CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Local Memory Reference Behavior of
Fine-Grain Multithreaded Execution

Masato Motomura, Gregory Papadopoulos
1992, November

Computation Structures Group
Memo 346

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Local Memory Reference Behavior of Fine-Grain
Multithreaded Execution

Computation Structures Group Memo 346
December 14, 1993

Masato Motomura
Gregory M. Papadopoulos

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Local Memory Reference Behavior of Fine-Grain Multithreaded Execution

Masato Motomura*
Gregory M.Papadopoulos'

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

December 14, 1993

Abstract

Multithreading is a potentially important technique to deal with the effects of large communications
latencies in multiprocessors. In this paper, we study the behavior of local memory references under a
fine-grain multithreaded execution model. Based on the threaded abstract machine (TAM), the model is
a compiling convention for distributed memory multiprocessors and does not presuppose special hardware
support like multiple hardware contexts. We believe we have made three basic contributions to the un-
derstanding of local reference streams under fine-grained multithreading: (1) we extensively studied the
execution traces from two example programs run on a multiprocessor simulator, (2) we have determined a
power-law working set model for local activation frame and instruction references, and (3) using the work-
ing set model we have derived an analytic cache model which provides excellent agreement with acutal
cache simulations.

Keywords: Multithreading, Cache Models, Working Set Behavior, Fine-Grain Parallelism, Latency
Tolerance

*On leave from System ULSI Research Laboratory, Microelectronics Research Laboratories, NEC Corporation. Phone: 81-
427-71-0709, Fax: 81-427-71-0881, Email: motomura@mel.cl.nec.co.jp
TPhone: 1-617-253-2623, Fax: 1-617-253-6652, email: greg@abp.lcs.mit.edu

1 Introduction

Multithreaded execution is often advocated as an effective latency-tolerance technique for multiprocessors. The
term “multithreading” loosely applies to a fairly broad range of hardware mechanisms and compiling disciplines which
share the common property of multiplexing, in time, several distinct computational contexts onto a single processor.
The latency tolerance property is a consequence of the situation where at least one of the simultaneous contexts can
make progress executing while some or all of the others might be blocked due to a long latency event, e.g., a cache
miss, explicit receive, or split-phase transaction.

Unfortunately, rapidly switching a processor among distinct contexts will, in general, decrease the locality of the
processor’s instruction, activation frame (stack frame), and heap reference streams with a commensurate increase in
cache miss ratios [1, 2]. This study is concerned with quantifying, both analytically and experimentally, the effects on
instruction and activation frame cache performance of an aggressive fine-grained multithreaded compiling model, the
threaded abstract machine (TAM) model developed by Culler et al [3]. The instruction and activation frame reference
streams comprise the local memory reference streams of TAM programs and typically are cached by processors as
private or read-only data. Global references are made through explicit split-phase transactions, which can be thought
of as a kind of binding prefetch into local memory (an entry in an activation frame). Here, we focus upon the locality
properties of the local references.

In execution models like TAM, threads are short and non-blocking, and the number of potentially executing threads
are not bound to fixed hardware resources such as the number of hardware contexts. Indeed, we make minimal
assumptions about the underlying hardware, and in fact assume that the storage for, and scheduling of, multiple
contexts are managed in software.!

We believe we have made three basic contributions to the understanding of local reference streams under fine-grained
multithreading in the multiprocessor setting:

1. Multiprocessor Execution Traces. Using a multiprocessor instruction-level simulator, we have gathered
extensive execution traces for two classes of applications: loop-parallel dense matrix arithmetic (matrix multiply
— MMP) and procedure-parallel event simulations (Monte-Carlo neutral particle transport — GAMTEB). Previous
studies obtained traces by artificially interleaving traces from several contexts [1, 2].

2. Working Set Model. Surprisingly, we have determined a working set model for local activation frame references
that closely matches uniprocessor working sets for stack and heap data. The multithreaded working set is well-
described by the power law function W (t) = at” — the size of the working set grows according to some power of
the length of time over which references are considered. Similar to working sets reported for uniprocessors, the
[for activation frame references is often around 0.5.

3. Validated Analytic Cache Model. Using the working set model for activation frame and instruction refer-
ences, we have derived a set of useful formulae which predict cache performance under multithreaded execution.
We have validated this model through actually simulating various cache configurations against the reference
traces and have found excellent agreement.

The structure of the paper follows the items above. After quickly articulating the underlying multithreaded exe-
cution model, we describe the two codes we studied and the simulation environment. Careful study of the execution
traces reveals the underlying power law working set model, which we then use as the basis for an analytic model of
cache performance. Finally, we compare the model predictions with simulated caches and suggest possible scheduling
techniques for improving miss ratios.

2 A Fine-Grain Multithreaded Execution

A number of approaches to multithreading for latency tolerance have been proposed and several have been imple-
mented. Many schemes provide a substantial amount of hardware support for representing and scheduling the multiple
contexts. The Denelcor HEP [9] provided cycle-by-cycle interleaving of threads which are each given their own hardware
context of local registers. A thread which is blocking on a network transaction is not scheduled by a processor, and
thus does not directly induce idle cycles, until the dependent transaction completes. Other researchers have proposed
hardware support for a relatively few contexts for systems where global data caches can be relied upon to mask most
of the high latency requests [1, 7].

Multithreading for latency tolerance can also be implemented primarily as a software technique with little or no
special hardware support. The Threaded Abstract Machine (TAM) is a fine-grain threading model which evolved from
the compiling of non-strict languages for hybrid dataflow/von Neumann machines [3]. Most TAM implementations are

!Practically speaking, however, fine-grained multithreading will only make sense on processors that support an efficient short
message network interface. Otherwise network overhead will dominate execution time. Fortunately, tightly integrated network
interfaces are appearing in a number of commercial and research machines, e.g., the CM-5 [4], NCUBE, Tera [5], iWARP, J-
Machine [6], Alewife [7] and *T [8]. Our results should give insight to the local memory reference behavior of codes running any
of these machines which have been compiled for a TAM-like execution model.

Active f: z
messa}ge Threads— |~

Sk

o [T7]
===

Global Heap of
z Shared Objects
Treeof

loop interations Activation Frames

EESSSSS

sync :
threads
(inlets)

II%—>

message

Figure 1: The execution state of a TAM program is a tree of activation frames. Each frame may, in general, have
several concurrently executing threads. Work distribution is accomplished by giving each processor a subset of the
frames, and thus the threads that correspond to them.

targeted to ordinary processors with no special support for multithreading, so this form of multithreading is rightly
viewed as a compiling discipline where a thread’s context is explicitly managed by the executing code.

Our study uses a TAM-like execution model on top of an otherwise conventional RISC augmented with an efficient
user level interprocessor network interface.

2.1 Frames, Code Blocks and Threads

The execution state of a TAM computation comprises a tree of activation frames, one frame for each invoked code
block, typically a procedure or a loop iteration. The frame provides the local storage for code block instances much
like a stack frame in conventional sequential execution. Please refer to Figure 1. Statically, a code block consists of a
set of interdependent threads. Synchronization (or inlet) threads are scheduled by the arrival of messages. Typically, a
synchronization thread will copy a datum from the message into the frame and then perform a synchronization operation
in the form of decrementing a counting semaphore in the current frame. If the synchronization condition is met (i.e.,
the counter decrements to zero), then a data thread is queued for execution. A data thread is described by the simple
continuation (FP,IP) where FP points to the current frame and IP points to the first instruction in the data thread.
Data threads are processed whenever there are no incoming messages to process. That is, synchronization threads are
preferred over data threads. The model is not preemptive; synchronization and data threads are nonblocking and, once
scheduled, execute to completion. Also note that the synchronization threads can be directly mapped into so-called
active message handlers (see [10]).

Within a frame, threads communicate with each other by sharing data in the frame, including the manipulation
of counting semaphores (and potentially queueing another data thread for execution). Note that, without special
optimizations, interthread communication does not occur through registers; each thread cold starts with an invalid
register set (except for a register containing its FP). Communication between frames is strictly through messages. Also,
operations against global storage (the heap) are accomplished by split-phase transactions. In a global read, for example,
a thread emits a read request into the network and then continues computing (recall, threads cannot block). The remote
memory processing responds with a message containing the desired location’s value. This message is processed by a
synchronization thread, just as if it had been directly communicated by a thread in some other frame.

Importantly, the execution model is fully parallel. Generally speaking, any of the frames in the tree can be
responding to messages and have a supply of running or ready-to-run data threads. Work is distributed by giving each
processor a subset of the frames, and thus the threads that correspond to them.

2.2 Loop Bounds

In the TAM model, each iteration of a loop can be given its own frame (various techniques of loop unrolling and
frame reuse are employed to reduce the overhead of this). By allowing a number of iterations to exist simultaneously,
loop iterations can proceed in parallel, limited only by the inherent data dependencies across iterations. By controlling
the bound on the number of simultaneous loop iterations, a programmer can control the amount of parallelism exposed.
Loop bounds can be specified dynamically on a loop-by-loop basis. We vary the loop bounds in our simulations in
order to study the relationship between the amount of parallelism exposed and the locality in the frame and instruction
reference streams.

2.3 Scheduling Policy

Another degree of freedom over the evolution of the program is the scheduling policy for ready-to-run data threads.
In the original TAM work, each frame supported a local LIFO queue of enabled data threads. Then, all frames on a
given processor with non-empty queues were linked together into a scheduling list. The scheduler always preferred data

I Benchmark | GAMTEB | MMP
Program size (Inst.) 24,921 | 4,238
Number of Code Blocks 51 13

Data | Avg. Number (/CB) 16.76 | 14.69
Threads | Avg. Length (Inst.) 21.03 | 14.63

Sync. Avg. Number 28.31 | 19.69
Threads | Avg. Length 481 | 5.64
I Average Thread Length | 10.84] 948]

Table 1: Static information of benchmark Programs. Program sizes and thread lengths are measured in 4-byte RISC-
type instruction counts.

threads from the current frame, so a frame switch would occur whenever the local stack became empty or a message was
processed which corresponded to another frame (and thus a synchronization thread was executed which corresponded
to another frame). This policy provided very good performance on single processor implementations, but does not
seem to have performed as well on multiprocessors because a single frame can not provide sufficient parallelism to mask
communications latency.

In this study, we consider two very simple scheduling structures. On each processor, we have either a LIFO or FIFO
queue of ready-to-run threads for that processor. In general, the queues will contain (FP,IP) pairs with many different
FPs. That is, threads for different frames are mixed on the same scheduling stack. When a synchronization thread
detects that its dependent data thread is enabled, the (FP,IP) pair corresponding to the data thread is enqueued.
Whenever the scheduler requires more work, an FP, IP pair is dequeued and the scheduler jumps to the resulting IP to
begin execution of the data thread.

3 Trace Driven Simulation

Previous simulation studies on the cache implications of multithreaded execution have used traces obtained by
artificially interleaving reference streams from several contexts [1, 2] simply because real traces were not available.?
Though this kind of approach has its meaning for the kind of context switching studied — essentially switching
amongst a few (say, two or four) hardware contexts in order to mask cache misses — it is problematic for fine-grain
multithreaded execution where strong data dependencies amongst threads have a first order effect upon scheduling and
therefore working set behavior.

3.1 Benchmark Programs

For this study, we extensively explored the behavior of two distinctly different parallel programs: GAMTEB, a
Monte Carlo neutral particle transport simulation of photons traversing through a carbon rod and MMP, an unblocked
matrix multiply. The parallelism in MMP is obvious, while GAMTEB has one outermost loop comprising a set of recursive
code blocks whose calling path depends on a number randomly generated for each iteration of the loop. Both programs
were written in Id and compiled to TLO code using the Berkeley backend [3]. While we certainly would desire to study
more programs, we felt that these were largely representative of fairly broad classes of applications and preferred to
apply our resources to study their behavior in a great deal of depth. Here is a brief description of the codes:

We ran the programs on various system configurations, input data sizes, and loop bounds. We report here simulation
results on an eight processor configuration with 20,000 photons for GAMTEB and a 600 x 600 matrix for MMP. Three
different loop bounds are experimented for each program: 50, 200 and 800 for GAMTEB, and 25, 50 and 100 for MMP.
Note that loop bound in MMP is applied to all of the three loops, whereas the loop bound for GAMTEB is applied to the
outer loop only. Furthermore, to see how scheduling influences memory reference behavior, we conducted experiments
on thread scheduling policies: LIFO versus FIFO queues for enabled data threads.

3.2 Statistical Summary

Table 1 summarizes static information for these two benchmark programs. MMP’s program size is about 16KB,
which is apparently too small for the purpose of instruction cache simulation. For the frame cache, however, this
program is a good test of locality behavior, especially considering that controlling the cache behavior of the matrices
themselves can be quite tricky [13]. This is reflected in the frame references because the frames essentially hold pieces
of the matrices which have been explicitly prefetched. In both programs, the average length of synchronization threads
(called inlets in the TAM model), around five instructions, are considerably shorter than those of data threads, which
are well above ten instructions.

Table 2 shows trace length for two runs out of the twelve runs that we examine in this paper. Other runs for each

2Note that others have performed realistic simulation of multithreaded codes, however these do not seem to account for local
cache behavior. For examples, see [11] and [12].

Bench- | Sched. | Loop || Num. of | Inst. | Frame
mark | Policy | Bnd || Threads | Refs. | Refs.

GAMTEB | LIFO 200 0.69M | 7.95M | 3.66M
MMP LIFO 50 0.81M | 9.40M | 4.60M

Table 2: Trace length examples.

100 T—
95 1—
901

Percentage

851
80— Idle
751+ Emm Sync. Thread

704 EEm Data Thread

651
60 1
55—
50 1—
45 1—
401

50 200 800 50 200 800 25 50 100 25 50 100
LIFO FIFO LIFO FIFO
GAMTEB MMP

Figure 2: Processor utilization for 12 runs. The processor time is divided into Idle time, Synchronization thread
execution time and Data thread execution time. Note that the y-axis minimum is not zero.

benchmark have essentially the same characteristics. Rather than record the execution traces from all eight processors,
we instead recorded references from only one of the processors until the statistics we report later reached a stable state
and the traces are long enough for simulations of caches smaller than 64KB. For the purpose of justifying using traces
for one node, we verified that statistics variations between nodes were negligible.

Figure 2 shows processor utilization of each run by dividing processor time into data thread execution time,
synchronization thread execution time and idle time. The numbers 50, 200, 800 and 25, 50, 800 refer to the loop bounds
used in GAMTEB and MMP, respectively. GAMTEB achieves near perfect utilization with loop bounds of 200 and greater.
MMP only achieves a maximum of 85% utilization, which we attribute to the fact that the unblocked algorithm exhausts
the interprocessor communications bandwidth. Observe that there isn’t significant difference in processor utilization
between LIFO and FIFO scheduling, though slight improvement can be found for GAMTEB. We caution that Figure 2
should not be thought as predicting performance of these programs; this is not our objective. Rather, the important
consequence of this figure is that choice of our loop bounds are just around a saturation point of processor utilization
for the duration of program execution we study. The saturation point is a point where processor resource usage is
optimized [14].

4 Working Set Behavior

Central to the prediction of cache behavior is the characterization of temporal correlations in reference streams. A
working set W (t) [15] is a function of a time window ¢ which describes the number of unique references that occur in
the window. If W(t) grows slowly with ¢ then the reference stream has good locality. Often times, working sets will
tend to follow a power law,

W(t) = atP. (1)

Typically, values for 8 around 0.5 are encountered in conventional architectures [16]. That is, the working set grows
like the square root of the time window size considered. Observe, if § ~ 1 then the reference stream is devoid of
locality. We have found that, for frame references in GAMTEB, 3 ranges from 0.45 to 0.71, and thus exhibit fair amount
of locality. Unfortunately (and surprisingly), instruction references in GAMTEB experience very poor working set behavior
(8 = 0.99) until the window grows large enough to encompass all of the code blocks included in the main outer loop.
MMP generally experiences the same frame reference locality before its working set function shows saturation, but has
excellent instruction locality due to its small inner loop. In this section we detail our technique for identifying the
working set behavior for frame and for instruction references.

4.1 Frame Reference Patterns

Table 3 shows frame reference statistics for each run. The dynamic average frame size is reported in double words
(eight bytes), and is about 80 double words for GAMTEB and 20 double words for MMP. The small variation of frame sizes
among runs for each program reflects the different path each run takes depending on a loop bound and a scheduling
policy. Frame lifetime, which is the time from an allocation to a deallocation of a frame, is measured as a total number
of executed threads in a processor. As expected, frame lifetime strongly depends on both scheduling policy and loop

Frame Frame Number of || Context

Benchmark | Scheduling | Loop Bnd || Frame Size | Lifetime | Execution Extant Switch
(1000’s) Time Frames Interval

50 80.25 2.98 62.92 63.38 2.70

LIFO 200 80.86 5.29 62.94 161.49 2.86

GAMTEB 800 81.61 6.56 64.06 372.96 2.65
50 81.21 1.85 63.91 39.51 1.86

FIFO 200 79.06 8.04 62.25 169.95 1.40

800 80.47 15.45 62.27 374.81 1.41

25 17.45 11.31 26'71.69 18.21 2.24

LIFO 50 19.14 20.02 2469.50 43.01 2.00

MMP 100 20.30 32.03 2339.11 92.25 2.10
25 17.24 12.31 2512.49 21.86 1.48

FIFO 50 18.45 22.78 2461.87 43.12 1.14

100 19.53 46.45 2368.63 89.93 1.13

Table 3: Frame Statistics. All numbers are average. Frame size is measured in 8-Byte words. A number of executed
threads is used as a measure of time. A difference of length between data thread and synchronization thread is ignored.

bounds. Frame execution time is measured in threads and denotes the average number of threads executed in a given
frame during its lifetime. The number of extant frames describes the average number of frames which exist at any
given moment in time. Note how this value is directly proportional to the loop bound, but is relatively independent
of scheduling policy. Context switch interval, again measured in threads, describes the average number of threads
executed in a given frame before executing a thread for another frame. Here, a LIFO scheduling apparently yields
somewhat longer context switch intervals.

There is a significant difference between GAMTEB and MMP in frame execution time to lifetime ratio. Comparatively,
MMP is working on smaller frames for much longer time than GAMTEB, which implies better frame cache hit ratio for
MMP. Paradoxically, the context switch interval is longer in GAMTEB — surprisingly so, given that other statistics shows
better locality for MMP. This means simple view of treating context switch interval as a measure of locality [1, 2] is not
a good predictor for fine-grain multithreading. We need to find a more reliable metric.

4.2 The Frame Working Set Function

We define a frame working set function, Wr(t), as a number of distinctive frames on which threads are executed
during time window ¢, where t is measured by a dynamic count of threads.

Figure 3 shows measured Wg(t) for all of runs. LIFO scheduling for GAMTEB shows power law behavior, which
is independent of loop bounds. MMP’s frame working set function shows saturation after initial rise whose slope is
compatible with GAMTEB. Intuitively, the power law for GAMTEB implies that this program’s working set has a “transient”
nature: some portion of a working set is continuously changing along with the execution of a program, which results
in a continuously growing frame working set function. In contrast, the saturation behavior for MMP means that this
program’s working set has a “recurrent” nature: the working set is closed in the sense that same fixed number of frames
are used over a long interval of time.

The range of power constants for GAMTEB, from 0.45 to 0.71, overlap the values found in conventional architectures,
which range from 0.484 to 0.544 [16], and from 0.43 to 0.75 [17]. This suggests that the amount of locality in frame
memory references may be similar to memory references in conventional architectures at least for LIFO scheduling.
This is a nice result if holds true for most multithreaded applications because it suggests that the local memory systems
designed for cacheing stack and heap references on sequential processors could support the demands of frame cacheing.

4.3 The Instruction Working Set Function

Unfortunately, a general framework for instruction reference locality is more complicated than for frames. Because
threads from different frames may point to the same code, but threads from the same frame cannot (lest they not be
unique), we have to separately investigate how code blocks and threads are scheduled. As such, we report measurements
of two functions, code block working set function Wg(t) and thread working set function, Wp(t). Those are defined as
distinct numbers of code blocks or threads referenced during a given period of time ¢, respectively.

Figure 4 shows measured Wg(t). Since the number of code blocks is limited, both of the curves show saturation.
GAMTEB shows again power law behavior with 8 ranging from 0.42 to 0.56. In MMP, the working set is limited almost to
a single code block, which is the code block of the inner-most loop.

Figure 5 shows measured Wr(t) which shows how temporal locality in instruction references is exhibited for each
program. Here, GAMTEB has very poor temporal locality; 3 is 0.99, which means hardly any thread is re-executed during

£ 100t , , , - ¥ 100 | |
= [—— LIFO50 L = — LIFO25
g —— LIFO 200 /,/ /71 g — LIFO50
g LIFO 800 P 280 5 LIFO 100
5 -- FIFO 50 ,,” /,’ S - - FIFO 25
';.L: - -~ FIFO 200 e /. '%'; -~ FIFO50
%) FIFO 800 S v n FIFO 100
o v / =)
£ 4 £
b= / 5
2 10} R = 2
) - ’, e)
£ ’ - £
] . [
w ’ e L
1 | R 1 . | o -
10 100 1000 10000 10 100 1000 10000
Window Size: t Window Size: t
(a) GAMTEB (b) MMP

Figure 3: Measured frame working set function Wg(t) for (a) GAMTEB and (b) MMP. This function shows how many new
frames are scheduled for execution within a given period of time window. Time ¢ is measured by dynamically executed
number of threads.

G f f G f f
2 — LIFO50 2 — LIFO25
g —— LIFO 200 o g — LIFO50
= LIFO 800 e A 5 LIFO 100
S 10 --- FIFO50 ’,/’ ” _ S 10 -- FIFO25 _
T L - -~ FIFO 200 /] bt -- FIFO50
& FIFO800 ,” 3 FIFO 100
=) . =)
£ p y £
=< v - =
S , Py S
= S =
X A X
Q ’ Q
° ’L S
m // Va m -
) 7)
o , o
o , o
) @)
4
4
’,
r
v
1 | N I 1 =sScEcESSSS S ———F | —
10 100 1000 10000 10 100 1000 10000
Window Size: t Window Size: t
(a) GAMTEB (b) MMP

Figure 4: Measured code block working set function Wg(t) for (a) GAMTEB and (b) MMP. This function shows how many
new code blocks are scheduled for execution within a given period of time window.

1000 ¢ , , | € 100 | ,
= — LIFO50 = — LIFO25
g —— LIFO 200 g — LIFO50
5 LIFO 800 5 LIFO 100
5 --- FIFO 50 5 -- FIFO25
b --- FIFO 200 o -- FIFO50 o
@ 100 FIFO 800 . & FIFO 100
[=2)] (=2}
£ £
< X
o o
= = -
k=] e}
© [
o o
F 10} - =
1 |] 1k 2l | .| -
10 100 1000 10000 10 100 1000 10000
Window Size: t Window Size: t
(a) GAMTEB (b) MMP

Figure 5: Measured thread working set function W (t) for (a) GAMTEB and (b) MMP. This function shows how many new
threads are scheduled for execution within a given time window.

this period, regardless of scheduling and loop bounds. This is a disappointing but still an understandable result because
GAMTEB has only one outermost loop and the execution pass inside of the loop varies on each iteration. In MMP, though
LIFO seems to maintain better overall temporal locality, FIFO performs slightly better in small working set region
before reaching a knee around size of 5 threads.

5 An Analytic Cache Model

In the previous section, we have shown how a working set function can capture the locality behavior of both frame
and instruction references quite well. In this section, we will build an analytic cache model for a fine-grain multithreaded
execution. The model predicts measured cache miss ratio quite well, as we will see in a next section. Though our cache
model is geared toward explaining cache behavior for multithreading, it incorporates what we believe to be a new and
general idea for using working set function as a basis for calculating cache miss ratios. This idea is readily applicable
to any cache modeling wherever an underlying working set model applies.

5.1 Previous Work in Analytic Cache Modeling

The most important and most extensive work in modeling cache behavior was done by Agarwal, Hennesy and
Horowitz [18]. This work proposed a full framework for understanding cache behavior for various cache configurations
including differing line sizes and associativity. Though this work gives us good insight into cache behavior, we believe
several points are yet to be solved by this model.

First of all, a time granule, which they used for measuring a working set size, was chosen in a somewhat ad hoc
manner. Although it is argued that the choice of time granule does not have a significant effect on the model’s prediction
accuracy, we believe there should be some systematic way of deciding this parameter. Secondly, a parameter called
the collision rate, which is measured from traces separately, plays a key roll in their modeling. Since a working set
model seems to work as well for fine-grain multithreaded execution as it does for sequential execution, we would like
parameters to be derived directly from a working set function. Lastly, an LRU replacement strategy, which has practical
importance for set associative cache is not modeled in their work.

Thiebaut has also conducted important work in this area [16] centered around the notion of fractal random walks.
In fact, the power law observed in the working set functions can be explained in terms of the self-similarity of fractal
random walks. Unfortunately, Thiebaut limits his analytic model to fully associative caches.

In a context of multithreaded architecture, we are aware of only the work of Agarwal [2], which is a direct descendent
of work described in [18]. Agarwal treats multithreading as an extreme case of multiprogramming, where context switch
interval is not long enough to fully bring its working set into cache. The number of contexts is treated as an artificially
controllable parameter. As we have stated, this treatment seems to be insufficient for fine-grain multithreading wherein
data dependencies amongst threads have a first order effect upon scheduling and thus cache behavior.

5.2 Working Sets for Cache Modeling

A working set is a monotonically increasing function of time. Thus, the size of a working set for a program depends
on the size of the time window, 7, selected for that working set. In other words, in an intuitive notion of working
set, i.e., where a program is “currently” focusing its computation, a choice of the window size implied by “currently”
changes the working set size completely. This is a fundamental difficulty of modeling cache behavior based on a notion
of working sets.

We claim that 7 should depend on cache size. Caches of different size “see” memory reference streams with different
“time resolution”. We must account for the different time resolution in order to coherently model different sized caches.

W'(r)
"W, @)
where W (7) is the working set function at time 7, a working set size, and W'(7) is a time ¢ derivative of W (7). p is the
ratio of the newly referenced working set within W (7). That is, (1 — p)W(r) is carried over from a working set in an
adjacent T period. For example, if p is 0, the working set function is not growing at all. If p is 1, there is no overlap in
adjacent 7 period, which means the working set is increasing linearly against time. We can derive a general equation

which W(r) should satisfy. W(r) x Hit Ratio =r(p) x Cache Capacity, (3)
where 7(p) is an yet unknown function which will be defined below. The left hand side of Equation (3) gives the size
of the cache resident portion of a working set, since the hit ratio indicates the percent of a working set that should be
cache resident in order to insure a cache hit. Thus, Equation (3) simply says the cache resident portion of a current
working set occupies r(p) of the cache capacity. (1 —r(p)) of a cache is left over from references which have drifted out
of the current working set. There are two conditions that r(p) should satisfy. r(0) should be equal to 1 because the
working set size is not increasing when p = 1. 7(1) should be equal to 0 because no memory location is being reused,
the left hand side of the equation is 0. 7(p) can be chosen arbitrarily provided that it satisfies these two boundary
conditions. Thus we can simply set

r(p) =1—p. (4)

Since the miss ratio of a cache is calculated using W(7), Equation (3) is actually a self-consistency equation
that W(7) and a miss ratio should satisfy. This is why we could choose r(p) freely under two boundary conditions.

We introduce working set growth ratio p as,

p:

Mathematically, a miss ratio is obtained as a fixed point of self-consistent equations, which we will derive following
sections. This self-consistency requirement is the key to solve the chicken and egg problem of determining the working
set size. This technique is applicable to choosing the working set size required to model any cache.

We can now see why the previous study that chose 7 arbitrarily [18] was successful. Suppose power law applies to
a working set function, i.e., W(t) = at”. The working set growth ratio is calculated as,

afBrf-1

=5 (5)
This ratio does not depend on 7. It means, as we will see, that miss ratios do not depend on 7 either. This is one
example of the self-similar behaviors generally observed in fractal random walks. The simple power law does not apply
to all cases, however. In many cases, there are often changes to the power constant as the time window grows [19].
Moreover, the working set function eventually shows saturation. The working set size’s dependency on the cache size
must be introduced to predict cache miss ratio for these cases correctly.

p=T

5.3 Frame Cache

Now we apply the general idea from the previous section to model an activation frame cache behavior. Several mean
values that characterize frame reference behavior as well as a measured frame working set function are used for the
model. We make several assumptions. First, we assume there is no self-interference on a cache set among references that
belong to a same frame. Secondly, we assume random mapping of FPs on cache lines, and random memory references
within a frame. We model only the warm start miss ratio, because we are modeling a multithreaded execution model
in a single programming environment.

We calculate the miss ratio of a frame cache by counting how many references from a thread miss on average. Let
Tr be an average number of total frame references from a thread, and Mr be an average number of missed references
in a thread. A frame cache miss ratio mp is defined as
Mp(L,A,S
mp(L,4,5) = METAS) ©)
F
Here, we use L for a line length measured in bytes, A for associativity in a set, and S for number of sets, so that cache
capacity is expressed as LAS. In the following discussion, we omit L, A, S dependencies wherever appropriate.

Tr can be divided into three components: Tr., the average number of first references to cache lines of a frame
during that frame allocation, the T'w;, average number of references to cache lines which were referenced by other
instructions in a same thread, and the Tr;, average number of references to cache lines which were not referenced in a
same thread.

Generally, each of the Tr, references produces a miss, which is known as a compulsory miss, because it is the first
access to a line in any way. It doesn’t hold for our case, however, because T, is a first request to frame locations
within one allocation of a frame, and a same FP might have been used before the current allocation. This possible
previous allocation might have left several lines in a cache which reduce compulsory misses. Since a frame is a local
storage of a code block invocation, a compiler guarantees that there is no data consistency problem between different
frame allocations. Thus, we can define compulsory miss ratio mpg., so that mp . Tr. is a number of compulsory miss
references.

Trg: is a measure of temporal and spatial locality within one thread. It is independent of dynamic execution of
threads, because a thread is guaranteed to execute until its completion. Each of T, references gives a hit. To get T
from a compiled code is quite straightforward.

Tr; is a most important source of misses, which are known as interference misses. We define mp; as an interference
miss ratio, so that mp;Tr; gives a number of interference miss references. In total, a frame cache miss ratio is given

by S Tpcm TF_TFC_Tth
F = TF Fec TF

Fi- (7)

Direct Map Cache Case

We first show the calculation of mp; for a direct map cache. Let F' be an average frame size measured in bytes. The
number of cache lines required to hold a frame size of F' is calculated by using the cover function C [18] as
F-1

C(F)=1+——. (8)

Suppose, on average, Ry lines of a frame which is contained in a working set are resident in a cache. Based on an idea
in Section 5.2, the working set size for frame references is defined as a frame working set function measured at some
time interval 7, Wg (7). By definition of this function, the working set size means the number of frames that constitute
a working set. Thus, Equation (3) is dictated into a following equation:

WF(T)RF = (1 —pF)S, (9)

because Wr(7)Rp gives the number of cache resident lines of the working set. Here, the frame working set growth ratio
pr is given by

Wk(r)

p =T . 10
" We(r) (10)
Since the average fraction of a frame that is not resident in a cache should give an average miss ratio,
Rp
=1— 11
e c(F). (11)
Thus Equation (9) gives a frame working set size as a function of mg;.
1- PFr S
w = — . 12
*0) =) (12)

As explained in Section 5.2, Equation (12) is a self-consistency equation that mp; and Wg(7) should satisfy.

Now, we want to derive an equation which gives Rrp. Look at one thread to see which frame it belongs to. If it
belongs to a frame within a working set, Rp will increase because of addition of new lines. If not, Rr will decrease
because of interference in a cache. By requiring these increment and decrement for Rr to be balance at a steady state,
following equation is obtained. Rp) Rp

Tri(1—pr) (1 e = TFiPF?- (13)

Here, (1 — Cl?f?) gives a cache non-resident fraction of a frame in a working set. Since there are Tp; references from
a thread, the increment of Rp in Poisson approximation is given by the left hand side of the equation. The right hand
side gives a decrement of Ry, because R—SF gives a probability that interference occurs. Thus,

C(F)
Rp = . (14)
C(F
T
is obtained. mp; is easily derived from Rp by using Equation (11) as
1
Mp; = —q5—— g (15)

It turns out that pr and % are two important parameters that completely decide this miss ratio. If pp =1, mp; =1
as expected.
Calculation of compulsory miss ratio mp. can be carried out in a similar manner. Let R. be an average number

of cache lines which hold a frame when that frame is deallocated. Suppose the probability of reuse of the deallocated
frame is p,. The steady state equation for R, is given by

O (1= e) = CPI = p) e + CPYN. - D (16)

The left hand side and the first term of the right hand side can be understood in a same fashion as corresponding
terms in Equation (13). These terms are multiplied by C(F') because C(F’) distinct lines are referenced within a frame
allocation. The second term of right hand side is turbulence from other concurrently executing frames. Here, N, is the
average number of frames in a working set during frame life time interval 7. Thus,

1 &«
Ne= = Wr(). (17)
7L t=1
From Equation (16), C(F)
Ri=—— ——— (18)
1 + Ncp_rpr C%F)
is obtained. mp, is given by R, as follows,
R,
mgpe. = Dr (1_C(F>)+(1_p1")
Dr
= 1-— 19
14+ Ncp—Tpr CSF ()
because all of T, references will miss a cache if a frame is allocated for the first time.
In summary, we get a complete frame cache miss ratio for direct map cache as follows:
mp _ TFC (1 _ Pr)
- N.—p, C(F
A=t
Tr. TFt) (1
Tr Tr 1+ PFF C(F)

10

For this model, we need the following average numbers and a function: the number of frame memory references per
thread Tr, the number of compulsory references Tr., number of frame references that are covered within a thread Ty,
the size of a frame F, the frame life time 7, and a frame working set function Wg(t). Note that these parameters and
function does not depend on any cache parameter. Though T'»; depends on line size, this dependency is calculated by
using a cover function C. Tr and Tr; is obtained by static analysis. Moreover, it is also possible to get a good estimate
of Tr. and F statically. Thus only 7 and Wg(t) are the dynamic components of our modeling.

Set Associative Cache Case

We model an LRU set associative cache by again neglecting self-interference on a cache set. Though it was a fairly
good assumption for direct map caches, it is not necessarily a good assumption for set associative caches, because S
decreases as A increases for a same size of cache. We use this assumption, however, because it gives us good insight into
the cache behavior simply. Self-interference can be introduced into a model quite easily, but is more complex. Note
this assumption gives an optimistic miss ratio when inappropriately applied.

First of all, a self-consistency equation for the frame working set in this case is given as,
(1-pr) AS
1% =
FT) = T OF)
we divide Ry into Rp(1) to Rp(A), depending on the position in an LRU stack of a corresponding line. For example,

Rp(1) is a number of cache resident lines marked most recently used. We solve following steady state equations for
each component of Rp.

(21)

Tri(1 - pr) (1 - fé}gg))) = Tripr Rl;,(l), (22)
TFipFw =Tripr B (@) + Tri(l — pF)R;IZ‘;:))v (23)

where 1 < i < A. The left hand sides give increments of Rp’s, while the right hand sides give decrements. Equation (22)
is basically the same equation as Equation (13). In Equation (23), increment is due to probability of interference on a
set in Rp(i — 1), which causes a line to shift its position in an LRU stack from ¢ — 1 to 4. Decrement is due to same
interference on Rp(i), a first term, and a reference to a line in Rp(i) itself which makes that line be brought into top
of an LRU stack. Equations (22) and (23) are easily solved as,

C(F)
Rp(1) = @7 (24)
Rp(i) = (1-%’2%’)31?(@'—1). (25)

Since Rp is given by a sum of this series, mp; is obtained by using Equation (11) as, simply,
mpi(L, A, §) = mp(L,1,5), (26)
which means mp; for a cache of set associativity A is given by a power A of mp; of a direct map cache which has S
lines.
The compulsory miss ratio can be calculated in a similar manner. The result is

mrpc(L,A,S) =m#.(L,1,85). (27)

5.4 Instruction Cache

An instruction cache needs small changes in modeling because of two kinds of locality components that should be
considered separately (see Section 4.3). We will show how two kinds of working set functions, code block and thread,
are incorporated into instruction cache modeling.

Let 77 be an average number of instruction reference in a thread, i.e., thread length. We will calculate instruction
cache miss ratio my again by counting how many references miss a cache out of 7T references. We neglect compulsory
misses in an instruction cache in order to simplify the notation, since compulsory misses are a negligible component
in any practical program. Since a thread occupies consecutive 77 locations in an instruction memory, the number of
cache lines which cover one thread is given by C(T). Thus, m; is calculated as,

C(Tr)

= i 28
mr TI mr ()

where my; is an interference miss ratio for an instruction cache.

We need some preparation in order to calculate my;. First C'(T7) is divided into two components: one is an average
number of lines that are shared by two or more threads, Cg(T7), and the other is an average number of lines that
belong only to one thread, C(77). These are derived as follows.

11

Cr(Ty) = NiTc*(B), (29)
Calli) = 5 (NeC(T) - C(B)}, (30)

where Nt is the average number of threads in a code blocks, and B is the average size of a code block. This division
of C(T7y) is quite important in order to model an instruction cache behavior correctly. A cache line in Cr(77) is never
brought into a cache unless a thread which occupies that line is executed, whereas a line in Co(TT) can be brought
by several threads in a code block. In other words, the locality that helps increasing cache residency of Cr(T7) is
not of code blocks but of threads. On the other hand, code block level locality plays an important role for Cg(77).
Thus, Cg(T;) and Cr(T7) should be treated in terms of how many distinct code blocks or threads have been executed,
respectively. This is why we need two kinds of working set functions.

Now we define cache resident portion of Cg(T;) and Cr(Tt) as Rp and Ry, respectively. Since Cr(T7) and Cg(T7)
does not overlap each other, a self- consistency equation to give working set size and its measurement time 7 is

WB(T)NTRB T WT(T)RT

=S. 31
1-pB 1-pr (1)
Here, each of working set growth ratios pp and pr is defined as
Wg(7) Wr(r)
= = . 32
PEETIY PTG (32)

As in frame cache modeling, we count increment and decrement for Rp and Ry when a thread is executed. Steady
state equations for Rp and Ry are respectively given by

(1= p0) G Ot~ Ra) = puC(T) L, (33)
(1= pr)(Or(Ty) = Br) = puC(Tr) 2. (34)

In a left side of Equation (33), %%l gives a probability that a thread references the Cg(7) portion of a code block.

If it does, cache resident portion increases from Rp to C(T7). The right hand side of the same equation is multiplied
by C(Tr) because any reference from a thread which belongs to a code block outside of the working set may cause
interference. In Equation (34), the right hand side is multiplied by pgp not pr, because a thread which belongs to a
code block working set does not cause interference. These equations give
Cp(Tr)
1-pp C(B) C(T1)’
1+ PBB Cg(Tr) SI
Cr(T
Ry = _ Or(T) (36)

1— C(Ty) *
1+&JS_11
pT

Rp (35)

Thus an instruction cache miss ratio my is given as
C(Ty) (Rp + R;)
my; = 1-—
T; C(Ty)
Cp(Tr) 1

Cp(T; S
Tr o1 + 1€?’B (];((Bi) C(Tr)

Cr(T 1
| Cx(T)

S
TI 1+ 1571;3 C(Tr)

(37)

Set associativity is modeled in a same manner as a frame cache. The miss ratio is obtained as follows.
A

_ Cp(Ty) 1

Cp(T, S
T \1+ 2 S ot

A

Cr(T 1

N TT(1)(-) (38)
I L+ =5 ot

mr

Informations required to model an instruction cache are, the average thread length 77, average code block size B,
the average number of threads per code block Nr, the code block working set function Wx(t) and a thread working
set function Wr(t). The only dynamic information required is just these two working set functions.

12

6 Conclusion

Whether fine-grain multithreading becomes a truly useful compiling discipline for distributed memory parallel
processors depends upon many factors. In this paper, we have at least shown how the technique influences local memory
reference behavior in two different parallelism regimes — loop-based parallelism and recursive tree-like parallelism.
Surprisingly, we discovered that the reference streams could be characterized by a working set function which is similar
to those associated with uniprocessor, single threaded programs. By using this working set function as a basis for an
analytic model of cache behavior, we were able to derive a set of useful relations that accurately predict frame and
instruction cache miss ratios.

It seems to us that the most important areas of future research lie in understanding the tradeoffs in scheduling
ready-to-run data threads. While we have explored very simple LIFO and FIFO strategies, there is a very rich space
of possible structures. Our belief is that perhaps the best scheduling algorithms could be generated by the compiler
as part of the code generation process itself. Overall, we are encouraged that a fine-grain multithreading compiling
discipline is compatible with the local memory organizations of future generations of high performance microprocessors.

References

[1] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Benefits of Multiple Hardware Contexts in a Multipro-
cessor Architecture: Preliminary Results. In Proceedings of 16th Annual International Symposium on Computer
Architecture, IEEE, June 1989, pages 273-280.

[2] Anant Agarwal. Performance Tradeoffs in Multithreaded Processors. IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 3, No. 5, September 1992, Pages 525-539.

[3] David E. Culler, Anurag Sah, Klaus Erik Shauser, Thorsten von Eicken and Jhen Wawrzynek. Fine-grain Paral-
lelism with Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine. In Proceedings of
19th Annual International Symposium on Computer Architecture, IEEE, June 1991, pages 164-175.

[4] Charles E. Leiserson, Z. Abuhamedeh, D. Douglas, C. Feynman, M. Ganmukhi, J. Hill, W. Hillis, B. Kuszmaul,
M. Pierre, D. Wells, M. Wong, S. Yang and R. Zak. The Network Architecture of the Connection Machine CM-5.
In Proceedings of ACM Symposium on Parallel Algorithms and Architectures, 1992.

[5] R. Alvenson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield and B. Smith. The Tera Computer System.
In Proceedings of International Conference on Supercomputing, June 1990.

[6] William J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty and S. Wills. Ar-
chitecture of a Message-Driven Processor. In Proceedings of 14th Annual International Symposium on Computer
Architecture, IEEE, June 1987, pages 189-196.

[7] Anant Agarwal, Beng-Hong Lim, David Kranz and John Kubiatowicz. APRIL: A Processor Architecture for

Multiprocessing. In Proceedings of 17th Annual International Symposium on Computer Architecture, IEEE, June
1990

[8] Rishiyur S. Nikhil, Gregory M. Papadopoulos and Arvind. *T: A Multithreaded Massively Parallel Architecture.
20th Annual International Symposium on Computer Architecture, IEEE, June 1992, pages 156-167

[9] B. J. Smith. A Pipelined, Shared Resource MIMD Computer. In Proceedings of 1978 International Conference on
Parallel Processing, 1978, Pages 6-8.

[10] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, Klaus Erik Shauser. Active Messages: a Mechanism
for Integrating Communication and Computation. In proceedings of 20th Annual International Symposium on
Computer Architecture, IEEE, June 1992, pages 256-266.

[11] Bob Boothe, Abhiram Ranade. Improved Multithreading Techniques for Hiding Communication Latency in Multi-
processors. In proceedings of 20th Annual International Symposium on Computer Architecture, IEEE, June 1992,
pages 214-223.

[12] Stephen W. Keckler, William J. Dally. Processor Coupling: Integrating compile Time and Runtime Scheduling
for Parallelism. In proceedings of 20th Annual International Symposium on Computer Architecture, IEEE, June
1992, pages 202-213.

[13] Monica S. Lam, Edward E. Rothberg and Michael E. Wolf. The Cache Performance and Optimizations of Blocked
Algorithms. In Proceedings of 19th Annual International Symposium on Computer Architecture, IEEE, June 1991,
pages. 63-74.

13

[14] Rafael H. Saavedra-Barrera, David E. Culler and Thorstem von Eicken. Analysis of multithreaded architectures
for parallel computing. In proceeding of 2nd Annual ACM Symposium on Parallel Algorithms and Architectures,
IEEE, July, 1990, pages.169-177.

[15] Peter J. Denning. The Working Set Model for Program Behavior. Communications of the ACM, Vol. 11, No. 5,
November 1968, Pages 323-333.

[16] Dominique Thiebaut. On the Fractal Dimension of Computer Programs and its Application to the Prediction of
the Cache Miss Ratio. IEEE Transactions on Computers, Vol. 38, No.7, July 1989, Pages 1012-1026.

[17] Makoto Kobayashi, Myron MacDougall. The Stack Growth Function: Cache Line Reference Models. IEEE Trans-
actions of computers, Vol. 38, No. 6, June 1989, pages 798-805.

[18] Anant Agarwal, Mark Horowitz and John Hennessy. An Analytical Cache Model. ACM Transactions on Computer
Systems, Vol. 7, No. 2, May 1989, Pages 184-215.

[19] Harold S. Stone. High-Performance Computer Architecture. 2nd-edition. Addison-Wesley, 1990, page 81.

14

