commercial market: Dream machines

Our experience with Monsoon showed us that fast sychronization and a fast network are
extremely useful to our execution paradigm. Monsoon’s interleaving allowed us to exploit
parallelism found in single procedures and to tolerate branch latencies — we do not need
delay slots after branches. Monsoon’s multithreading together with dataflow’s ability to
expose parallelism allowed us to tolerate latencies incurred when accessing data through the
network.

Monsoon’s poor single threaded performance, however, hampered us greatly when exe-
cuting code with critical sections (mostly in the run-time system). The techniques for com-
bining the benefits of multi-threading without sacrificing good single thread performance are
already emerging. Two architectures that further advance dataflow processsor design are a
dynamically interleaved pipeline[22] or two or more pipelines fused together[28].

Thus, if there were no commercial market, or if we were able to muster as much resources
as a commercial project, we would have gone on to build a successor to Monsoon that is
faster and larger, and which retains Monsoon’s positive features of fast access to the network,
while incorporating both multithreading and good single thread performance.

7.2.2 Living in a real world

Modifying an existing high-speed processor to support another paradigm is a way to use
existing technology to further our own research. Our next project does just that. Our
next machine, called *T [27] (pronounced “Start”) and being built in collaboration with
Motorola, will use 88110 processing nodes that have a fast network interface incorporated
as a functional unit on the chip. While this is not optimal, it is still very fast. *T will also
have hardware support for handling continuations. These are similar to token queues on
Monsoon but are an improvement in that it allows a certain degree of software control over
scheduling.

The architecture of *T was driven in part by observations of Monsoon’s architectural
drawbacks. *T will have good single thread performance because threads are not interleaved
in the processor pipeline. This will, among other things, cut down RTS latencies and RTS
critical section bottlenecks. Furthermore, the *T processor will be based on a RISC core so
threads will be able to make better use of registers than they could on Monsoon. Plans have
been made for a 512 processor *T machine to be build by the end of 1994.

The research potential for *T is enormous. The available of a large machine coupled with
the fact that software has control over scheduling allows us to explore scheduling at a level
which we have not been able to before. *T will have virtual memory and caches, allowing
us to experiment with sophisticated memory systems for parallel processing. With a large
system, we will be able to develop and run large real-world applications.
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7.2.3 A Challenge:

Although the statistics we have gathered only cover a small number of benchmarks, we
believe that the results are extremely promising. We have seen good speedups for most of our
programs, and have shown that the amount of overhead to run Id on Monsoon is reasonable.
We have also demonstrated that the execution times, measured in cycles, of Id programs
are within a small constant factor of those of corresponding C or Fortran programs. Finally,
our experiments have shown that a tightly coupled processor and network can support very
fine-grained parallelism and hide communication and synchronization latency. We would like
to see similar analyses of these applications running on other parallel machines, so that we
can compare different approaches to achieving parallelism.

We are continuing our work on both the compiler and the run-time system. More ap-
plications, including several SPEC benchmarks have been written and are currently being
debugged. We hope to have more performance numbers in the near future for these programs.

Credits: The Monsoon project is the result of a large team effort composed of MIT and
Motorola people. Greg Papadopoulos designed Monsoon and managed much of its imple-
mentation. Chris Joerg and Andy Boughton designed the network, while Ken Steele designed
the I-structure board. Motorola built the hardware. Ken Traub wrote the TTDA Id com-
piler while at MIT and then became the Monsoon software architect at Motorola. Jamey
Hicks became the compiler guru after Ken Traub left and lead the Monsoon software effort
at MIT. Andy Shaw wrote the original Monsoon back-end for the Id compiler. Boon Ang
improved the performance of compiled code by hacking the middle and back ends of the com-
piler. Derek Chiou and Arun Iyengar designed and wrote the frame and the heap managers,
respectively. Mike Beckerle wrote the MINT simulator and defined the 10 software system
for Monsoon. R. Paul Johnson implemented the 1/O substrate, while Christine Flood im-
plemented the I/0O libraries. Christine also wrote the transcendental libraries. Peter DeWolf
wrote most of the Id World interface and execution manager. Venkat Natarajan and Maria
Carlon worked on statistics and visualization. Maria Carlon wrote the loader. Gamteb was
written by Olaf Ludbeck of Los Alamos National Laboratory.

Acknowledgements: We would like to thank Christine Flood, Shail Aditya, Alejandro
Caro, Paul Barth, Arun Iyengar and Kyoo-Chan Cho for their invaluable assistance in tun-
ing various programs, in adding storage reclamation annotations, for run-time system and
compiler hacking, and for running these programs on GITA and Monsoon.
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