CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Computation Structures Group
Progress Report 1991-92

G.A. Boughton

Computation Structures Group
Progress Report 1991-92

1992, July

Computation Structures Group
Memo 349

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Computation Structures Group Progress Report
1991-92

Computation Structures Group Memo 349
July 30, 1992

G.A. Boughton (ed.) and Yuli Zhou (ed.)

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Computation Structures Group
July 1, 1991 — June 30, 1992

Academic Staff

Arvind (Group Leader)
J. B. Dennis (Professor Emeritus)
G. M. Papadopoulos
A. Vezza

Research Staff
G. A. Boughton R. P. Johnson
C. H. Flood Y. Zhou

Graduate Students
S. Aditya A. Caro M. Flaster J. E. Hicks M. Sharma
B. S. Ang Y. Chery 5. Glim A. K. Iyengar A. Shaw
P.S. Barth K. C. Cho M. Heytens C. F. Joerg
S. A. Brobst D. Chiou D. S. Henry B. C. Kuszmaul

Undergraduate Students

S. Asari R. Davis T. Klemas E. Ogston A. Shah
S. Chamberlain D. Evans J. Kulik D. Panagiotou N. Tender
M. Condell L. Feeney J. Kwon G. Rao M. Tso

J. Cornez R. Gut J. Maessen H. Saleeb K. Yu

A. D’Silva E. Heit J. Miao R. Seto T. Yu

Technical Staff
J. P. Costanza R. F. Tiberio

Support Staff
A. M. Maderer 5. Hardy

Visitors and Adjunct Members

7. Ariola (Harvard University)
K. D. Chung (Pu San National University, Korea)
C. Fournet (Ecole Polytechnique, France)
D. Hwang (Sung Kyun Kwan University, Korea)
M. Halbherr (ETHZ, Switzerland)
M. Motomura (NEC, Japan)
S. Sakai (Electrotechnical Laboratory, Japan)
T. Senta (NEC, Japan)
M. Srinivasan (Indian Institute of Science, Bangalore)
S. D. Youn (Pusan National University, Korea)

Computation Structures Group

1 Introduction

The Computation Structures Group is interested in general-purpose parallel computation.
Our approach incorporates research in:

e a declarative, implicitly parallel language called 1d.
e scalable dataflow and multithreaded architectures.
e compilers and run-time systems for Id, targeting dataflow and other architectures.

e applications programs to guide compiler, language, and architecture research.

The 16 node Monsoon system at MIT has been operational since the Summer of 1991 and
has proved to be fairly reliable. Motorola delivered a second 16 node Monsoon system to Los
Alamos National Laboratory early in 1992, which came up quickly and has been working
reliably ever since.

We reported last year on the development of the *T architecture. The detailed design of a
hardware implementation for *T' has started this year. The proposed overall structure of a
physical *T node contains two 88110MP’s, two memory controller chips (MC’s), a network
router, and DRAM. The detailed design is being done at Motorola, who is responsible for
the 88110MP, and MIT, who is responsible for the MC and the network router.

Our work has continued on the theoretical study of languages able to capture the concept of
sharing. Such languages can be seen as examples of a system called Graph Rewriting System
(GRS), containing a block construct which describes precisely the sharing of subexpressions
done by most interpreters of functional languages.

A theoretical framework based on abstract interpretation has been developed for defining
the lifetimes of aggregate objects allocated by programs. An algorithm is developed based
on the theory, which was implemented as a module of the Id compiler to verify or insert
storage reclamation code in Id programs, with very good result.

Several frame managers are implemented for Monsoon that permit our applications to run
well on both one processor and multiprocessor configurations. We have performed simula-
tion experiments in order to compare several different dynamic storage allocators. Based
on the experimental results three new algorithms were implemented which achieve better
performance when the percentage of requests for large blocks is high.

We implemented the Monsoon 1/O system containing a core of low-level routines providing
flexible, high performance, parallel 1/O operations. Several low-level 1/O libraries were built
on top of the core, as well as a high-level 1d library of 1/0 functions.

In collaboration with Motorola, we have enhanced the capabilities of Monsoon Id World
this year. These enhancements have enabled us to make the initial release of the system

for external distribution. The release contains a new interface EZID or “Easy 1d”, which
supports evaluation of Id expressions, manipulation of statistics, and interaction with MINT
or the Monsoon hardware using an extension of Id 90.1.

The Id compiler in Id project made significant progress during the past year, and we are
expecting to see a preliminary compiler generating code for TTDA before the summer ends.
The goal of the project is two-fold: on one hand the compiler will provide the largest ap-
plication written in Id, exercising all parts of the language, including the non-functional
extension of I-struction and M-structures; on the other hand we expect this compiler will
ultimately become the compiler for Id running on various hardware platforms. Our experi-
ences with writing various compiler modules has been very rewarding, especially in dealing
with M-structures where synchronization and parallelism has to be considered very carefully.

2 Personnel and Visitors

Arvind was honored with the Charles W. and Jennifer C. Johnson Professorship of Computer
Science and Engineering.

Kidong Chung visited the group until September 1991. Chung was studying dataflow lan-
guages and architectures and resource management schemes.

Cédric Fournet has been visiting the group since April 1992 and will be with us until July
1992.

Michael Halbherr has been visiting the group since December 1991. He is working on his
Ph.D. thesis in conjunction with ETHZ.

Daejoon Hwang visited the group until July 1991. Hwang was studying dataflow architec-
tures.

Joanna Kulik received the Johnson Award for Outstanding Bachelor’s Thesis, June 1992.

Masato Motomura has been visiting the group since August 1991 and will be with us until
December 1992. He is a fellow with the Center for Advanced Engineering Studies.

Greg Papadopoulos received the Class of 1922 Career Development Professorship of Electrical
Engineering and Computer Science.

Shuichi Sakai visited the group until April 1992. Sakai studied synchronization mechanisms

for massively parallel computer systems. In September 1991, he received the IBM Japan
Award.

Kishore Sakharkar was a UNDP fellow, sponsored by the University of Bristol and the Center
for Advanced Engineering Study. He visited the group in January - February 1992.

Tetsuhide Senta visited the group until August 1991, researching memory management
schemes for the *T processor.

Mandyam Srinivasan visited the group until October 1991, studying both the evaluation of
parallel architectures and hardware design methodologies.

Sung Dae Youn visited the group from December 1991 - February 1992.

3

3 MIT-Motorola collaboration on Id, Monsoon, and
*T

Our collaboration with the Motorola Cambridge Research Center (MCRC) and the Mo-
torola Computer Group in Tempe, Arizona has been both intense and extremely productive.
The three year contract 1989-1991 was successfully concluded. During the past year, Mo-
torola completed engineering revisions to all Monsoon prototypes, delivered to Los Alamos
National Laboratories an additional 16-node Monsoon consisting of 8 PE’s and 8 IS’s, an
interconnection butterfly packet network, and appropriate enclosure with cooling and power
suppliers. The Los Alamos machine is in their Advanced Computer Laboratory and has
been up and running since the beginning of March. It is being used by a small group of Los
Alamos computational scientists (the principle collaborator is Dr. Olaf Lubek) to try and
understand how dataflow can affect solutions to scientific problems that, thus far, have been
particularly intractable to speed-up by parallel computation. The Los Alamos machine is
available over the network for experimental purposes to other scientists at universities and
research laboratories.

Motorola has manufactured six additional 2-node Monsoon systems (additional to the num-
ber specified in the contract) which the Laboratory along with DARPA’s advice will place as
experimental prototypes in the dataflow research community to encourage experimentation
and software development.

In addition to completing our Monsoon collaboration, scientists and engineers from the
Laboratory and Motorola have had an intense dialog concerning the new *T architecture
and its design and the division of labor and responsibility between the Laboratory and
Motorola for the new project. These discussions have been very fruitful as a *T architecture
has been specified and a high level design completed (as explained in following sections).

Motorola had an exhibit at last November’s Supercomputer Conference featuring Id/Monsoon
and relevant work done by the Laboratory, Motorola, Los Alamos National Laboratories
(Lubeck), Sandia National Laboratories (Hoch), and the University of California at Berkeley
(Culler). In addition to a 14 minute video about Dataflow and Monsoon, made by Motorola,
which ran continuously in the booth, members of CSG had a strong representation at the
conference. The video featured Professors Arvind and Papadopoulos of the Laboratory and

Dr. Traub of MCRC.

During the year, we have held numerous informal meetings with MCRC and Tempe personnel
often weekly or a more frequent basis when needed. In addition, the following formal meetings
were held:

July 22, 1991: Joint review of Monsoon and preliminary planning for *T.
September 18-22, 1991: Supercomputer Conference, Albuquerque, NM.
September 25, 1991: Motorola Corporate Research, Cambridge, MA.
December 2, 1991: Joint review of Monsoon and *T' activities, Cambridge, MA.
February 11, 1992: Joint review of Monsoon and *T activities, Cambridge, MA.
June 9, 1992: Joint review of Monsoon and *T activities, Cambridge, MA.

4 Other external collaborations

Our research continues to benefit from the collaborative efforts of our group with researchers
from other institutions. In the past year, these efforts have assisted us in the spread of Id
to new platforms and in the evaluation and testing of the Id software environment. This
community of collaborators will expand with the public release of Monsoon 1d World.

4.1 DEC Cambridge Research Lab

Rishiyur Nikhil has continued his collaboration with the group. He has worked with Pro-
fessor Arvind on the preparation of a text book on the programming language Id. He has
worked with Professor Arvind and Professor Papadopoulos on issues in Id language design,
Id compilation, and multithreaded architectures.

4.2 Berkeley

Prof. David Culler at the University of California at Berkeley continues his investigations
into multi-threadid machine architectures, and its threadid abstract machine model, TAM.
We are investigating using Culler’s backend for the Id Compiler on our Id Compiler in Id
project for execution on stock hardware.

4.3 Sandia

Sandia is continuing its work in threaded dataflow computing. In addition to their Epsilon-2
processor and system development, work on the migration of applications to Id on Monsoon
progresses. Sandia has developed a version of a low density fluid dynamics application called
DSMC (Direct Simulation Monte Carlo) for execution on the Monsoon system. DSMC is
used extensively at Sandia to model the aerodynamic and thermodynamic behavior of reentry
vehicles in the upper reaches of the earth’s atmosphere. It is also beginning to attract at-
tention from the semiconductor industry as a method of simulating advanced semiconductor
processes.

Sandia has coded DSMC in Id and executed it on a single processor Monsoon system. The
application, complete with graphics, was demonstrated in the Motorola booth at the Super-
computing 91 conference. Future plans for DSMC on Monsoon focus on two goals: executing
the program on a multi-processor Monsoon system and augmenting the program with more
complex physical models.

4.4 Los Alamos

A team at Los Alamos, headed by Olaf Lubek, has continued its effort to investigate the feasi-
bility of the dataflow model of computation and functional languages designed for numerical

computation. Development of application codes provides performance and scalability data
and drives further development. Towards this end, we have selected a very general Monte
Carlo transport code called MCNP as a simulation that can benefit significantly from a
massively parallel MIMD architecture.

Progress on a model MCNP code for Monsoon

The MCNP code has many applications in diverse fields such as nuclear reactor safety,
medical dosimetry and oil well logging. We are redeveloping this application in Id. Our
intention is not to rewrite MCNP in its entirety because it includes extensive user features
that are unimportant to its performance, but rather the core of the code that retains its
numerical and physical complexities (we will refer to this code as MCNP-ID). During the
past year, we have developed the following capabilities in the code:

e a general user-specified geometry
e simple and detailed photonics transport
e numerous variance reduction techniques

e statistical tally information

Currently, we are executing MCNP-ID on our 16-node Monsoon machine solving benchmark
problems with known solutions. This is the first time that we have had enough computer
power to execute real-world problems for an Id application. This computational power will
allow us to execute large enough problems to get statistically valid answers. In the future, a
direct comparison between the Fortran MCNP and MCNP-ID will be possible.

4.5 Colorado State University

During the summers of 1990 and 1991, Bob Hiromoto (LANL) and Wim Bohm (CSU)
worked on algorithm design for dataflow execution. This collaboration was funded by Los
Alamos National Laboratory. Our approach aims to evaluate the expressiveness of functional
languages and the efficiency of both the compiler and its supporting parallel hardware.

The methodology encompasses the analysis, design and implementation of numerical algo-
rithms written in a functional style. As Id also allows for non-functional styles of program-
ming, we have the opportunity to evaluate functional and non-functional solutions to certain
problems in one language framework. Since it is our research interest to assess the generality
of the dataflow computational model for numerical applications, we have chosen to study
typical Fortran library routines that form the core of a numerical analyst’s tool kit. The
advantages of such numerical routines are the availability of algorithm documentation, the
relatively concise policy of memory management as expressed in Fortran, the ease of analysis,
and most importantly the complexity of their computational and data structures. A number
of routines have been written in Id and targeted for the Motorola Monsoon Dataflow Ma-
chine. We have used the dataflow oriented complexity measures total work: the total number

of instructions executed, and critical path length: the number of time steps required to ex-
ecute the program if an infinite number of processors were available. We have studied the
dataflow performance of our algorithms under the parallel profiling simulator Id World. This
approach has allowed us to follow the computational and structural details of the parallel
algorithms as implemented on dataflow systems.

We have examined problems that exhibit different computational characteristics. We have
designed algorithms for the Fast Fourier Transform which exhibits an interesting compu-
tational parallelism with data dependences between array elements in the various butterfly
shuffles. We have started work on adaptive quadratures, where the problem is to control
the dynamic unrolling of recursively adaptive grid refinements. We have designed a paral-
lel Jacobi eigenvalue/vector Solver, and recently completed a Householder-QR eigensolver.
Some of our results were presented in the Dataflow session of the 1991 IMACS conference
[6] and in a presentation at MIT, August 16, 1991. Recently, we have submitted a paper to
the ISCA Dataflow Workshop [5] comparing recursive and iterative versions of Fast Fourier
Transforms in Id, and we are currently preparing a paper on resource usage of Id programs
for the Special Issue on Dataflow and Multithreaded Architectures of JPDC.

We are waiting for the final decision of Motorola to fund further research in this area.

5 1Id: general topics

The Id language remains quite stable after the introduction of M-structure and explicit
sequencing, which proved to be indispensable when programming realistic system programs
such as the Id compiler in Id.

5.1 Graph Rewriting Systems: capturing sharing of computa-
tion in language implementations

Zena Ariola and Arvind have continued to work on the theoretical aspects of the two inter-
mediate languages Kid and P-TAC. In particular, Kid and P-TAC can be seen as examples
of a system called Graph Rewriting System (GRS). The basic feature of a GRS is the block
construct, t.e., letrec, which is a first class term and not merely syntactic sugar for function
application. Fach subexpression in a GRS is given a unique name and only “values” and
“names” can be substituted freely. We believe that GRSs are suitable to describe precisely
the sharing of subexpressions done by most interpreters of functional languages. As shown
in [1] GRSs are also useful to describe the operational semantics of a wider class of languages
than pure functional languages.

Much of the past work on graph rewriting has been to prove its correctness with respect
to either the A-calculus or Term Rewriting Systems (TRSs), while our interest in graph
rewriting is more general. We see graph rewriting as a system in its own right, and want
to explore its syntactic and semantic properties. In particular, we see GRSs as a suitable
formalism to express side-effect operations. We also want to include graphs with cycles and

as well as rules that recognize or create cycles. This is not the case in either [15] or [4] where
only acyclic graphs are considered and thus, some important implementation ideas are ruled
out. In [2] we introduce GRSs and prove many syntactic properties of such graph rewriting
systems.

We develop a term model a la Lévy [12] for GRSs and prove some of its semantic properties.
We restrict our attention to GRSs which are adequate to describe sharing in combinatory
systems.

We introduce a notion of instant semantics [16] associated to a term. The instant semantics
captures the stable information contained in a term without executing it. We then collect
all the information gathered by reducing a term in a set which represents the information
content of a term. We then show that in the absence of interfering rules the information
content defines an interpretation function, ¢.e., it is sound with respect to reduction and it
defines a congruence relation over the set of terms.

We use the information content as our criteria for proving the correctness of optimizations.
To that end we define a syntactic ordering on the set of terms based on the amount of sharing
contained in a term. We are then able to show that if a term M has less sharing than a
term N, then the information content of M is less than the information content of N. Due
to the properties of the information content we are guaranteed that for any context C'[0],
the information of C[M] will still be less than the information of C[N]. We can characterize
the effect of some optimizations, such as the common subexpression elimination, the lifting
of free expression and invariants from a procedure or loop body, as increasing the amount of
sharing in a term. Therefore, in the absence of interfering rules, according to the previous
result these optimizations are partially correct.

We also explore in [3] under which conditions the amount of sharing does not affect the
information in a term. To that end, we discard sharing from our observations and we
introduce the notion of answer of a term. We show that in the absence of non left-linear
and left-cyclic rules the answer is a congruence. Consequently, we have that under those
restrictions if a term M has less sharing than a term N then no context will distinguish
between M and N. In other words, the common subexpression elimination, and the lifting
of free expression and invariants from a procedure or loop body are totally correct. Since
the notion of answer is not tied up to the termination property of a term, we are also able
to show that the cyclic implementation of the Y-rule is totally correct.

We finally explore in [3] the correspondence between graph rewriting and term rewriting.
We show that acyclic orthogonal GRSs, i.e., GRSs without interfering rules, non left-linear
rules and left-cyclic rules, are a sound and complete implementation of term rewriting. In
this regard, the approach taken by other researchers [7, 11] is based on infinite rewriting.
On the other hand, our approach is based on showing that the behavior of a graph can be
deduced from its finite approximations. In other words, we show that graph rewriting is a
“continuous” operation.

In future we plan to work on incorporating the A-calculus and I-structures in our model.

5.2 Partial Evaluation

The field of partial evaluation (PE) has burgeoned in the last few years with a spate of
conferences and papers indicating increased interest by the research community. Two reasons
seem apparent for recent developments. First, language developers have had their eye on
PE techniques as a way of automatically generating compilers from interpreters. Secondly,
compiler writers see PE (or more properly called procedure specialization (PS) in this domain)
as a natural extension of the constant propagation code transformation. These two views
of PE are merely two ways of looking at the same problem, and not mutually inconsistent.
However, choosing a particular view colors one’s methodology and one’s measure of success
or failure. For example, efficient self-applicable partial evaluators are important for compiler
generation, but of less interest when seen as a special case of PS. Accordingly, in research
on PS we're taking “the road less travelled” and examining the consequences of looking at
PS as an extension of the constant propagation transformation.

Steve Glim is investigating extensions to the id compiler that incorporate different forms of
procedure specialization to produce code that uses resources more efficiently. He is espe-
cially interested in language transformations that lessen the amount of intermediate storage
required. Also, he is investigating transformations that efficiently specialize procedures on
partially specified data and incorporate higher order functions in the specialized code.

5.3 Basic Input/Output

The Monsoon Input/Output System follows a layered design approach. This section dis-
cusses the core of the system, a substrate of low-level routines that implement the basic
[/O capabilities of Monsoon. The main goal of the substrate is to provide a flexible, high
performance, parallel set of building blocks on which to base the implementation of more
complicated I/O systems (as discussed in later sections).

At its innermost, the I/O substrate implements a highly efficient and highly parallel set of
transport routines that shuttle data between the Monsoon processor and its front-end Unix
host. The transport routines are based on the notion of an 1/0 channel, a data-structure that
is used to virtualize the 1/O resources of a particular machine configuration. I/O channels
allow the data transport routines to operate robustly even in the face of different machine
configurations that may arise due to processor, memory controller, or network switch failures.

Basic Input/Output libraries

Several low-level 1/O libraries have been built directly on top of the transport substrate.
These provide the support for the different services of the 1/0O system. A brief description
each library follows:

File Library : implements block read/write routines to binary data files. These routines
are fast, since block data transfers are utilized, and flexible, since they operate on
unformatted binary data.

Console Library : implements a simple terminal interface utilizing the capabilities of the
standard xterm terminal emulator. For convenience, VI'100 control sequences are im-
plemented on the output side of the interface, while a simple line editor is implemented
on the input side of the interface.

O/S Interface Library : implements a basic interface to the services of the front-end
operating system. Currently, these services include the gathering of I/O operation
profiles.

Experimental Graphics Library : implements a basic rendering interface to the X Win-
dow System. Currently, this library includes operations to display bitmap images; in
the future, a complete set of graphics operations will be implemented.

Use and performance

The basic Monsoon I/O System has been used in several programs, most notably the
SPLASH benchmarks ported by Michael Tso and the DSMC Low-Density Fluid Dynam-
ics Simulation written by James Hoch of Sandia National Labs. In both cases, the file I/O
subsystem was used to read in large initial data sets in binary form. In a separate effort, the
graphics 1/O subsystem was used by Michael Davidson to implement a ray-tracing applica-
tion for Monsoon.

In the few applications mentioned above, the performance of the /0O system has been satis-
factory but not overwhelming. Careful tuning over the next year should lead to significant
performance increases across the whole range of 1/O services.

5.4 High level Input/Output library

Christine Flood has implemented an 1D library of i/o operations for monsoon. The functional
specification for this library was developed by David Culler’s group at Berkeley and is referred
to as the Berkeley sequential 1O proposal. The implementation of this library is called stdio.

The library provides three basic stream types: file streams, string streams, and console
streams. All stream types are buffered for efficiency. 1d functions are provided for formatting
and scanning common Id data types such as integers, floats, booleans, lists, strings, arrays,
etc to/from these streams.

Sequentialization

In a parallel language the order in which I/O statements are executed is unpredictable. We
want to be able to output objects in a deterministic order.

There are currently two methods of sequentializing operations in ID. The Berkeley 1/0
proposal uses explicit barriers, so two format statements would look like:

10

—~
|
n

format el;

format e2 };

Using the MIT threaded 1/0 library that we are currently working on, two format statements
have the form:

{ s1 = thio_format el trigger;
_ = thio_format e2 si1 7};

which depends on explicit triggers to sequentialize 1/O operations.

It is expected that the MIT library will have more parallelism because of less unnecessary
serialization. The value of e2 may be calculated while the value of el is being printed

Parallel Input/Output

In the future we plan to experiment with our sequential 1/O libraries to determine appropri-
ate methods of implementing parallel I/O. Work has begun on a library for reading/writing
large arrays quickly in parallel.

6 Id: compiler and run-time systems for Monsoon

The Id compiler for Monsoon has improved substantially due to many enhancements in
the mid-end optimization modules and new, more efficient schemas in the back-end code
generation modules.

6.1 Storage reclamation in Id

James Hicks completed doctoral work on compiler-directed storage reclamation. He devel-
oped a theoretical framework based on abstract interpretation for defining the lifetimes of
aggregate objects allocated by programs. He developed an algorithm based on this theory
and added a module to the Id compiler that implements this algorithm. This module enables
a version of the Id compiler to verify or insert storage reclamation code in Id programs. The
modified compiler is quite effective at determining where it is safe to deallocate storage in
scientific programs. The more regular the control and data flow are in the program, the more
likely the compiler will be able to determine object lifetimes. The compiler is less effective
on programs using recursive types such as trees or on programs that have large amounts of
sharing of data structures.

The analysis framework is based on an operational semantics of Id. The operational seman-
tics is defined by a store-based interpreter, even for the functional subset of the language.
The store maps object labels to object values, and all references to aggregate objects indirect

11

through the store. This indirection is necessary in order to model object sharing correctly.
Evaluation of an expression by the interpreter yields a value, which is either a number, a
boolean or an object reference, and a store, where objects are defined. In addition, the inter-
preter computes the set of labels of objects that were allocated, dereferenced and deallocated
during the evaluation of a subexpression.

We can use the interpreter to tell us exactly which objects are allocated by an expression,
and which are reachable from a given value with respect to a given store. From this we
can determine the exact lifetimes of objects during a particular execution of a program.
If an object is allocated during the evaluation of a subexpression and that object is not
reachable from the result of the subexpression, then its lifetime is contained by the lifetime
of the subexpression. We can use this information to determine exactly when it is safe to
deallocate an object during a particular execution of a program.

However, in order to determine statically that it is safe to deallocate the object bound to a
particular variable, we must show that under every execution of the program, and for any
input data, that it is safe to deallocate the object. For this, we abstract the operational
semantics to yield an interpreter that gives us a summary of the behavior of a program
over all executions. Likewise, we generalize the criteria we use to determine the lifetimes of
objects.

The algorithm used to analyze a program and to determine where it is safe to deallocate
objects is essentially an abstract interpreter to generate a table of input-output mappings
that show the behavior of each function, and then to use these mappings while analyzing
the body of each function.

This work has resulted in solid theory for some of the work we did on storage reclamation
annotations in the past few years. We have also extended the compiler so that it can
deallocate objects in more cases than it could previously by adding conditional deallocation
code that tests for sharing at run-time before deallocating an object, in cases when the
compiler cannot determine statically that there is no sharing. This case arises in particular
in loops that may execute zero or more times and that allocate an object on each iteration.

This framework models Id with functional tuples, arrays, and algebraic types. Because
the interpreter is store-based, we can also model single-assignment elements of I[-structure
arrays and algebraic types. We also have an abstract semantics for M-structure arrays and
algebraic types. The implementation of this analyzer/transformer has been very successful
when applied to scientific codes. The deallocation code added to the Simple, Gamteb and
Wavefront benchmarks reclaims all of the intermediate storage allocated by those programs.
In addition, we have implemented a limited form of sharing analysis that allows the compiler
to insert code to deallocate the intermediate arrays of tuples in an implementation of the

FFT algorithm.

The compiler is not as successful with programs that use recursive types allocated by recursive
procedures, because it does not have a strong enough sharing analysis to determine if an
object is a tree, an acyclic graph or a cyclic graph — it has to assume it is a cyclic graph.
This is an area we intend to explore further.

Another drawback is that the analysis is very expensive. Although the algorithm to insert
or verify deallocation commands is fairly efficient once the input-output behavior has been

12

determined for each procedure, the process of computing input-output behavior takes a
tremendous amount of time. Compilation times have increased by a factor of two to a factor
of ten when the analysis and transformations are done. This is not the kind of thing that
can be installed in a development mode compiler, but it’s not unreasonable to use once a
program is debugged and is ready to go into production runs.

6.2 Efficient Implementation of Loops

Boon Ang has been working on improving the implementation of loops on Monsoon. One
area of focus is sequential loops which usually form the innermost loops of programs and have
the greatest impact on execution time. Sequential loops are tricky to implement because
they reuse frame storage and the execution within each iteration proceeds in parallel. Our
old sequential loop implementation, while correct, was not very efficient. Two new sequential
loop schema were developed and implemented in the Id Compiler’s Monsoon Backend. These
requires gathering some strictness information from the code. The second scheme exploits
the fact that the loop is sequential and try to push all synchronization to the loop iteration
boundary. The extent to which this is possible and result in savings in the number of cycles
executed is somewhat restricted by the architecture. Nevertheless, both new schemas turn
out to be substantially more efficient then the old schema and are used by default in the
production verion of the Id compiler.

The set-up and clean-up phases of k-bounded loops were re-implemented by Boon. They
now proceed in a recursive, parallel fashion on all the frames involved and hence has a shorter
critical path. The old set-up and clean-up phases were each performed by a sequential loop
and was thus sequential. The new approach also takes fewer total instructions in addition
to reducing the critical path.

Automactic strip mining by the compiler was implemented in January. This transforms
certain k-bounded loops into a doubly nested loop, with the outter loop executing in parallel
and the inner one sequential. The original loop body is now the loop-body of the inner loop.
Where strip mining is applicable, it has two big advantages:

o It allows us to use the sequential loop schema, which is much cheaper then the k-
bounded loop schema, while offering parallel execution of the loop.

o [t breaks the coupling between the k frames of a loop, allowing each to proceed in-
dependently at full speed. Previously, if one of the k frames resided on a PE that
was busy executing other work, the entire loop stalled. With strip mining, once the &
sequential loops are started, a frame on a busy PE will not affect the execution on the
other (k — 1) frames.

Finally, Boon also implemented lifting the initialization and cleanup of loops within a loop
nest as far out as possible. This turned out to be tricky and complicated because the
initialization may be lifted through several k-bounded loops. So far, of the 5 benchmarks
that we run regularly, it has proven to be useful in only one of them, SIMPLE, where it
reduced run time by 10%. However, this optimization introduces substantial complexity to

13

the compiler. We are studying it’s effects on more programs in order to decided if we want
to include it in the production version of the compiler.

6.3 Efficient manipulation of literal values

Stephen Glim has studied the efficient manipulation of literal values. A literal value is a
wholly known value introduced by the programmer in his or her program. The final value
of any literal is independent of any of a program’s inputs and (as opposed to an input
variable), will have the same value during every execution of the program. Intermediate
computed variables are derived by combining literals and input variables (as well as other
intermediate values). Intermediate variables that depend only on literals might be literals
themselves (if the computation computing them halts) and compile time optimization may
be able to compute these “intermediate” literals before the program executes.

A language may supply syntactic support for structured literals by having special syntax
that its parser can recognize as denoting a structure built entirely of literals. Failing that, a
language may provide general purpose syntax for simply specifying structures, which need
not contain only literals, but makes them easily specified. 1d takes the latter course by
providing syntax that makes structured constructs easy to express, but not constraining
them to be wholly composed of literals.

However, the question remains, how does the compiler take these simplified notations for
structures and translate them to executable code? The simplest way to translate this no-
tation is to “desugar” it into program fragments of simpler structure allocators and assign-
ments. This solution has the admirable property of machine independence, since complicated
syntax is desugared into simpler (though more verbose) programs that can be directly trans-
lated.

It’s clear that large literal structures will significantly degrade the performance of a ma-
chine independent desugaring approach to their specification. In desugaring, every literal
produces a fragment of program text proportional to the literal’s size, which then becomes
incorporated into the intermediate data structure. Both traversing old and building new
intermediate structures may take time and resources proportional to the “size” of the inter-
mediate structure. If a large literal structure (encompassing perhaps thousands of atomic
literals) is specified then the intermediate form will grow by a similar size. Most painfully,
optimization analysis and rebuilding may now need to traverse these newly generated state-
ments and program compilation will take great resources of time and space.

None of this corresponds to the programmer’s model of how the language should be compiled.
Literal structures, are by definition already optimized (excluding garbage detection) and need
not be continuously traversed by the compiler but merely collected together and loaded into
memory at execution time. Compiling methodologies that depend on desugaring to compile
literal structures will defeat this intuition about the complexity of compilation and make
programs that seem simple (but specify large structures of literals) inefficient to compile.

The solution to all these problems is to not naively desugar literal structures into program
fragments, but instead apply a more specialized strategy for handling them when they ap-
pear. It’s imperative that literal structure’s get represented by a structure accessible in

14

constant time and represented in constant space (wrt the optimizer) in the intermediate
form, otherwise there can be no benefit during the optimization phases of compilation.

Current development work includes extending the id compiler with more support for struc-
tured literals. Literals will be detected early and manipulated efficiently by the compiler
before being passed to the loader special objects to be loaded directly, rather than con-
structed during program execution

6.4 Frame manager

Derek Chiou has continued his work on frame managers for Monsoon.

In a sequential computer, stack frames are allocated and deallocated by manipulating a
stack pointer. A parallel computer’s frame manager is more complicated since more than
one frame might be active at any time, and the ordering of allocations and deallocations is
much less strict. This past year we have implemented several frame managers that permit
our applications to run well on both one processor and multiprocessor configurations.

Our current default frame manager distributes load using a simple round-robin scheme that
has been able to balance loads extremely well. We have seen linear speedup for a few
programs and very close to linear speedup for most of our other applications. The frame
manager is written in MONASM, our assembly language. So far, the default frame manager
has been running for several months and seems very robust. Current research is being done
on coalecing frame managers.

6.5 Heap manager

Arun lyengar is studying ways to efficiently manage heap space (also known as dynamic
storage) on multiprocessors. Heap objects may have indefinite sizes or indefinite lifetimes.
The run-time system allocates and deallocates heap objects.

We have performed simulation experiments in order to compare several different dynamic
storage allocators. Algorithms similar to quick fit achieve the best performance in both
parallel and sequential environments. Quick fit achieves very fast allocation by using sepa-
rate free lists for blocks of different sizes. Mr. Iyengar’s Ph.D. thesis explores methods of
improving upon the performance of quick fit by modifying the manner in which large free
blocks are stored.

We have developed three new algorithms which achieve better performance than quick fit
when the percentage of requests for large blocks is high. Quick fit stores all large free blocks
on a single linked list. By contrast, multiple free list fit I uses several linked lists for large

blocks. Modified quick fit stores all large blocks in a B-tree. Multiple free list fit IT uses

several lists and a B-tree for storing large blocks.

Storage managers utilizing both quick fit and multiple free list fit I have been implemented
on Monsoon. High throughputs are achieved by utilizing multiple free lists which can be
searched concurrently. The storage manager is designed so that throughput scales linearly
with the number of processors.

15

6.6 Id World

In collaboration with Motorola, R. Paul Johnson has enhanced the capabilities of Monsoon
Id World this year. These enhancements have enabled us to make the initial release of the
system for external distribution. Specifically these include:

e automated startup, initialization and shutdown of MINT and MHD, the Monsoon
Hardware Driver

e session save and restore procedures
e statistics and colored code block statistics collection and display

e EZID, an Id language command and expression listener

Monsoon Id World 1.1

Monsoon Id World V1.1 was released in May for external distribution. The distribution
includes all the Monsoon client programs, a prebuilt Id World lisp image and the MINT
interpreter. The Monsoon Id World is a “shrinkwrap” agreement which is activated upon
receipt of the system. The Id World lisp image is built on Lucid’s SPARC Application
Environment. As with GITA Id World, there will be a one time charge for media and
documentation. We are planning to port Id World to the IBM RS6000.

EZID

EZID or “Easy 1d” significantly simplies the interface to Monsoon Id World. Under EZID,
users interact with Id World; evaluating Id expressions, manipulate statistics, and interact
with MINT or the Monsoon hardware using an extension of Id 90.1. EZID interfaces to the
compiler and loader for compilation and evaluation of complicated expressions. New users
have found this interface to be intuitive.

6.7 Id compiler in Id

The Id compiler in Id project was started in April 1991, with the goal of providing a large
application in Id, as well as becoming the future compiler for Id on many hardware platforms.
Major coding started in the summer of 1991, towards the end of that summer we had a
preliminary front-end tested on some small example programs.

During the fall of 1991, a lot of efforts were spent on consolidating the frontend. Using
Berkeley Yacc, Yuli Zhou generated a real parser for Id, and implemented pretty-printers
for the Compiler’s intermediate representations. Shail Aditya debugged the type-checker
(written by Sighjorn Finne and Roy Seto), and integrated the system to compile a number
of example programs including the Paraffins, which is a real-sized Id program.

16

In spring 1992 we decided to go ahead with the remaining stages of the compiler: a mid-end
doing optimizations on a Graph representation of Kid (Kernel Id) and PTAC (Parallel Three-
address Code), and a back-end generating code for the TTDA architecture. Joanna Kulik,
with the help of Shail Aditya, designed and implemented the Kid-graph as well as a number
of optimizations on Kid-graph as her Bachelor’s thesis. Yuli Zhou implemented a preliminary
version of a PTAC to TTDA-graph translator, which was able to generate code for some
small programs that actually run on GITA. Towards the end of spring Cédric Fournet,
visiting from Ecole Polytechnique of France, undertook the project of implementing Kid to
PTAC translation. By that time the general structure of the compiler was well-understood.
The compiler has 5 internal representations: Aid (abstract 1d), Kid, Kid-graph, PTAC and
TTDA-graph. The functional modules of the compiler are described in the following, which
are stream-lined to form the compiler:

Parsing The parser constructs a parse-tree in Aid from an Id source program, where the
nodes contain line/column number annotations indicating their corresponding positions
in the source file.

Desugaring A preliminary transformation of the Aid parse-tree removes some syntactic
sugar from the Aid program: List and array comprehensions are translated into nested
loops; multi-clause definitions and functions are translated into simple ones with a
case-expression in the body.

Scope-Analysis The main task of scope-analysis is to relate uses of variables to their
definitions according to lexical scoping. A record is created at this time for each
variable, uses of the variable will share this record through pointers. The collection
of all such records constitutes what is commonly known as the symbol table. Many
properties are gathered for declared variables into the records.

Translation to Kid Kid is a much smaller language in which temporary variables are in-
troduced for intermediate values of expressions. Kid only has simple case-expressions
without pattern-matching, thus the major task of Aid to Kid translation is to translate
pattern-matched constructs into simple selections and nested simple case-expressions.

Type-Checking Being a functional language, Id has a Hendley-Milner style type-checker
with extensions to deal with I-structures and M-structures. The type-checker also
supports resolution of overloaded identifiers, which can be user-declared. Modules up
to this one constitutes the so-called front-end of the compiler.

Translation to Kid-graph The Kid which the type-checker works on is still a tree-like
structure, where sharing only occurs on variable records. It is a representation suitable
for the type-checker, but not for various optimizations that would like to see the sharing
of expressions represented directly. We thus translate Kid into a graph representation.
A Kid-graph can be viewed as a tree of blocks, inside each block instruction can be
shared in arbitrary manner. Block is a very important construct since it encapsulates
the unit of control in a parallel language.

17

Optimizations on Kid-graph Many optimizations will be performed on Kid-graph, in-
cluding constant propagation, fetch-elimination, common-subexpression elimination
(CSE), call substitution and fast-call optimization, etc.

Translation to PTAC PTAC is similar to Kid-graph, except that in PTAC all data-
structures and well as functional closures are explicitly represented using vectors of
memory words. Thus the main task of Kid-graph to PTAC translation is to represent
data-structures (vectors, records, arrays of various dimensions, algebraic types and
closures) and to generate the correct function-call sequence.

Optimizations on PTAC All optimizations on Kid-graph can be performed on PTAC.
Certain optimizations such as fetch-elimination and CSE will have the most visible
effect since the previous translation introduces many redundant fetches and subex-
pressions due to the expansion of things like array indexing.

Signals and Triggers Signals and triggers are added to PTAC very late since their pres-
ence interferes with optimizations and are not needed by the optimizations. Modules
working on Kid and PTAC graphs constitute the mid-end of the compiler, which are
responsible for almost all of the optimizations.

Back-end for TTDA This includes a module to translate PTAC into TTDA-graph, a
module to do some peep-hole optimizations and a final assembler module to write the
object file in a format that can be loaded onto GITA.

As of now, Cédric Fournet implemented the key optimizations on PTAC, and Yuli Zhou is
in the process of updating the back-end for TTDA. We are expecting to have a complete
compiler able to compile some test programs in mid-July. The compiler itself, however, will
by no means be completed at that time: the parser is not runing with much parallelism;
pattern matching is not fully implemented due to an expected change in Kid and PTAC to
accomodate sharing of blocks; overloading resolution is not yet implemented; and we do not
yet have a full batch-compiler which can support separate compilation of files. Our UROP
students for this summer have already chosen to work on some of these projects: Jan-Willem
Maessen will implement overloading resolution, Laura Feeney started working on a complete
implementation of pattern-matching based on decision-trees, Matthew Condell will try to
propagate the line/column number annotation across various modules for the purpose of
pin-pointing errors in the original source program, Roy Seto will implement loops in the

PTAC to TTDA-graph translator.

Our decision to generate code for TTDA is based on the fact that it is the simplest target
having a well supported environment (debugging, statistics collecting, etc). Our real inter-
est, however, is in generating code for real machines such as Monsoon, *T, and even Unix
workstations. Apart from requiring different back-end s, this needs sophisticated partition-
ing/threading analysis to generate bigger threads. These are the projects planned for the
near future.

18

6.8 Test suites

Christine Flood developed an automated test suite to run the matrix multiply, gamteb, and
wavefront example programs and verify their results. The tests were configured for 1,2,4,
or 8 processing elements. These tests were used at MIT and Motorola to isolate hardware
failures.

Christine developed an automated compiler test suite which verifies that every function in
the reference manual works as documented.

R. Paul Johnson developed a regression test suite. As bugs were detected they were fixed and
added to the test suite. This ensures that the same bugs don’t reappear in future releases.

7 Monsoon hardware

The 16 node Monsoon system at MIT has been operational since the Summer of 1991. While
we have experienced a few board level failures, the reliability of the hardware has been fairly
good. We have not experienced any failures with the Monsoon network.

Over the year we have identified a few more hardware design issues and we have remedied
them all with simple engineering changes (ECO’s). These ECO’s have been incorporated
into all existing boards and will be incorporated into all future boards.

Motorola delivered a second 16 node Monsoon system to Los Alamos National Laboratory
early in 1992. This system came up quickly and has worked reliably ever since.

8 Applications and performance measurements

We have continued to study a variety of Id applications and the level of performance that
can be achieved for these applications on the Monsoon hardware.

8.1 Matrix Multiply, Gamteb, Simple and Paraffins

Boon Ang and Derek Chiou have continued to study the performance of these four Id applica-
tions on Monsoon. Their analysis has ultimately lead to a series of significant improvements
in the Monsoon frame manager and the Monsoon backend of the Id compiler. Table 1 shows
the improvement in run time of these programs over the past year and a half.

This study is still underprogress. We are now comparing these numbers to those of corre-
sponding C or Fortran program running on MIPS microprocesses to study the efficieny of
dataflow execution on Monsoon. We are also studying the speedup of these programs on the
8-PE 8-IS Monsoon. So far, these have shown that we are able to balance load fairly well
and achieve good speedup in most cases.

19

Program Feb, 91 Aug, 91 | Mar, 92 | Jun, 92
(min:sec) | (min:sec) | (min:sec) | (min:sec)

Matrix-Multiply (500x500) 4:04 3:58 3:55 1:48

Gamteb-9c¢ (40,000 particles) 17:13 10:42 5:36

Simple (grid size=100x100, 100 iterations) | 0:19 0:15 0:10 0:06

Paraffins (n=19) 0:50 0:31 0:02.4

Table 1: Single Processor Performance

8.2 B-trees

Arun lyengar is studying concurrent algorithms on B-trees. Basic B-trees contain data within
internal nodes. All leaf nodes in a basic B-tree are empty. By contrast, BT -trees store all
data within leaf nodes.

We have implemented concurrent algorithms on both basic B-trees and B*t-trees in Id.
Maximum concurrency on BT-trees is obtained by using B-link algorithms. By contrast,
B-link algorithms cannot be easily adapted to basic B-trees. We have obtained the best
performance on basic B-trees by resorting to optimistic, top-down restructuring algorithms.

The performance of concurrent B-tree algorithms is highly dependent on the mechanisms
which are available for allowing exclusive access to shared data. Our concurrent B-tree pro-
grams make extensive use of the imperative features of Id. M-structures and sequentialization
constructs are prevalent.

8.3 Water

Water is an N-body molecular dynamics simulator, one of the Stanford Parallel Applications
for Shared-Memory (SPLASH)[14] set of benchmarks. Water evaluates forces and energies
in a system of water molecules in the liquid state. The computation is done over a user
specified number of time-steps. Every time-step involves solving the Newtonian equations of
motion for water molecules in a cubical box with periodic boundary conditions, using Gear’s
sixth-order predictor-corrector method[8]. The total potential is computed as the sum of

intra and inter molecular potentials.

Michael Tso implemented two versions of Water in Id, one is non-functional (uses M-
structures and barriers) while the other is functional (no explicit sequencing). The algorithm
and data structures in both versions are the same as the C implementation in SPLASH. The
functional version exploits more parallelism but incurs more overhead.

The following table gives details of several runs of the non-functional Id implementation of
Water on a one processor configuration of Monsoon as compared to the C implementation
on a MIPS workstation. The statistics that he was able to collect was restricted by bugs in
the stats-mode software.

20

molecules | time-steps | Monsoon instr | MIPS instr | Monsoon CPI | MIPS CPI
8 2 4.93 x 10° | 3.12 x 10° 1.73 1.04

27 2 5.92 x 107 | 1.15 x 107 1.32 1.16

64 2 3.35 x 10% | 4.86 x 107 1.24 1.20

Most of the extra overhead incurred by the Id program came from allocating heap objects.
Although there are lots of opportunities to reduce the runtime overhead in Water, it will
always be significant and underscores the price we must pay for our programming model. As
the size of the data set increases, we observe that the C program’s CPU utilization dropped
due to cache misses. But the Monsoon processor does not have a cache and is able to exploit
the extra data parallelism.

The multiprocessor configuration of Monsoon was temporarily out of service when statistics
were collected on Water, thus no data is currently available on how well Water scales on
Monsoon.

The program is approximately 1500 lines and is written entirely in Id. Most of the develop-
ment work and debugging was done in EZID, on MINT or Monsoon hardware. Improvements
were made to EZID and the 1/O library during the course of Water’s development. This
software platform has become stable enough for developing relatively large applications.

9 *T hardware

We reported last year on the development of the *T architecture. As was discussed last year,
the *T abstract model for a node contains three primary components; the Data Processor,
the Start Processor, and the RMem processor.

The Data Processor is a conventional RISC microprocessor, and executes sequential threads
supplied to it by the Start Processor. Whenever the Data Processor wishes to perform a
remote access, €.g., to load the contents of an address that is on another node, it issues a
message to the remote node and continues executing. In particular, it does not wait for the
response, which may arrive after considerable delay (long latency). Instead, the message
that was issued, an msg_rload type of message, contains, in addition to the target address, a
continuation that names a thread that must be scheduled when the response finally arrives.

Arriving at the remote node, the msg_rload message is processed by the RMem Processor,
which sends the response in a msg_start message back to the original node. In particu-
lar, note that the remote node’s Data Processor is completely undisturbed by this action.
The msg_start message contains the value read from memory as well as the continuation
information that came in on the msg_rload message.

When the msg_start response arrives at the original node, the Start Processor stores it in the
node’s memory and, using the continuation that rode piggyback on the message, schedules
and feeds the named thread to the Data Processor.

The detailed design of a hardware implementation for *T has started this year. As an
engineering decision we have chosen to place what amounts to two abstract nodes on each

21

physical node. The proposed overall structure of a physical *T node is shown in Figure 1.
As is shown in the figure, the node contains two 88110MP’s, two memory controller chips
(MC’s), a network router, and DRAM.

88110MP MC DRAM
-4—r J
[Router [
R E—— -
V l
88110MP mMc DRAM
Figure 1: Implementation of a *T node

88110MP is the designation that we have given to our modified version of the Motorola
88110. The 88110MP contains all the functionality of both a Data Processor and of a Start
Processor. It also contains a high performance network interface.

Each MC has the functionality of a RMem Processor. It also contains a high performance
network interface.

The router is used to transfer packets among the components of the node and to transfer
packets to the global interconnection network. The global network is constructed using the
same type of router chip.

We have split the detailed design tasks with our industrial partner, Motorola. Motorola is
responsible for the detailed design of the 88110MP while MIT is responsible for the design
of the MC including caching strategies and the design of the network router.

9.1 Memory controller

Greg Papadopoulos, Jack Costanza, and Ralph Tiberio have started the design of the Mc.

The MC integrates three primary node functions: control of local dynamic RAM, servicing
of local 88110MSU reads and writes, servicing of remote load, store and DMA operations.
The remote memory services are implemented by an on-chip microcoded protocol processor.

The MC also integrates a number of incidental functions, for example an interrupt controller
and local bus arbiter. One 88110MSU’s and an I/O controller are attached to an 88110
compatible 64-bit local bus. Up to four banks of dRAM are driven by the MC over a 128-bit
datapath plus 16 bits of error correcting code. Finally, the MC is directly connected to two
16 bit wide high speed network ports.

22

With a 50Mhz node clock, the local bus, dRAM and network ports each provide a peak
transfer rate of 400 megbytes per second. The MC incorporates smart on-chip cache and
write buffer (the L2§$) in attempt to sustain simultaneous full rate memory requests from
the local bus and network interfaces.

The Mc local bus is an 88110 compatible external bus interface comprising 64 bits of data,
32 bits of physical address and 48 control and information signals. The principal role of the
MC is to act as the bus arbiter and to respond (as an external device) to physical memory
read and write transactions sourced by bus masters. The MC is also a bus master as necessary
to implement data cache coherence protocols.

The MC incorporates an interface to receive and transmit internode network packets. The
interfaces are 16 bits wide, low voltage swing CMOS running at 2x the node clock. The
network interface supports a modest amount of transmit and receive packet buffering. The
network interface is internally connected to the protocol processor, an extensible mi-
crocoded engine capable of handling a variety of message types.

As dRAM controller, the MC has responsibility for address multiplexing, refresh timing,
etc. The MC has control registers that allow the timing parameters associated with dRAM
operation to be programmable. These registers allow the MC to be used with a wide variety
of memory components. Also, the timing of the control signals generated by the MC can be
tightened as dRAM technology improves, allowing for local memory upgrades. In addition
to control, the MC also provides ECC to the local memory.

In terms of implementation status, we expect to complete a behavioral model of the mc,
written in Verilog, sometime in August of 1992. After extensive simulation of the behavioral
model, work will begin on the RTL model, which will ultimately be processed by synthesis
tools to the gate level.

9.2 Caching strategies

Masato Motomura has studied caching strategies for *T.

Caching is one of the key technologies used for performance improvement in most modern
computers. However, multithreading has a negative impact on cache hit rates because mul-
tithreaded architectures usually make frequent context switches. Our research goal is to find
an appropriate cache strategy for multithreaded architectures and for *T' parallel computer
system.

The 88110MSU has separate 8KB data and instruction 1st level caches (L1$s), which are
too small to maintain working sets of memory references. We are trying to augument these
Ist level caches by a 2nd level cache (L2$) built in the memory controller (MC) chip. Since
we don’t have much area in the chip for this L2$, this cache should be intelligent enough to
give high hit rates with small memory capacity.

The first design issue is how to exploit locality among threads. To this end, we are investigat-
ing ideas like stream buffering (prefetch), large block size (demand fetch), etc. The second
issue is how to serve remote memory requests efficiently. We believe that the presence bit

23

references associated with remote memory requests have plenty of locality which gives high
hit rates for an L2$. Finally, maintaining memory coherency is an important task of the L2%
because remote memory request refer only to an L2%$ not to an L1$. This means we should
keep duplicated L1$ tags and copy back an L1$ line if this line has been modified and re-
motely requested. One interesting idea is to utilize these L1$ tags to maintain the exclusion
property of cache hierarchy, i.e., excluding lines stored in an L1$ from an L2$. Given the
fact that an L2$ will have same order of memory capacity as an L1$, this exclusion property
might help increasing the hit rates of an L28§.

We have written a simulation environment for an L2$. Final design for an L2$ will be
completed by the end of this summer after extensive simulation runs.

9.3 Router

Andy Boughton, Jimmy Kwon, Gowri Rao, and Satoshi Asari have started the design of the
interconnection network for *T.

The global interconnection network for *T' is a fat tree. The router on each *T node acts as
the leaf stage of the tree.

Each router has eight sets of links. Each set is composed of a link in each direction. The
router on a node uses four sets of links to communicate with the four major components of
the node. It uses the other four sets to connect to the global interconnection network.

Each link is capable of transmitting 200Mbytes per second. The link uses a 16 bit wide data
path.

A single reference clock is distributed throughout the *T system and the global interconnec-
tion network is operated in a synchronous manner. However each router contains circuitry
that eliminates the need to carefully tune the electrical length of each transmission line. This
circuitry allows each router input port to measure the phase of its incoming link at system
setup time and to configure itself to safely receive data from the link.

Packets range in size from 128 bits to 768 bits. Each packet contains a 16 bit CRC. The
CRC is checked by each router that the packet traverses.

The routing of each packet is predetermined at the source node. The route toward the root
of the tree is randomly selected. The route back to the leaves is a function of the desired
destination. A simple algorithm can be used to route around known bad links.

We expect to complete the behavioral specification of the router during the summer of 1992.
We expect to have prototype router chips fabricated by the Fall of 1993.

10 Other work

The following work are closely related to our overall project developing parallel architectures
and languages.

24

10.1 Network interface studies

Dana Henry and Chris Joerg have been studying network interfaces. Their proposed interface
architecture typically achieves a three fold improvement over the best existing interfaces.[10]
Most of the performance gain comes from simple, low cost hardware support mechanisms for
fast dispatching on, forwarding of, and replying to messages. The remaining improvement is
gained by mapping the network interface directly to the processor’s register file rather than
its memory. These mechanisms increase the performance of the interface without detract-
ing from its flexibility. Using these hardware mechanisms, a register-mapped interface can
receive, process, and reply to a remote read request in a total of just two RISC instructions.

This work grew out of the work on the Network Interface Chip (NIC)[9]. This chip, which has
been designed and simulated at the RTL level, allows a Motorola 88100 processor to efficiently
send and receive messages over the same communication network as used in Monsoon. Even
though this chip will not be fabricated, it will have a considerable impact on the *T project.
Motorola is incorporating many of the ideas from this chip and the related performance
studies into a message co-processor which is being added to the 88110. This modified 88110
will be used as the basis of the *T' processing nodes.

10.2 Synchronization studies

Shuichi Sakai studied synchronization and pipelining in massively parallel computer systems.
Dr. Sakai analyzed currently existing data-driven synchronization mechanisms from the
viewpoint of efficiency and hardware complexity. He proposed an optimized synchronization
mechanism and a pipeline structure for a massively parallel computer using this mechanism.
He also developed performance improvement methods for this pipeline. Dr. Sakai’s work is

described in [13].

10.3 Parallel alpha-beta search

Bradley C. Kuszmaul has been working on developing a highly-parallel alpha-beta search al-
gorithm. The algorithm exploits dataflow techniques, such as non-strict function evaluation,
to obtain parallelism. At this point, he has achieved good parallel speedup for alpha-beta
search. However, the algorithm currently uses too much memory to be practical; Bradley
is working with Prof. Charles E. Leiserson on reducing the memory requirements of the
algorithm. Bradley is also engaged in joint work with Prof. Hans Berliner of CMU to apply
this highly parallel alpha-beta search algorithm to a real chess program.

Ahmed Shah worked as a UROP on chess, with Bradley C. Kuszmaul. In Summer 91,
Ahmed implemented a naive chess program in ID. The program exhibited some parallelism,
and played legal chess (but very badly) using the TTDA simulator. During January 92,
Ahmed implemented an improved user interface for a chess program written in C.

25

Publications

26

Theses Completed

S.B.
S.M.
Ph.D.

27

Theses in Progress

Brobst, Stephen A. “Storage Management in a Tagged Token Dataflow Machine,” Ph.D.
thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA.
Expected February 1993.

Chery, Yonald “Dataflow Graph Partitioning and Threading for the Monsoon Processor,”
S.M. thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge,
MA. Expected September 1992.

Iyengar, Arun “Dynamic Storage Allocation on a Multiprocessor,” Ph.D. thesis, MIT Depart-
ment of Electrical Engineering and Computer Science, Cambridge, MA. Expected September
1992.

Kuszmaul, Bradley C. “Compiling Data-Flow Programs for Control-Flow Computers” Ph.D.
thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA.
Expected December 1992.

Sharma, Madhu “Design and Evaluation of a Multi-thread Processor Architecture,” Ph.D.
thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA.
Expected December 1992.

28

Lectures

29

References

[1]

7. Ariola and Arvind. Compilation of Id. In Proc. of the Fourth Workshop on Languages
and Compilers for Parallel Computing, Santa Clara, California, Springer-Verlag Lecture
Notes in Computer Science 589, August 1991. (Also: CSG Memo 341).

Z. Ariola and Arvind. Graph rewriting systems. In Proc. Symposium on Semantics and
Pragmatics of Generalized Graph Rewriting, University of Niyjmegen, The Netherlands,
December 1991. (Also: CSG Memo 323).

7. M. Ariola. An Algebraic Approach to the Compilation and Operational Semantics of
Functional Languages with I-structures. PhD thesis. Ph.D. thesis, Harvard University,
June 1992.

H. Barendregt, M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, and M. Sleep.
Term Graph Rewriting. In Proceedings of the Parallel Architectures and Languages Eu-
rope Conference, Eindhoven, The Netherlands, Springer-Verlag Lecture Notes in Com-
puter Science 259, pages 141-158, June 1987.

A. P. W. Bohm and R. E. Hiromoto. The Dataflow Complexity of Fast Fourier Trans-
forms. submitted to the Dataflow workshop of the 19th International Symposium on
Computer Architecture conference.

A. P. W. Bohm and R. E. Hiromoto. Developing Dataflow Algorithms. In Proceedings
of the 13th World Congress on Computation and Applied Mathematics, Dublin, 1991.

W. Farmer and R. Watro. Redex Capturing in Term Graph Rewriting. Technical Report
M89-59, MITRE corporation, Massachusetts, 1989.

C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Fquations.
Prentice-Hall, New Jersey, 1971.

D. Henry and C. Joerg. The Network Interface Chip. Technical Report CSG Memo
331, MIT Laboratory for Computer Science, Cambridge, MA, June 1991.

D. Henry and C. Joerg. A Tightly Coupled Processor Network Interface. In Proceed-
ings of the Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1992.

J. Kennaway, J. Klop, M. Sleep, and F. de Vries. Transfinite Reductions in Orthogonal
Term Rewriting Systems. In Proc. RTA 91, Springer-Verlag Lecture Notes in Computer
Science 488, 1991.

J.-J. Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. Ph.D. thesis,
Université Paris VII, October 1978.

S. Sakai. Synchronization and Pipeline Design for a Multithreaded Massively Parallel
Computer. Technical Report CSG Memo 343-1, MIT Laboratory for Computer Science,
Cambridge, MA, March 1992.

30

[14] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
Shared-Memory. Technical report, Computer Systems Laboratory, Stanford University,
april 1991.

[15] C. Wadsworth. Semantics And Pragmatics Of The Lambda-Calculus. Ph.D. thesis,
University of Oxford, Semtember 1971.

[16] P. Welch. Continuous Semantics and Inside-out Reductions. In A-Calculus and Com-
puter Schience Theory, Italy (Springer-Verlag Lecture Notes in Computer Science 37),
March 1975.

31

Contents

1 Introduction

2 Personnel and Visitors

3 MIT-Motorola collaboration on Id, Monsoon, and *T

4 Other external collaborations

4.1
4.2
4.3
4.4
4.5

5 1d:

5.1

5.2
2.3
5.4

6 I1d:

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

DEC Cambridge Research Lab
Berkeley e
Sandia e
Los Alamos

Colorado State University 0

general topics

Graph Rewriting Systems: capturing sharing of computation in language im-
plementations

Partial Evaluation o
Basic Input/Output o
High level Input/Output library

compiler and run-time systems for Monsoon

Storage reclamationin Id oL oL oL
Efficient Implementation of Loops
Efficient manipulation of literal values
Frame manager L
Heap manager
Id World o
Id compilerin Id

Test suites

7 Monsoon hardware

8 Applications and performance measurements

8.1
8.2
8.3

Matrix Multiply, Gamteb, Simple and Paraffins
B-treeso

Water

Sy v v Ot Ot Ot

10

11
11
13
14
15
15
16
16
19

19

9 *T hardware

9.1 Memory controller

9.2 Caching strategies L

9.3 Router

10 Other work

10.1 Network interface studies

10.2 Synchronization studies oo o Lo

10.3 Parallel

alpha-beta search

33

