CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Compiler-Directed Type Reconstruction
for Polymorphic Languages

Shail Aditya, Alejandro Caro

In Proceedings of Functional Programming Languages and
Computer Architecture, Copenhagen, Denmark, June 1993

Architecture, 1993, June

Computation Structures Group
Memo 348

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Compiler-directed Type Reconstruction for Polymorphic
Languages

Computation Structures Group Memo 348
March 29, 1993

Shail Aditya

Alejandro Caro

To appear in Proc. Functional Programming Languages and Computer
Architecture, Copenhagen, Denmark, June 9-11, 1993

The research described in this paper was funded in part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research con-
\ tract N0O0014-89-J-1988. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Compiler-directed Type Reconstruction for Polymorphic Languages

Shail Aditya

Alejandro Caro

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139
{shail,acaro}@abp.lcs.mit.edu

Abstract

In tagless implementations of polymorphic languages, the
run-time types of data objects may not be completely deter-
mined at compile-time. With ML-like static type-checking,
a static type template can be produced for each polymorphic
function that may be instantiated at run-time according to
the types of its actual arguments. Still, as noted in [5], it
may not be possible to reconstruct the types of some ob-
jects that are hidden inside a closure. This creates problems
for applications like garbage collection and source debug-
ging that need to understand the entire run-time state of
the machine.

In this paper, we present a compiler-directed type re-
construction scheme for ML-like languages that reconstructs
complete type information of all objects at run-time without
using universal type-tags. Our scheme explicitly propagates
compiler generated hints at run-time whenever there is a
danger of losing the type information otherwise. We show a
compilation strategy to automatically detect, generate and
propagate such hints and a type reconstruction algorithm
that uses them in the context of a source debugger [2] for
the Id language [10]. We also show several compiler opti-
mizations that reduce the run-time overhead of propagating
these hints.

1 Introduction

Polymorphic programming languages provide the flexibility
of code reuse by allowing objects with different types to
share the same pattern of computation. A simple example
is the polymorphic length function that counts the number
of elements in a list of any type. But this feature creates
problems for applications like garbage collection and source
debugging that need to know the exact type of every object
participating in a computation at run-time.

Traditionally, programming environments of dynamically-
typed languages such as Lisp maintain this type information
in the form of run-time tag descriptors on each object. Such
implementations pay the price of universal tag management
either in complex specialized hardware or in extra memory
space and time for managing the tags in software [1].

Recently, several type reconstruction schemes have been

proposed for statically-typed polymorphic languages like ML
[9] that do not incur the run-time tag management overhead
[1, 4, 5]. In these schemes, static type information is com-
bined with clues from the dynamic state of the machine (the
call stack) in order to recomstruct the exact types of run-
time objects when required. Unfortunately, these schemes
are not able to reconstruct complete type information for
all run-time objects in the presence of higher-order func-
tions [5]. Types of objects hidden inside the environment
part of a closure are sometimes not reconstructible because
the computation that produced the closure may have termi-
nated and no run-time clue is available.

In this paper, we propose a general scheme for recon-
structing the full run-time types of all objects without using
universal type-tags while incurring a small run-time over-
head controlled explicitly by the compiler. Our scheme can
be viewed as a compiler-directed explicit tagging of objects,
though the extra tag information is generated only where
necessary and propagated explicitly at run-time in order to
reduce overhead. We present our scheme in the context of
a source debugger [2] for the Id programming language [10]
which is a parallel, non-strict, polymorphic language with
a Hindley/Milner type system [3, 8]. The main thrust of
the paper is to show that explicit tagging needs to be done
in very few cases that plug the informational holes in the
previous schemes and that it can be set up by the compiler
automatically with minimal run-time overhead and support.

The outline of the paper is as follows. First, in Section 2
we describe the problem of type reconstruction in more de-
tail showing examples where complete reconstruction is not
possible without some run-time book-keeping. In Section 3,
we set up the reconstruction problem in a theoretical frame-
work and characterize the minimum information that needs
to be propagated at run-time to allow complete type re-
construction. Then, we present our compilation scheme for
propagating this information in Section 4 and the type re-
construction algorithm used by the Id debugger in Section 5.
In Section 6, we show a series of compiler optimizations and
variations on our compilation scheme that may further re-
duce the book-keeping overhead of the current scheme. Fi-
nally, Section 7 presents conclusions and directions for future
work.

2 Type Reconstruction Problem

The problem of type reconstruction for Id can be described
as follows. At some point during the execution of a pro-
gram, we wish to take a snapshot of the state of the machine

and determine the type of every object accessible within the
computation. These types can then be used to display the
corresponding objects.

We assume that the program is statically typed and that
the run-time environment does not keep any type informa-
tion. In particular, Id run-time objects do not carry any
type-tags. Therefore, the type reconstruction information
so obtained may also be useful for garbage collection.’

Clearly, only polymorphic objects and functions pose
some challenge; complete type information can be obtained
at compile-time for monomorphic objects. Also note that
the exact nature of the desired information depends on the
application that uses it. For example, a source debugger
may wish to inspect any particular object from the current
run-time state of the machine whereas a garbage collector
only needs to traverse those that are still in use. Also, most
garbage collectors only need to differentiate between scalars
and pointers to structures while a source debugger needs
exact type information in order to display the object prop-
erly. In general, we would like to devise a flexible strategy
that can be optimized according to the level of information
desired.

2.1 A Preliminary Type Reconstruction Scheme

The compile-time type of an object is a good starting point
for the reconstruction of its run-time type. The basic idea
is to instantiate this compile-time type with additional type
information based on the run-time call tree in order to obtain
its full run-time type.

Appel noted in [1] that the types of the objects inside
a polymorphic function depend on the types of its argu-
ments. Further, the compile-time type-instances of the ar-
guments of a polymorphic function are recorded statically
at the call site in its caller. At run-time, the call site of
a function can be determined by examining the return ad-
dress information in the run-time call stack (which is the
visible, suspended part of the dynamic activation tree). The
run-time types of the arguments are then determined from
their static type-instances inductively by following up the
call chain possibly up to the root where the run-time types
of the user-supplied arguments are available. At that point,
all polymorphic functions in the call chain can be correctly
instantiated revealing the run-time types of their internal
objects. We illustrate this idea with a small example®:
Example 1:

def enlist x;, = x:nil;

def map f nil = nil

| map £ (y:y8)(uste,) = (£ y¢,) 1 (map £ ys);

exl = map enlist (1:2:nil)(ystiny;

The function enlist has a type Vig.to — (list o) and
map has a type Viitz.(t1 — t2) — (list 1) — (list t2). We
also show the type instances of some internal identifiers as
subscripts. The evaluation of ex1 unfolds into a call to map
which in turn calls enlist. If we wish to examine the x
argument of enlist during one of these calls, then the run-
time instantiation of its static type to can be determined
by following up the call chain within the definition of map.

1Goldberg and Gloger [5] show that complete type information is
not strictly necessary for successful garbage collection, but its ab-
sence greatly increases the complexity of the process.

?We use the Id language [10] for our examples. Briefly, functions
are introduced with a def keyword and allow pattern-matching on
their arguments. (:) is the infix cons operation.

Here, to can be related to the static type t1 of the actual
argument y at that call site. This relates to the type of
the second argument (list 1) of map which is found to be
(list int) at its call site inside ex1. Then, both ¢; and to can
be instantiated to int giving the actual type of x as desired.
Goldberg showed in [4] that this process can be conducted in
one pass from the root of the activation tree (bottom of the
call stack) to its leaves (top of the call stack) instantiating
the types of all objects correctly in a single sweep.

2.2 Problems with Closures and Free Variables

Goldberg and Gloger noted in [5] that sometimes types of
objects hidden inside a closure are impossible to reconstruct.
Consider the following example:

Example 2:

def 2 x¢y y¢, = V3
g2 = if ... then f2 1;p; else £2 "fo0"string;

ex2 = g2 2;

Here, £2 has a type Vtoti.to — t1 — t1, and therefore g2
gets bound to a partially applied function closure with type
Vity.to — t2 that says nothing about the type of the data
hidden inside it. In fact, this type cannot be determined at
compile-time because it depends on the value of the predi-
cate (...). Besides, during the evaluation of ex2 the return
address information on the call stack would point to the call
site of g2 inside ex2, which does not help in determining the
contents of that closure either. Thus, we cannot reconstruct
the type of the argument x within the activation of £2 be-
cause the computation that created its closure is no longer
available as part of the dynamic activation tree.

It may appear that this problem arises only when an
argument of a function is never used within its body, but
the following example adapted from [5] shows that this is
not the case®:

Example 3:

def £3 X(listty) =
{ def h3 z;; = if length xX(yss¢y) == 1
then z:nil
else z:z:nil;
in h3 };
g3 = 1if ...
then £3 (1:nil) (yistint
else £3 (true:nil) ystbool;

ex3 = g3 2int;

Here, the type of the function £3 is Vt0t1.(list to) — 1 —
(list t1), and therefore the type of the computed closure g3 is
Vta.tz — (list t2). During the evaluation of ex3 no informa-
tion is available in the activation tree whether this closure
contains a list of booleans or a list of integers. Goldberg and
Gloger argue in [5] that since h3 does not use the elements
of its free variable list x but only its spine (to compute its
length), a garbage collector can ignore these elements and
copy just the spine. But this approach creates problems if
these structures were shared in many places and is quite un-
satisfactory for a source debugger that needs to display the
full object.

Note that we do not have this problem all the time. For
instance, the type of argument z within h3 in the above
example may be reconstructed to int by traversing up the

3Let—bindings in Id are enclosed within {}. The result of such a
block is the value of the expression following in.

call stack to its call site inside ex3. Some functions like map
of Example 1 never have this problem:
Example 4:

g4 = (map enlist) (pistiq)—(list(listio))s

exd = g4 (1:2:0ni1)(ystintys

Even though here map is partially applied to enlist to
vield a closure g4 with type Vito.(list to) — (list (list o)),
we have not lost any type information. Instantiation of ¢
to int at the call site of g4 inside ex4 yields complete type
information about all the internal identifiers of both map
and enlist. The problem with Examples 2 and 3 is that
sometimes the types of closures do not have any connection
with the types of objects hidden inside them. In such cases,
we are in danger of losing type reconstruction information
because the closure creation site may no longer be available
on the call stack.

Another interesting point is that polymorphic objects
with universally quantified types do not pose this problem.
The run-time type of such an object cannot be more specific
than its compile-time definition type. For instance, in the
following example the variable x within the body of £5 has
the universally quantified type Vio.(list to).

Example 5:
def f5 y =
{ x = nil;
def h5 z;, = if length X(iists,) == 1
then z:nil
else z:z:nil;
in h5 };

Now, there is no question about the contents of the clo-
sure formed by h5 over its free variable x. It can never con-
tain an object whose type is more specific than Vio.(list o).
For our purposes, this means that the compile-time type of
a polymorphic object provides sufficient information for its
run-time type reconstruction.

3 Type Reconstruction Framework

3.1 The Expression Language

We will describe the basic theoretical idea behind our type
reconstruction scheme using the following small expression
language.

e:::c|z|)\z.e|e1eg|letz:e1 in es

Here ¢ and z are meta-variables for constants and variables
respectively. We use such a small language in order to em-
phasize the fundamental nature of this problem. Of course,
in a realistic language such as Id, we will have to model
many other features such as multiple-arity functions, recur-
sion, data-structures etc. But, the essential idea behind type
reconstruction remains the same.

The standard Hindley/Milner typing rules and call-by-
value dynamic semantics rules for this simple language are
straightforward and we will not show them here. The reader
is referred to [3, 8, 11] for a detailed description.

3.2 Run-time Model of Program Execution

A program in our expression language is simply a set of
nested let-bindings where the innermost expression is the
user query to be evaluated within their scope. Below, we
describe an abstract model of evaluation for such a program.

A function application executes in the context of an ac-
tivation frame which records the actual arguments bound
to its formal parameters, the run-time objects bound to its
free variables, and the values of all its local variables during
execution. We assume that at any time during execution, all
accessible objects either reside directly in activation frames
or in global variables, or are heap data-structures accessible
through the frames or the global variables. These objects,
along with the current expression being evaluated, define
the complete state of the machine that we are interested in
deciphering. Note that we record every local variable of a
computation in its activation frame so that it can be exam-
ined later on. As an optimization, it is also possible to omit
type reconstruction of objects that are no longer in use as
shown in [4].

In general, evaluation may proceed in parallel, so the
run-time state of the machine at any moment is essentially
a tree of active or suspended activation frames. We assume
that at any time during execution, it is possible to examine
and traverse the activation tree. In particular, the function
corresponding to each activation frame is known and for each
leaf activation frame, all its ancestors are visible. For the
moment, this precludes the possibility of “tail calls” which
will be discussed later.

Typically, the evaluation of a program is carried out in
several phases. First the top-level bindings are type-checked
and converted into object code at compile-time. Then, at
load-time, these definitions are installed into the root ac-
tivation frame. This process builds the global static and
dynamic environments under which the user query is to
be evaluated. When the query expression is supplied at
invocation-time, first we type-check it in the global static
environment. At this point, the exact types of all top-level
objects in the root activation frame are known by construc-
tion. These typed top-level objects together with the typed
query expression constitute the complete inetial state of the
machine. Finally, we begin the evaluation of the query ex-
pression at run-time within the context of the root activa-
tion frame. As the evaluation proceeds, the dynamic activa-
tion tree unfolds exposing more objects and closure applica-
tions. Starting from the initial state as described above, we
can view type reconstructibility as an invariant condition to
be maintained at each subsequent evaluation step:

Proposition 1 (Type Reconstruction Invariance) As-
suming that the types all objects in the root activation frame
and the query expression are known initially, the exact types
of all accessible objects can be reconstructed after each sub-
sequent step of dynamic evaluation.

We will show how to preserve this invariance in the next
section.

3.3 Typed Dynamic Semantics

It is possible to satisfy the invariance proposition 1 trivially
by propagating the type information at each evaluation step.
Figure 1 shows a typed dynamic semantics for our expression
language that maintains types as it evaluates. Here, ¢ and o
are meta-variables for type-constructors and type-variables
respectively. Notation o > 7 means that the type 7 is an
instance of the type-scheme o, and the sentence £ : TF
e = v : 7 reads as “under the typed environment £ : TE the
expression e with a type 7 evaluates to a value v with that
type”. Note that all syntactic expressions are fully typed
even though we do not show these types to avoid clutter.

SYNTACTIC CATEGORIES |

T € Type = J]la|ln—m
o € Type-Scheme = 71 |Vao
Closure == [z:7',e:7,E: TE]
v € Value ::= Constant | Closure

E . TE € Typed-Env

{zi— vi: 0}

| INFERENCE RULES
(VAR)

(z—wv:0)€e E:TE o=
EF:TEFz=wv:T

(ABS)
TE4+{z—r1' e T
E:TEl—)\z.e1:>[z:T',el:T,E:TE]:T'—>T

(APP)
E:TEl—61:>[z0:T',eO:T,EO:TEO]:T'—>T
E:TEFes=vy:7
Eo:TEog+{zo— v :7m'}Feg=>v:T
F:TEFeieac=>v:T

(LET)
E:TEFei= v :7
E:TE—}—{zr—wvl:Gen(TE,T')}l—62:>'U:T
F:TEFlet r=¢€1 inex=>v:T

Figure 1: Typed Dynamic Inference Rules.

Figure 1 may be viewed as the semantics of a tagged
implementation that pays the price of maintaining types at
each evaluation step. A type reconstruction scheme can then
be modeled by carrying out just the value computation em-
bedded in these rules and delaying the type computation. In
order to preserve the invariance proposition 1 under such a
scheme, we must make sure that the delayed type computa-
tion associated with each evaluation rule can be performed
later during a type reconstruction phase. Then, by induc-
tion on the size of the evaluation tree at any given time, we
will be able to reconstruct the types of all accessible objects,
starting from the initial state of the machine. We discuss
the various evaluation rules below.

The first observation is that the ABS-rule in Figure 1 is
the only rule that has a premise depending only on the static
type inference rules. That premise says that the body of the
function Az.e should be typable under the type environment
present at run-time. It is possible to omit this run-time typ-
ing entirely because it can be reconstructed from the most
general Hindley/Milner typing of the function inferred at
compile-time, given the right run-time instantiation of its
static type environment. This fact follows directly from
the completeness of the Hindley/Milner type inference al-
gorithm [3].

Secondly, in both vAR-rule and LET-rule, we can recon-
struct all the type information present in the premises by
looking at the corresponding information in the conclusion
sentence. This is because the premises involve only sub-
expressions of the expression present in the conclusion. Fi-
nally, we discuss the APP-rule below.

3.4 The aApP-rule and Opacity of Closures

The ApP-rule is special because it expands the state of the
machine both in terms of new expressions to evaluate and
new types that they are instantiated to. This expansion
happens when the operator expression e; of the applica-
tion (61 62) evaluates to a closure that contains a typed
expression body ep : 7 and a typed free variable environ-
ment Ey : TEq. We can reconstruct these run-time types
by appropriately instantiating the static type of the function
body eo within the reconstructed run-time type environment
TE. The relevant static type information for a function is
gathered in a type-map as follows:

Definition 1 (Type-map) Given a function Az.e and the
most general static typing of its body TE sqtic+{z — T}
e : T2, the type-map of the function records the following
information:

1. The function type, 11 — T2.

2. The type-schemes of all the free variables of the func-
tion, TE stqtic | FREE-VARS(Az.€).

8. The type-schemes of all the local variables within the
function body e.

4. The type-instance of the expression e at all application
sites (e1 ez) within the function body e.

A type-map is essentially a compile-time type-description
of the activation frame of a function with additional type
information about its internal call sites. The set of free
type-variables occurring in items 1 and 2 above capture the
essential part of the static type environment that needs to
be instantiated at run-time to yield the appropriate run-
time types of all objects in the type-map. We will denote
this set by TYPE-VARs(type-map)*. This set automatically
excludes the bound type-variables in the type-schemes of
polymorphic free variables of the function as pointed out in
Section 2.2.

Looking back at the ApPP-rule, we notice that the only
available information about the closure in the conclusion
sentence is its overall run-time type 7' — 7. In particular,
there is no directly available information about the run-time
types of its free variables. Also, in curried applications of
multiple-arity functions, the available closure type will cor-
respond to just the remaining arguments of the function and
may not be sufficient to instantiate the previously accumu-
lated argument types present in its type-map. For example,
recall that in Example 2 the run-time type of the closure g2
within ex2 did not provide any hint about the hidden first
argument of the function £2.

The above discussion leads us to the important observa-
tion that closure types are sometimes opaque so that they
are not sufficient to completely instantiate the type-map of
the function body present inside them. We capture this fact
in the following property of general multiple-arity functions:

Definition 2 (Type Conservation) A function f with ar-
ity k and type-scheme Voy ... ap.11 — -+ -
said to be type-conserving if,

— Tk — Tkl 1S

TyPE-VARS(type-map;) = TYPE-VARS(Tk — Tht1)

Furthermore, the type-variables TYPE-VARS(7x — Tr41) are
said to be conserved at the application site of its final ar-
gument.

4In general, Type-Vars(T) denotes the set of free type-variables of
T, where T may be a type, a type-scheme, or a type environment.

Informally, a type-conserving function can correctly instan-
tiate its entire type-map with just the run-time type of its
final application closure. It is easy to check that map and
enlist from Example 1 are type-conserving, while £2 from
Example 2 and £3 and h3 from Example 3 are not, which is
why we were losing type information in those cases.

Definition 2 may be used by a compiler to detect func-
tions that are not type-conserving. The next question is
what type reconstruction strategy should be devised for such
functions? Our scheme is to make every closure object
self-sufficient, which means that a closure for a non-type-
conserving function is required to contain special “tag” ob-
jects in its environment that are inserted at the time of its
creation and are deposited into the dynamic function activa-
tion. These tags are compiler-generated type-hints that are
interpreted at run-time in order to correctly instantiate all
the type-variables that were not conserved by the function.
We will show such a compilation scheme in the next section.

Given self-sufficient closures as described above, all types
in the premises of the APP-rule in Figure 1 can be correctly
instantiated thereby preserving the invariance proposition 1
in all cases. This implies that complete type reconstruction
is possible for every activation frame in the dynamic acti-
vation tree by instantiating its type-map using type-hints
and the call site information available from its caller’s type-
map. The details of this reconstruction scheme appear in
Section 5.

4 Compiling for Type Reconstruction

The basic insight of this paper is that the problem of infor-
mation propagation from closure creation sites to their call
sites for non-type-conserving functions may be formulated as
an overloading resolution problem which is then handled us-
ing well-known techniques in the literature [6, 7, 13]. These
techniques systematically translate overloading into para-
metric polymorphism by replacing unresolved instances of
overloaded variables in a function with explicit parameters
that are supplied at its call site. In our scheme, these param-
eters are the explicit type-hints that are used by the type
reconstruction algorithm rather than the function itself.

We will not discuss the overloading resolution schemes
here; the reader is referred to [6, 13] for a detailed descrip-
tion. Instead, we will show how to formulate our problem
in terms of overloading via examples and describe the exact
nature of the type-hints.

4.1 Detecting Violations of Type-Conservation

The first step in our compilation process is to identify the
functions in the program that may require additional type-
hints. First, we type-check each function and generate its
type-map according to definition 1. Then, using this in-
formation we determine which type-variables, if any, in its
type-map are not being conserved according to definition 2.
For example, the type-map for function h3 from Example 3
is shown below:

| FuNcTION | DEFINED TYPE |
[h3 [t1 — (list t) |

| FREE VARIABLES | DEFINED TYPE-SCHEME |
X list to

length Vta.(list ta) — int
nil Vt4.(li5t t4)

[LocAL VARIABLES | DEFINED TYPE-SCHEME |
E [|

| CALL SITE
[length x

| FuncTioN TYPE INSTANCE |
| (list to) — int |

Looking at the type-map above we have,

TYPE-VARS(type-map) = {to,t1}
TYPE-VARS(t; — (list t1)) = {t:1}

Therefore, the type-variable ¢y is not being conserved in h3.

4.2 Reconstruction as Overloading

The next step is to determine what additional type informa-
tion is required to correctly instantiate the non-conserved
type-variables of a function, and how to propagate this in-
formation to the function’s dynamic activation. This is ac-
complished by viewing these type-variables as unresolved
instances of a fictitious overloaded operation. This allows
the standard overloading resolution mechanism to pick up
these type-variables as candidates for information propaga-
tion from external call sites where this information may be
available. We show this process for the function h3 below:
Example 6:
def fg(tr?to) X =
{ def h3(4y24) z = if length x ==
then z:nil
else z:z:nil;
in h3(4r24y))3
g3 = if ...
then £3(¢r74nt) (1:nil)
else f3(¢tr7poory (true:nil);

Here, we have added an overloading predicate® (tr? to)
as a subscript on the function h3. In general, a predicate
is added for every non-conserved type-variable in the func-
tion’s type-map. Subsequently, the standard overloading
resolution mechanism automatically propagates this predi-
cate to the place where h3 is referenced and to the enclosing
lexical function £3 because it remains uninstantiated (and
hence unresolved) in its body. Finally, this predicate prop-
agates to the call sites of £3 where it is completely instanti-
ated according to the types of the arguments being supplied
to £3 and is considered to be resolved.

Intuitively, the propagation of a predicate asssociated
with a function represents a lack of local type information
which must be supplied from the call site where this pred-
icate i1s instantiated. Furthermore, the type contained in
the instantiated predicate reflects the types of the objects

5We follow the terminology of [6, 13] where the usual Hind-
ley/Milner type of a function is extended with predicates to model
overloaded variables. In Haskell [7] these are known as class as-
sertions. The predicate name tr? in our scheme stands for type-

reconstructible ?.

present at that call site. This is exactly the information
required for type reconstruction by the function that intro-
duced the predicate. In the next section, we will show a
simple strategy that directly encodes this type information
as data objects and passes them as additional hint argu-
ments to the function.

Note that in the propagation scheme described above, a
predicate only corresponds to a non-conserved type-variable
of a function or one of its lexical children; it does not cor-
respond to the full type of any of its formal parameters
or its free variables as suggested in [4]. That additional
type information is already present in the function’s type-
map. Also, predicate instantiations involving polymorphic
type-variables are always considered as resolved and are not
propagated outwards in the light of the discussion in Sec-
tion 2.2. For instance, g3 in the above example might have
been defined as:

Example 7:
g3 = 1if ...
then £3(¢r7(stey) (nilinil)
else £3(¢r7poory (true:nil);

Here, (¢r? (list t)) is an instantiation of £3’s predicate
according to its polymorphic argument (nil:nil). Even
though this predicate has an uninstantiated type-variable
t, it is not propagated any further because it is polymor-
phic at this point. It follows immediately that there can be
no unresolved predicates at the top-level because there are
no free type-variables in the top-level type environment by
construction.

4.3 Program Translation and Hint Generation

The final step in our compilation process is to add extra
hint parameters to the function definitions that possess un-
resolved predicates and generate type-hints at their call sites
according to the instantiations of these predicates. It is pos-
sible to either add one hint parameter for each unresolved
predicate or group the hints together in a single hint-record
from which the individual hints may be fetched. Our current
scheme adds one hint parameter per predicate in front of its
regular parameters, because in our system, passing a small
number of additional parameters is cheaper than allocating
and fetching from heap data-structures. We record the map-
ping between the type-variables present in the unresolved
predicates of a function and its additional hint parameters
in a hint-map as follows:

Definition 3 (Hint-map) Given a function with unresolved
type-variablesay, . .., ay, itshint-map is the mapping {(a1 —

z1),...,(an — z,)}, where z1, ...,z are its new additional
hint parameters.

For example, the hint-map of h3 in Example 6 above is gen-
erated as follows:

[TyPE VARIABLE | HINT PARAMETER |

[to | h3hint_1 |

A predicate (¢r? T) appearing at a call site within a function
is transformed into a type-hint that is passed as an explicit
argument at that call site. This type-hint encodes the type
7 using the following Id data-type:

type id-hint = none | tc string (1ist id.-hint);

The disjunct none is used to encode polymorphic type-
variables that do not require any hint. The disjunct tc en-
codes a type-constructor by its name and a list of encoded

type-parameters. The free type-variables in 7 are replaced
by their corresponding hint parameters given by the hint-
map of the function. For instance, the Example 6 above will
be translated as follows:

Example 8:

def f3 f3_hint_1 x =
{ def h3 h3hint.1 z = if length x ==
then z:nil
else z:z:nil;
in h3 £3hint 1 };
g3 = 1if ...
then £3 (tc "int" nil) (1:nil)
else £3 (tc "bool" nil) (true:nil);

Notice how the hints generated within g3 propagate into
h3 via the hint parameters of £3 and h3. The appropri-
ate hint will now be available in a dynamic activation of h3
where it may be used along with its type-map to reconstruct
the exact run-time type of x. We describe this reconstruc-
tion scheme in the next section in the context of a source
debugger for Id.

5 Type Reconstruction in the Id Debugger

The problem of type reconstruction from the perspective of
the Id Debugger [2] is broad and simple: reconstruct the
type of every object in an activation frame. Once the type
of an object is known, the debugger can invoke a graphical
browser specialized for that particular type should the user
wish to inspect the object.

The debugger utilizes both compile-time and run-time
information for type reconstruction. The compile-time infor-
mation consists of the type-map (definition 1) and the hint-
map (definition 3) of a function that are stored in the symbol
table entry for that function. The run-time information con-
sists of the activation tree that is built dynamically, as the
program executes, by the procedure linkage code. When the
machine is halted, the debugger can inspect the activation
frame of a function and extract a pointer to its caller (its
parent in the activation tree) and pointers to its callees (its
children in the activation tree). Access to the activation
tree is crucial since it permits correct instantiation of the
type-variables that are conserved in a function’s type-map,
according to the call site information in its caller’s type-map.
Finally, as described in the previous section, the additional
compiler-generated type-hints for the non-conserved type-
variables in a function’s type-map are also available from its
activation frame.

5.1 The Type Reconstruction Algorithm

Figure 2 shows the pseudo-code for the reconstruction
algorithm RECONSTRUCT-TYPE which is invoked by the Id
Debugger to reconstruct the types of all variables in a func-
tion’s activation frame. RECONSTRUCT-TYPE takes the cur-
rent activation as a parameter and returns a fully instanti-
ated type-map for that activation. For ease of presentation,
the algorithm makes use of several auxiliary functions which
we will explain where necessary.

RECONSTRUCT-TYPE is divided into several sections. We
begin by extracting the name of the activation function from
the current activation. The first section, lines 2—4, instanti-
ates the type-map of the function with fresh type-variables
by building a type substitution Scopy. This is necessary so

REcONSTRUCT-TYPE (activation)

1 activation-fn — ACTIVATION-FN(activation)
I> Copy the function’s type-map.

2 type-map — TYPE-MAP (activation-fn)
{a1,...,an} — TYPE-VARS(type-map)

B

Scopy — {ai — Bi} where f1,..., 8, are new.
I> Process the type-hints.

hint-map — HINT-MAP (activation-fn)

Shint — { forall (a — z) in hint-map

7 «— INTERPRET-TYPE-HINT(z, activation)

% N D ©

collect (Scopya — 7)}
I> Return if the type-map is fully instantiated.
if TYPE-VARS (SpintScopy(type-map)) = ¢

Ns}

10 then return Sp;,Scopy(type-map)
> Obtain call site information from the caller.
11 else

12 parent-activation «—

13 PARENT- ACTIVATION (activation)

14 parent-type-map —

15 RECONSTRUCT-TYPE (parent-activation)
16 Tuse — USE-TYPE(activation, parent-type-map)

17 Tdef — DEF-TYPE(activation-fn, Scopy(type-map))
18 Sdef-use — UNIFY-ALIGNED (T gef, Tuse)
19 return Sgef useShintScopy(type-map)

Figure 2: The Type Reconstruction Algorithm

that types from multiple activations of the same polymor-
phic function do not inadvertently interfere with each other.

The next section, lines 5-8, builds a type substitution
Shint for all the non-conserved type-variables of the function
as prescribed by its hint-map. This is achieved via the aux-
iliary function INTERPRET-TYPE-HINT which extracts the
encoded data-structure bound to a hint parameter from the
given activation frame, and converts it into a type according
to the encoding scheme shown in Section 4.3.

Following this, line 9 checks to see if all free type-variables
of the type-map have been instantiated to either ground or
polymorphic types. If so, the reconstruction is complete and
the instantiated type-map is returned at line 10. Otherwise,
lines 13—-18 obtain the remaining information from the acti-
vation tree as follows.

First, the type-map of the parent of the current activa-
tion is reconstructed by calling RECONSTRUCT-TYPE recur-
sively with the parent’s activation frame. Using this type-
map and the current activation, the auxiliary function UsE-
TYPE obtains the reconstructed type-instance of the call site
responsible for invoking the current function (see item 4 of
definition 1). This type-instance, Tyse, is then unified with
the defined type of the current function, 74.¢ that is avail-
able in the current type-map. Note that for multiple-arity
curried functions, 745 will be the full function type involv-
ing all its curried arguments, while 74se may simply corre-
spond to the final curried application type of that function.
Therefore, UNIFY-ALIGNED must “align” these types prop-

erly before unification. This unification fully instantiates all
the remaining type-variables in the current type-map which
is then returned at line 19.

A few observations about our reconstruction algorithm
are worth pointing out. First, the entire activation frame
of a function is reconstructed at once. This is possible be-
cause the types of all objects present in an activation frame
share the same set of free type-variables which are precisely
captured and instantiated using its type-map. This also ob-
viates the need to traverse the activation tree several times
for each variable separately. Of course, it is still possible
to have several smaller type-maps for the same activation
frame if the entire information is not required as suggested
in [4] in the context of garbage collection.

Second, we traverse the activation tree from the current
activation frame only as far up as necessary. This avoids
traversing the activation tree from the root activation frame
to all its leaves as suggested in [4] which would involve a lot
of activation frames in our parallel system. Reconstructed
type-maps can always be cached, so that no activation frame
may need to be examined more than once.

5.2 An Example

Consider the problem of type reconstruction for the code in
Example 3. Assume that the (...) in the definition of g3
evaluates to false at run-time. Furthermore, suppose the
program is halted when h3 is invoked due to the applica-
tion of g3 during the evaluation of ex3. The problem is to
reconstruct the types of the objects in h3.

Our compilation scheme described in Section 4 translates
£3 and g3 of Example 3 into the code shown in Example 8.
Here, h3 is augmented with an extra parameter h3_hint_1.
The purpose of this parameter is to carry type information
concerning the non-conserved type-variable o within h3’s
type-map as shown in Section 4.1.

At run-time, RECONSTRUCT-TYPE performs the follow-
ing steps when invoked on the activation of h3. First, it de-
codes the type-hint bound to the hint parameter h3_hint_1
and generates a substitution Sy, = {(to — bool)} using
h3’s hint-map. Since the free type-variable ¢; in h3’s type-
map is still uninstantiated at this point, RECONSTRUCT-
TYPE recursively reconstructs the type-map of h3’s parent
activation frame. Using this type-map, the call site type-
instance of h3 is found to be 7Tyse = int — (list z'nt) cor-
responding to the application (g3 2) within ex3. Then,
Tdef is assigned the type t1 — (list t1) from h3’s type-map.
The unification of these two types yields the substitution
Sdefuse = (t1 +— int). Finally, the substitutions Sp;n; and

def-use are applied to h3’s type-map which results in a type
of (list bool) for x and int for z.

In contrast with our scheme, the type reconstruction al-
gorithms proposed by Appel [1] and by Goldberg and Gloger
[4, 5] fail to reconstruct the type of x in the body of h3. The
reason is that the only run-time information they use to re-
construct types is that contained in the run-time stack of
the activation frames. When closures such as g3 are cre-
ated, the function that created the closure, £3, may not be
present on the stack when the closure is actually invoked.
Any clues that £3 might have provided to the type recon-
struction algorithm are therefore not accessible.

6 Current Status and Future Optimizations

The compilation scheme outlined in Section 4 and the recon-
struction algorithm of Section 5 have been implemented in
the Id programming environment for Monsoon [12]. Tt might
seem that our compilation scheme incurs a lot of run-time
overhead but our experience has been that realistic programs
contain very few (if any) non-type-conserving functions, so
the overhead of generating and propagating their type-hints
is reasonably small. Besides, this scheme permits the Id de-
bugger to reconstruct the types of all identifiers in any Id
program successfully which is an extremely desirable feature.

Although our current performance is adequate, we hope
to be able to improve our scheme through several compiler
optimizations that are discussed below.

6.1 Rearranging the Hint Parameters

Currently, all hint parameters that need to be added to a
function definition are placed in front of its regular param-
eters as shown in Section 4.3. This is not strictly necessary.
We can place a hint parameter anywhere before (or just
after) the regular parameter whose type contains the non-
conserved type-variable that is encoded by the hint param-
eter. This observation follows from definition 2 by viewing
every curried application closure of a multiple-arity function
as attempting to conserve the overall type information con-
tained in it either in the form of explicit type-hints in its
dynamic environment or in its remaining type signature. It
follows that only those hint parameters need to be placed up
front that correspond to the non-conserved type-variables in
the types of the free variables of a function.

The benefit of such rearrangement is that it may reduce
the propagation overhead of type-hints by removing some
extra parameters altogether using n-reduction. For example,
the following alternate translation for Example 6 is also valid
(compare with Example 8):

Example 9:

def £3 x =
{ def h3 h3 hint_1 z = if length x ==
then z:nil
else z:z:nil;
in h3 };
g3 = 1if ...
then £3 (1:nil) (tc "int" nil)
else £3 (true:nil) (tc "bool" nil);

Here, the parameter £3_hint_1 of £3 was pushed after its
parameter x which made this 5-reduction possible.

6.2 Arity Analysis

Definition 2 conservatively prescribes that the only type-
variables that are conserved in a multiple-arity function are
those present in its final application type because the func-
tion could be curried over its initial arguments. This defini-
tion can be generalized to include the types of all the argu-
ments present at a call site, if that call site is guaranteed to
be accessible through the dynamic activation tree. This is
true for all first-order (or full-arity) applications of a func-
tion where all its arguments are supplied at once. In such
cases, all the type-variables in the function’s signature can
be instantiated from its call site, though it may still require
type-hints to reconstruct the types of its free variables.

In our current scheme, it is not possible to optimize away
the type-hints at a first-order application site of a function

because it may still need additional hint parameters in its
definition due to higher-order application sites present else-
where. This i1s just a consequence of our choice to provide
type-hints by adding extra parameters to a function’s defi-
nition. Alternatively, we can either generate a special first-
order version of the function that does not carry any type-
hints and use it wherever possible, or choose another mech-
anism for hint propagation that is transparent to the usual
parameter passing conventions. Then we would be able to
tailor the type-hints according to the information available
at a particular call site without affecting the function’s def-
inition. We are currently investigating such schemes.

6.3 Escape Analysis

Along with first-order call site information, if the types of
the free variables of a function are also known to be recon-
structible via the currently visible activation tree, then no
extra types-hints may be necessary in its definition even if it
was determined to be non-type-conserving by definition 2.
Escape analysis of function closures offers this information.
Specifically, if analysis shows that a function closure does
not escape from the lexical scope where it was defined, then
the correct instantiations of its free variables would still be
available from the activation of this ancestor in the acti-
vation tree. In that case, we do not need to set up ex-
tra type-hints to reconstruct these instantiations within the
function’s activation.

6.4 Tail Calls

Our current scheme does not deal with tail calls where the
usual caller—callee relationship is violated. A tail call re-
moves the caller’s activation frame from the activation tree
and connects the callee to the parent of the caller directly.
In such a situation, the call site information for the callee is
lost. Consider the following example:

Example 10:

def £10 x = 1 + length x;

def g1l0 n = if n ==
then £10 (1:2:nil)
else f10 (true:nil);

ex9 = gl0 ...;

Without tail calls, the type of x in an activation of £10
can be determined by locating its call site within the then
or the else branch of the conditional inside g10. But, if
these applications were compiled as tail calls, then the £10’s
activation will get directly connected to the top-level and
the call site information will be lost.

It is easy to extend our scheme to deal with this situation.
We simply modify definition 2 to reflect the fact that no call
site information is available for £10 and therefore explicit
type-hints may be needed for all of its free type-variables.
This leads to the following translation:

Example 11:
def £10 £10hint_1 x = 1 + length x;
def gl0 n =
if n ==
then £10 (tc "int" nil) (1:2:nil)
else f10 (tc '"bool" nil) (true:nil);

ex9 = gl0 ...;

Now, all the type information is available from within
the activation of £10. Of course, this scheme is not optimal

because it ignores the call site information even when it
is available using regular calling conventions. In order to
incorporate that flexibility, we need to generate site specific

type-hints as described in Section 6.2.

6.5 Compiled vs Interpreted Schemes

Goldberg showed in [4] how to compile function-specific and
site-specific garbage collection routines that understand the
structure and the liveness properties of the local variables of
a function. Our scheme, on the other hand, generates and
interprets encoded type information in order to reconstruct
the types of all local and free variables of a function. We do
not take any position on what to do with these types. This
strategy is adequate and desirable for a source debugger be-
cause it may wish to manipulate an object in many different
ways. But, for a specific application like garbage collection,

a compiled scheme may be more efficient.

It is possible to apply the principle of type conserva-
tion (definition 2) and the information propagation strat-
egy (Section 4.2) in any specific context to allow complete
analysis of run-time objects in that context. Specifically for
garbage collection, we can generate specialized GC-routine(s)
for a function instead of its type-map, parameterized by
GC-routine parameters that correspond to the free type-
variables in its type-map. Then, we can generate and prop-
agate closures of GC-routines in the same way as type-hints
which will be picked up automatically by the GC-routine(s)
of a function from its activation frame. We will investigate

such garbage collection schemes for Id in the future.

7 Conclusions

We have presented a general framework for complete type
reconstruction of run-time objects in ML-like polymorphic
languages without using universal type-tags. We have pro-
vided some insight into the lack of type information for
objects hidden inside closures and have shown a compiler-
directed scheme to explicitly propagate this information where
necessary as extra arguments. Finally, we have shown a
type reconstruction algorithm that combines compile-time
and run-time type information to successfully reconstruct

the types of all run-time objects.

Our scheme incurs a small overhead in generating and
propagating the extra arguments which may be further re-
duced using the optimizations described in Section 6. We
have implemented this scheme in the context of a compiler
for the Id programming language [10] and its source debug-

ger [2] for the Monsoon dataflow machine [12].

Our type reconstruction framework is based on a prop-
erty of functions called type conservation that identifies the
call sites in a program where type information may be lost
unless it is propagated explicitly. The use of this property
easily extends to more general language features and other
system applications than those considered in this paper.
Further work on showing the theoretical completeness of our

framework and improving its performance is in progress.

8 Acknowledgments

The research described in this paper was funded in part by
the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-

89-J-1988.

References

[1]

(2]

(3]

[9]

[10]

[11]

Andrew W. Appel. Runtime Tags Aren’t Necessary.
Lisp and Symbolic Computation, 2:153-162, 1989.

Alejandro Caro. A Debugger for Id. Master’s thesis,
Massachusetts Institute of Technology, February 1993.

L. Damas and R. Milner. Principle Type Schemes for
Functional Programs. In Proceedings of the 9th ACM
Symposium on Principles of Programming Languages,
pages 207-212, 1982.

Benjamin Goldberg. Tag-Free Garbage Collection for
Strongly Typed Programming Languages. In Pro-
ceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation,
Toronto, Ontario, Canada, pages 165-176, June 1991.

Benjamin Goldberg and Michael Gloger. Polymorphic
Type Reconstruction for Garbage Collection without
Tags. In Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 53—65, 1992.

Shail Aditya Gupta. An Incremental Type Inference
System for the Programming Language Id. Master’s
thesis, MIT, Laboratory for Computer Science, Septem-
ber 1990. Available as Technical Report MIT/LCS/TR-
488.

P. Hudak and P. Wadler (editors). Report on the
programming language Haskell, a non-strict purely
functional language (Version 1.0). Technical Report
YALEU/DCS/RR777, Yale University, Department of
Computer Science, April 1990.

Robin Milner. A Theory of Type Polymorphism in Pro-
gramming. Journal of Computer and System Sciences,
17:348-375, 1978.

Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. The MIT Press, Cambridge,
Massachusetts, 1990.

Rishiyur S. Nikhil. Id Language Reference Manual
Version 90.1. Technical Report CSG Memo 284-2,
MIT Laboratory for Computer Science, 545 Technol-
ogy Square, Cambridge, MA 02139, July 15 1991.

Mads Tofte. Operational Semantics and Polymorphic
Type Inference. PhD thesis, University of Edinburgh,
Department of Computer Science, 1988. Also published
as ECS-LFCS-88-54.

Kenneth R. Traub, Gregory M. Papadopoulos,
Michael J. Beckerle, James E. Hicks, and Jonathan
Young. Overview of the Monsoon Project. In Pro-
ceedings of the 1991 IEFE International Conference
on Computer Design: VLSI in Computers and Proces-
sors, pages 150—-155, October 1991. Also published as
CSG Memo 338, MIT and Motorola Technical Report
MCRC-TR 15.

Philip Wadler and Stephen Blott. How to make ad-
hoc polymorphism less ad hoc. In Proceedings of the
16th ACM Symposium on Principles of Programming
Languages, Austin, Texas, pages 60-76, January 1989.

