CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Efficient Implementation of Sequential
Loops in Dataflow Computation

B.S. Ang

In Proceedings of Functional Programming
Languages and Computer Architecture,
Copenhagen, Denmark, June 1993.

1993, June

Computation Structures Group
Memo 350

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Efficient Implementation of Sequential Loops in

Dataflow Computation

Computation Structures Group Memo 350
June 5, 1993

Boon Seong Ang

Appeared in the Proceedings of the 1993 FPCA, Copenhagen, Denmark.
Pages 169 - 178.

This paper describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Efficient Implementation of Sequential Loops in Dataflow Computation

Boon Seong Ang

NE43-205, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139.
hahaha@abp.lcs.mit.edu

Abstract

The implementation of sequential loops in dataflow compu-
tation had traditionally not received very much attention
as it was assumed that most loops would be executed in
parallel. This assumption was valid for earlier dataflow ma-
chines such as the MIT Tagged Token Dataflow Architecture
(TTDA)[2], Sigma-1[9] but not for the newest generation
of dataflow machines including Monsoon[6], EM-4[11] and
Epsilon-2[7]. On the latter machines, sequential loops use
less memory, and can execute in fewer instructions, albeit
with lower parallelism than the parallel versions. This char-
acterisation of sequential and parallel loops suggests that
programs should have parallel outer loops and sequential in-
ner loops. The run time of sequential loops therefore become
significant in the overall run time. We also found that previ-
ous implementations of sequential loops can incur fairly high
overheads. In this paper, we present two new ways of im-
plementing sequential loops that have lower overhead then
previous methods. We studied this problem in the context
of compiling 1d[14, 15] for Monsoon.

1 Introduction

Loops executing on dataflow machines can be classified into
three categories according to the amount of inter-iteration
parallelism allowed. At one extreme is an unbounded loop,
where there is no artificial bound on the number of con-
current iterations. Such a loop is compiled into a recursive
procedure which together with non-strict procedure call con-
vention lead to unrestrained unraveling of the loop. Next, we
have what is often referred to as k-bounded loops[5], where
the number of iterations executing concurrently is bounded
to a value k which can be computed at run time. Finally, a
sequential loop is one where one iteration of the loop has to
complete before the next one executes.

The implementation of sequential loops in dataflow com-
putation had traditionally not received much attention as it
was assumed that most loops would execute in parallel, pre-
dominantly as k-bounded loops. This assumption was valid
for earlier dataflow machines such as the MIT Tagged To-
ken Dataflow Architecture (TTDA)[2] and Sigma-1[9] where

the per-iteration cycle cost of executing a loop is the same

whether the loop is k-bounded or sequential. The consump-
tion of resources, in the form of token “tags” is also the same
for both cases. For these machines, it is natural to execute
loops in parallel to reap full benefit of parallel processing.

With the newest generation of dataflow machines (e.g.
Monsoon|[17, 6], EM-4[11] and the Epsilon-2[7]) the situation
is different. These machines use frame memory on each pro-
cessor to implement token-matching(see Section 2.1). This
has two consequences for loops: (i) every concurrent iter-
ation needs its own frame; (ii) sending data between two
iterations that do not share (in a time multiplexed way)
the same frame requires communication through the inter-
connection network. The former means that memory usage
is lower for sequential loops while the latter suggests that
they can execute in fewer cycles. Additional saving comes
from fewer frame allocations and deallocations. The benefits
come, however, at the expense of reduced parallelism. Thus
there is a place for both k-bounded and sequential loops.
Outer loops should be k-bounded for parallelism, while in-
ner loops should be made sequential for efficiency reasons.
Such a strategy places great important on the efficiency of
sequential loops as the run time of inner loops often domi-
nates the overall run time of programs.

Much as sequential loops can potentially be cheap, past
implementations[8, 5] have not achieved the goal of keeping
the costs down. In this work, we present two new ways of
implementing sequential loops that incur less overhead then
previous methods. We studied this problem in the context
of compiling Id[14, 15], a non-strict, inherently parallel lan-
guage, for Monsoon[6, 17]. The two implementations use
slightly different execution models which are discussed in
the paper.

We start by providing some background in Section 2
and proceed to describe some of the past approaches to
implementing sequential loops in Section 3. In Section 4,
we present a new implementation, the self-gating sequential
loop schema, which implements a sequential loop in the pure
dataflow model. We improve upon this schema by adopting
a mixed dataflow-von Neumann execution model to produce
the frame-based-variable sequential loop schema. This is pre-
sented in Section 5. Run time statistics of Id code compiled
using the different implementation strategies are presented
in Section 6. Conclusion follows in Section 7.

2 Background

This section provides a brief introduction to dataflow com-
putation with emphasis on explaining loops. Dataflow com-

putation orders instruction execution according to the avail-
ability of data. A dataflow computer continuously processes
tokens that deliver data to the instructions. On Monsoon,
each token contains: (1) a value; (2) an ip, pointer to the des-
tination instruction; (3) a port, specifying left or right input;
and (4) an fp, the frame pointer. An instruction is executed
during the processing of a token if that token delivers the
last piece of input data needed by the instruction. When
an instruction executes, zero or more tokens are produced.
Program execution starts with the injection of tokens car-
rying the arguments and ends when there is no more token
to be processed.

2.1 Matching and Frames

Central to this execution model is keeping track of which
input tokens have arrived at each instruction, and the values
carried on these tokens. The process of grouping together all
the input operands of a particular instruction, which then
enables the instruction for execution is called matching. We
will further assume that there are at most two inputs to each
instruction®.

A matching mechanism needs to have the following two
features: (1) a way of finding out whether the other operand
has arrived and if so, fetch that operand; (2) a place for
storing the first operand that arrives. In order to support
re-entrant code, the mechanism must distinguish between
tokens belonging to different invocations of the same piece
of code.

On Monsoon, matching is achieved by using frame mem-
ory which is local to each processing element (PE). Each
instruction that requires matching? is assigned a unique slot
of frame memory which has two fields: (1) a presence bits
field indicating the presence or absence of each operand; and
(2) a data field. The former keeps track of whether any one
of the operands has arrived, while the latter provides the
space for storing the operand that arrives first.

In compiling Id code for Monsoon, we group instructions
belonging to the same procedure into a code block. The
matching slots of instructions belonging to the same code
block are assigned contiguous frame memory locations which
are collectively called a frame. During the processing of a
token, the fp (base pointer to a frame) on the token and
the offset encoded in the destination instruction allows the
matching frame slot to be determined. Matching then pro-
ceeds according to the state of the presence bits at the frame
slot.

Monsoon supports re-entrant procedure invocation by al-
locating a new frame for each procedure call[3]. By so doing,
tokens from different invocations will have different fp’s and
hence matching under the scheme described above will be
able to distinguish them.

2.2 Loopsin Id

We start by introducing the syntax with an example that
computes Z?zl ¢ when called with n. The code is shown in
Figure 1. This procedure starts by initializing s to 0 and
then iterates through a loop n times. During each iteration,
it “updates” s by adding the current value of i to the value
of s. Updating a variable presents a problem in Id because

IThe exception to this is a signal-tree which we will see later.
2Not all instructions need matching. Unary operations, for exam-
ple, have only one input and do not require matching.

def sum_1_to n = {s = 0;
in
{for i <- 1 to n do
(next s) = i+s;
finally s}};

Figure 1: An Id procedure that computes) " i when

called with n.

1

Id is basically a functional language. In our example, s is a
nextified variable of the for loop with an assignment made
to (next s) during each iteration of the loop. In the same
iteration, s and (next s) are different identifiers. However,
the (next s) computed in an iteration automatically be-
comes the value of s in the next iteration. The scope of a
nextified variable extends to the finally part of the loop.
Thus the for loop in the example returns the value of (next
s) computed during the last iteration of the loop.

3 Past Implementations of Sequential Loops

Implementing sequential loops on Monsoon turns out to be
very tricky because by using only one frame to execute the
entire loop, the fp is the same for tokens belonging to differ-
ent iterations. Loops in general have to be re-entrant but the
default way of allowing re-entrant code on Monsoon requires
using a new frame for each iteration. With only one frame,
unless the compiler compiles in mechanisms to separate to-
kens belonging to different iterations of the loop, tokens from
different iterations destined for the same instruction can er-
roneously meet under the hardware matching scheme. We
call such an event, a conflict.

In this section, we describe past attempts at solving this
problem. We begin with an “obvious” implementation that
uses a barrier at the end of each iteration. This is, unfor-
tunately, incorrect. We next look at a straight forward fix
which we call the brute-force 2-barrier approach. Finally, we
look at a schema found in Culler[5] which was the previous
best schema.

3.1 An Incorrect, One-barrier Sequential Loop Schema

A first attempt at solving the conflict problem has the
compiler insert a barrier at the end of each iteration. The
barrier separates the current iteration from the next one
and ensures that the next iteration does not begin execution
until the current one has completed. Such a barrier can be
implemented as shown at the bottom of Figure 2.

Figure 2 is the dataflow diagram for the code in Fig-
ure 3 which computes the n** Fibonacci number. We can
discern four regions in the dataflow diagram. At the top is
a shaded oval blob labeled “Loop Predicate”, which com-
putes a boolean value indicating whether another iteration
should be executed. Below this blob is a row of ovals, each
with a “T” and an “F” output. FEach oval is a switch that
directs the value coming in on top to either the “T” or “F”
output depending on the boolean value that comes in by
the side. Next comes a big grey region labeled “loop body”
where the bulk of the computation of each iteration is car-
ried out. At the bottom is the barrier which consists of two
parts: (1) A signal tree (the iteration termination signal
tree) that collects the next values of the nextified variables.

Final Values

et | next ¢ hoxt ol Barrier
' Sal signal
e tree

Figure 2: An incorrect implementation of the sequential loop
in £ib using the one-barrier approach. Under certain exe-
cution order, two tokens may end up on the value-input arc
(shaded) of (next p)’s gate at the same time.

def fib n = if (n==0) then 0
else
{p=0; c=1;
in
{for i <- 2 to n do
(next c) = c+p;
(next p) = c;
finally c}};

Figure 3: £ib computes the n‘* Fibonacci number.

This produces an output token when all the inputs have ar-
rived. The actual value on the token is unimportant as the
token is only used to signal an event. (2) A row of gate in-
structions (represented as bow-ties), one for the next value
of each nextified variable. Each gate, triggered by the out-
put of the signal tree, is placed just before the next value
is “circulated back” to the next iteration. A gate instruc-
tion takes a value input at the top, and a trigger input on
the side. When both input tokens have arrived, a gate pro-
duces an output token carrying the same value as that on
the value input. Computation that needs the output of a
gate instruction is therefore guaranteed not to occur before
the trigger is available.

This set of signal tree and gates implements a barrier as
no value can cross the array of gates until every value has
arrived at the barrier. Because the next values of nextified
variables are the only input tokens to the next iteration, the
next iteration cannot start until the current one finishes.
There is one last symbol used in the dataflow diagram, a
circle with a cross inside. This is a merge which has two
inputs and one output. A merge is not a real instruction
executed at run time. The simplest way to think about
a merge is that the token that emerges from its output can
come from either one of its inputs, and no matching of inputs
occurs.

While the one-barrier approach may look deceivingly cor-
rect, tokens from two iterations can conflict for some loops,
such as the fib loop. On a dataflow graph, conflicts be-
tween tokens from different iterations is indicated by either
two or more tokens ending up on the same arc at the same
time, or two tokens from different iterations matching at an
instruction. Having two tokens on the same arc is a prob-
lem on Monsoon as that requires storing two values on the
same frame slot when we only have space for one. Even
if we could store more than one value on a frame slot, we
would not know which value to use for matching when a
token subsequently arrives at the other input of the same
instruction.

In the dataflow graph of Figure 2, two tokens carrying
(next p) from neighboring iterations can end up on the
shaded value-input arc of (next p)’s gate at the same time.
This happens if at the end of iteration i, after tokens carry-
ing (next i), (next c) and (next p) have arrived at the
barrier, the tokens carrying (next i), (next c) and values
produced by them including those in iteration (i + 1) are
processed before (next p) of iteration ¢ is processed. Pro-
cessing of the token carrying (next c) of iteration ¢ results
in several tokens in iteration (¢+ 1) including one which car-
ries (next p) of iteration (24 1). This is sent to (next p)’s
gate while (next p) from iteration ¢ is still waiting on the
same input arc!

The problem with the naive one-barrier implementation
of sequential loop is that the resources that we are reusing
include the frame slots used by the array of gates in the
barrier. The signal tree of the barrier, on the other hand,
does not include completion of usage of these frame slots.
Thus the signal from this signal-tree is not a good enough
indication that the next iteration can start.

3.2 A Brute-force, Two-barrier Sequential Loop Schema

A brute force fix for the incorrect one-barrier approach uses
two barriers as shown in Figure 4. The signal tree of barrier
2 indicates not only that computation has finished within
the loop body itself, but that the frame slots belonging to
the gates in barrier 1 can be reused. As every output from
barrier 2 is recirculated back, the signal tree of barrier 1
cannot signal completion until every output of barrier 2 has
left the barrier. This makes it safe to reuse the frame slots
used by barrier 2’s gates when the signal tree of barrier 1
signals completion.

Although the two-barrier approach is correct, it is very
expensive. On Monsoon, each barrier costs approximately
4n cycles where n is the number of nextified variables. The
total cost of using the two-barrier approach is then 8n cy-
cles. This is a huge overhead! Consider the loop of fib
for example. The overhead will be about 24 cycles when the
“useful work” done each iteration is only 3 to 4 cycles. RISC
code implementing the same loop will only take 4 cycles each
iteration!

3.3 Culler’'s Sequential Loop Schema

Culler[5] describes another correct implementation of se-
quential loops which is less costly than the two-barrier ap-
proach. The schema is shown in Figure 5. One can still
discern parts of two barriers, but the two parts of each bar-
rier, signal tree and array of gates, have been pulled apart.
In addition, the schema cleverly avoids one array of gates by
instead using the array of switches and gating the predicate

initial values

Final Values

barrier 1

w7
' barrier 2
\Eon O

Figure 4: Brute force implementation of sequential loop with
two barriers at the end of each iteration. This implementa-
tion is correct but very expensive.

input to the switches. The reader is referred to [5] for a
correctness proof of this schema.

Culler’s schema is less costly then the two-barrier ap-
proach. On Monsoon, the overhead for a sequential loop
with n nextified variable is approximately 6n cycles per it-
eration, a significant saving compared to 8n cycles for the
two-barrier approach. This was the best implementation we
had before the current work, and was used in the Id com-
piler. However, 6n cycles per iteration is still a hefty over-
head. For fib, this still means 18 cycles of overhead. We
will next present new sequential loop schemata that have
much lower overhead costs.

4 Self-gating Sequential Loop Schema

The self-gating sequential loop schema is motivated by an
optimized version of the one-barrier approach of Section 3.1.
In the optimized version, we use the same clever trick that
is used in Culler’s sequential loop schema to avoid an ar-
ray of gates by making use of the switches at the iteration
boundary. This still-incorrect schema is shown in Figure 6
for the fib code. The schema has very little overhead. In
terms of our cost measure, the overhead is approximately
n + 2 cycles where n is again the number of nextified vari-
ables. However, it suffers from the same problem as the
one-barrier approach.

The schema has no problem with conflicts within the
loop-body because of the signal tree and gating of the pred-
icate into the switches. The setup ensures that tokens for the
next iteration are prevented from passing the row of switches
until all tokens of the previous iteration have cleared out of
the loop-body. There is also no problem with conflict within
the loop-predicate region if we ensure that the output of the
loop-predicate region is only produced when all computa-
tions inside the loop-predicate region have completed. This
can be ensured locally within the loop-predicate block.

The problem with the optimized one-barrier schema lies

‘\\\\\'

AN

4,...,111//}'}55,.{/4/,4,.,,////12’54//
O

T

OO

SN <

row A
of X %
gates e .

i,

barrier iteration termination signal

Figure 5: Culler’s sequential loop schema.

i=2 c=1 p=0 jnitial
trigge

Figure 6: £ib wired up under the improved the one-barrier
sequential loop schema. Note how conflict can still occur at
the value-input to p’s switch.

in the part of the loop outside the loop-body and loop-
predicate blocks. In particular, the trouble spots are the
“loop-back” arcs that recirculate the nextified variables pro-
duced in the loop-body back to the switches. Looking at
Figure 6, we find that once again, if the tokens of (next
i) and (next c) are processed before that of (next p), a
fast recirculating (next c) from iteration ¢ can get into the
next iteration, become (next p) of iteration (¢ + 1) which
recirculates back to the switch for p and conflicts with the
(next p) of iteration ¢ which is still there.

Culler’s schema removes such conflicts by holding the
nextified values behind the row of gates outside the loop-
body until all the nextified values from the previous itera-
tion have passed through the switches. (See Figure 5.) We
can, however, do better. Careful examination of the opti-
mized one-barrier schema shows that we only need to hold
each nextified value behind a gate until #ts previous nexti-
fied value has gone through its switch. This alone will ensure
that no conflict can occur at the input to each switch. While
we still need an array of gates to hold back the next values,
each gate is triggered by a token carrying the current value

Figure 7: The loop in fib wired up under the self-gating
sequential loop schema.

of the corresponding nextified variable. Figure 7 illustrates
this schema with the fib code. The reader should check
that no conflict can arise at the input to p’s switch as (next
p) of the (i41)*" iteration is held behind the gate labeled g1
in the figure until (next p) of the i*" iteration has moved
through its switch. We call this gating of the next value
of each nextified value with its current value self-gating. A
formal correctness proof of this schema is given in [1]. This
schema avoids one of the signal trees in Culler’s schema.
We will also see in Section 4.1 that it is easy to optimize the
self-gating schema.

The self-gating sequential loop schema incurs an over-
head of approximately 4n + 2 cycles per iteration where n
is the number of nextified variables. This is, approximately,
a 33% savings over the 6n + 2 overhead of Culler’s schema.
Further improvement is possible, and we will see them next.

4.1 Optimization of the Self-gating Sequential Loop Schema

The self-gating sequential loop schema has another big ad-
vantage over Culler’s schema in that in most cases, it can
easily be optimized. Self-gating is not always necessary and
it is not difficult to determine this at compile time. Strict-
ness information plays a crucial role in the optimization.

4.1.1 Removing Redundant Self-gates

The self-gating of each nextified variable serves to ensure
that during each iteration, the next value of a nextified vari-
able does not recirculate back to its switch until its current
value has passed through the switch. For most nextified vari-
ables, there is data-dependence between the current value
and the next value such that the next value cannot be pro-
duced until the current value is available in the loop-body.
In such cases, the role performed by self-gating is inherent
in the code of loop-body itself, so there is no need to add
the self-gating. Another way to look at the data-dependence
between the current and next values of the nextified vari-
able is that the computation of the next value is strict in
the current value. This information can be gathered easily
by strictness analysis.

In the loop of fib for example, the value of (next i)
is strict in the value of i. Similarly for (next c¢) and c.

Figure 8: The loop in £ib wired up under the fully optimized
self-gating sequential loop schema.

There is therefore no need to self-gate either of these nexti-
fied variables. The resulting dataflow graph, together with
the optimization described in the next section, is shown in
Figure 8.

4.1.2 Reducing Iteration Termination Signal Tree Size

A second optimization is to reduce the number of inputs to
the iteration termination signal tree. Again, we make use
of data-dependence that is already present in the code to
achieve this. Nextified variables are included in the itera-
tion termination signal tree so that we do not let the loop
predicate value get past gate g2 in Figure 7 until all the next
are available. But if the predicate computed by the loop-
predicate block is strict in the next value of a particular
nextified variable, we do not need to include that nextified
variable in the iteration termination signal tree. In the fib
example, (next 1) is required before the predicate can
execute. There is therefore no need to include it in the iter-
ation termination signal tree. The dataflow diagram of the
fib loop including this optimization is shown in Figure 8

For a loop with n nextified variables, m of which need
self-gating, and p of which need to be included in the it-
eration termination signal tree, the overhead introduced by
the sequential loop schema is approximate (p + 3m). Usu-
ally, m is much smaller than n and frequently 0, while p is
smaller than, but closed to n. Overall, this results in very
low overhead for the sequential loops. In the fib example,
the overhead is only 5 cycles per iteration, barely 30% of the
18 cycles overhead incurred under Culler’s schema.

5 Frame-based-variable (fbv) Sequential Loop Schema

While the self-gating sequential loop schema is a big im-
provement over Culler’s sequential loop schema, sequential
loops are still fairly expensive in Id. Consider again the ex-
ample that computes » " i (Figure 1). Figure 9 shows its
implementation in the optimized self-gating schema.

The loop in sum_1_to actually incurs very little overhead
that is directly attributed to the sequential loop schema. No
self-gating is needed and (next i) does not need to be in-
cluded in the iteration termination signal tree because the
loop-predicate blocks’s output is strict in it. Despite all

termination signal

Figure 9: The loop of ZLI wired up under the optimized
self-gating sequential loop schema.

these favorable conditions, Monsoon takes 12 cycles to exe-
cute one iteration of this loop. A typical piece of RISC code
performing the same task takes only 4 cycles. Further im-
provement is needed and we begin this effort by identifying
the sources of inefficiency.

5.1 Remaining Sources of Overhead in Sequential Loops

An examination of Figure 9 shows that processor cycles are
incurred by the following that are not present in RISC code:
(1) switching, (2) fanout, and (3) matching bubbles.

Switching refers to the fine-grain switching at loop it-
eration boundary. This mechanism determines if the next
values of nextified values go to the next iteration or exit the
loop. Each nextified variable is switched individually.

Fanout are needed due to architectural constraints. On
Monsoon, each instruction can have at most two destinations
while some are restricted to only one. If a value is needed at
more destinations than the instruction producing it can cope
with, we need to use fanout instructions to supply the value
to all the places where it is needed. A fanout instruction
takes an input token and produces two tokens carrying the
same value. In general, a tree of fanout instructions is used
to duplicate a value sufficiently many times to supply all its
destinations.

Bubbles are caused by matching. During matching of
two tokens, the first token to arrive does not result in actual
execution of an instruction. Nevertheless, Monsoon takes
one cycle to process the token. As the ALU part of the
pipeline is not used during this cycle, the cycle is known
as a matching bubble or bubble in short. Thus, each binary
operation takes at least two cycles to execute with the first
one a bubble.

All the features listed above are needed to support fine-
grain parallel execution in the pure-dataflow model. Fanout
overhead can be reduced slightly with better architectural
support such as the “repeat” feature found on the Epsilon-2
machine[7]. But as long as each operand value is distributed
on a token in the conventional dataflow model, switching and
matching bubble cycles are inevitable. They are deeply tied
to pure-dataflow’s model of data transfer and instruction
execution.

The analysis yields some good news and some bad ones.
The bad news is: if we insist on staying within the pure-
dataflow model, there is little we can do to improve the
efficiency of loops except perhaps add hardware to perform

fanout and matching without using the main processor pipeline.

It is not clear how much is gained through such hardware
solutions when the cost of hardware is taken into account.
On the other hand, if we are willing to go beyond the pure-
dataflow model by adopting some elements of von Neumann
style execution, we can improve the efficiency of most se-
quential loops through a different compilation strategy. This
is the basis of our next approach.

5.2 The Frame-based-variable (Fbv) Approach

This new implementation of sequential loops is motivated
by the observation that sequential loops must synchronize
at the loop boundary. The presence of this synchronization
makes some of the matching in the loop-body itself redun-
dant.

Specifically, all the next values of nextified variables are
synchronized at the end of each iteration. When these values
cross over to the next iteration, they become the current
values of the nextified variables. Thus, by the time the next
iteration starts executing, we already know that the current
values of nextified variables are available, and there should
be no need to synchronize(match) before their uses. If we
can somehow harness this property, we should be able to
reduce the number of matching bubbles.

There is also no point in switching each nextified value
individually. Fine-grain switching is done so that computa-
tions needing only the switched value can proceed as soon as
possible. However, due to the barrier at iteration boundary,
we are not making use of this benefit of fine-grain switch-
ing at all. As fine-grain switching is fairly expensive, it will
be a great saving if we can get rid of them or reduce their
number.

5.2.1 A Mixed Dataflow-von Neumann Execution Model

In order to reap the benefits outlined above, we need an
execution style with “von Neumann” flavors: the values of
nextified variables are passed via frame memory locations in-
stead of on tokens. Next values are stored directly into frame
memory locations, and uses of a nextified variable simply
read from these locations. The approach shares some simi-
larities with multithreading described in [18]. With such an
approach, we only need to retain one nextified variable that
is passed via tokens and switched at the iteration boundary
to initiate each iteration. As most nextified variables are
stored explicitly in frame slots, this approach is called the
frame-based-variable (fbv) sequential loop schema.

Ideally, we would like the operations that use nextified
variables to read the frame memory locations directly, and
those that produce the next values to store them into frame
memory directly. Unfortunately, this requires a frame-memory
to frame-memory 3-address instruction set that is not sup-
ported by Monsoon. It is also doubtful whether such instruc-
tions can be supported efficiently on real machines. Memory
hierarchy to support efficient fine-grain execution is an in-
teresting and important topic but is unfortunately beyond
the scope of this work.

Coming back to Monsoon, storing into frame memory
has to be done via an explicit store instruction. For reads,
however, we can at times avoid identity instructions, which
are Monsoon’s equivalent of explicit load instructions. Mon-
soon supports a one-address accumulator style code. In the
case where a nextified variable is used in a binary operation
which has a token input as the other operand, Monsoon is

initial values

initial

h*‘v trigger

L oop iteration
Body termination fetch
signal final
£ . values
T [store]
_~

Figure 10: The skeleton of the frame-based-variable (fbv)
sequential loop schema. This is not complete. Additional
mechanisms is needed to prevent WAR hazards.

able to read the value of the nextified variable from memory
directly. In cases where both inputs of an instruction are
from frame memory, we need to insert an identity instruc-
tion that fetches one of the operands explicitly. The identity
instruction will have to be triggered, i.e. have a trigger input,
as the arrival of a token is the only way to initiate execution
on Monsoon. A trigger in this case is similar to a trigger to
a gate instruction in that the token is merely used to enable
an operation.

The general fbv sequential loop schema is shown in Fig-
ure 10. Self-gating of the switched nextified variable can be
optimized out as usual if the data-dependence check allows
it. As before, we need to collect an iteration termination sig-
nal. For nextified variables that are not switched, the signal
outputs of the store instructions are fed into the iteration
termination signal tree. We cannot optimize any of these
out on the ground that the loop-predicate is strict in that
nextified variable. This optimization only apply to switched
nextified variables.

Next values that are used in the loop-predicate block are
still supplied via tokens. That accounts for the re-circulation
arcs, but there are usually relatively few of them as nexti-
fied variables not used in the loop-predicate block are not
recirculated. The initial values of the nextified variables
have to be stored before the loop can start execution. This
is done by the row of store instructions at the top of Fig-
ure 10. Lastly, the final values returned by the loop need to
be fetched explicitly.

5.3 Data Hazards in the Frame-based-variables Approach

The fbv sequential loop schema described in the last section
suffers from a major complication arising from the parallel
execution of code within the loop-body. The body of each
iteration is executed in parallel in a sequential loop, even
though the iterations of the loop are executed one at a time.
Under the fbv approach, each frame slot used to store a

nextified variable is both read from and written into every
iteration. For correctness, we have to make sure that every
use of a nextified variable reads the current value and not
the next value. But because of parallel execution in the
loop-body, this is not guaranteed automatically and it is
possible to have Write After Read (WAR) hazards® where
the update occurs too soon.

A nextified variable suffers from WAR hazard if there is
a use of the nextified variable that is not guaranteed to occur
before the next value of the nextified variable is computed.
A use is guaranteed to occur first if it is strict for the com-
putation of the next value. There are several ways to deal
with this problem; we explored two general solutions: (1)
delay the store of the next value until it is safe to perform
the store; (2) use two frame slots for each nextified variables,
one for reads, one for the write, moving the value from the
write slot to the read slot at the iteration boundary.

5.3.1 Fbv hazard solution 1: Delaying the Store

We can avoid WAR hazards by delaying the store of each
next value with a suitably triggered gate, i.e. insert a gate
instruction on the arc supplying the value to be stored. We
call each gate instruction used this way a store-gate, and this
solution, the gated-store approach. The trigger input to each
store-gate is carefully chosen so that its availability signals
the completion of all the reads from the corresponding frame
slot, making it safe for the store to proceed.

For a nextified variable x that suffers WAR hazard, the
most straight forward way to obtain a trigger for its store-
gate is to perform an explicit fetch of x from its frame slot.
The output of this fetch is supplied to all the uses of x that
are not strict for (next x), and also used to trigger the
store-gate of x. This ensures that the store will never occur
until all reads from x’s frame location are done. Figure 11
shows the fbv sequential loop schema with this approach
to handle WAR hazards. Storage of the initial values of
nextified variables is left out in the figure to avoid clutter.

The gated-store solution described above can be opti-
mized. The gated-store solution inserts an explicit fetch for
each nextified variable that has a hazard problem. Each of
these fetches is triggered with an input that initiates the
fetch. By using the output of a fetch to trigger another
fetch and carefully ordering the fetches, we can add data-
dependence between uses of nextified variables and their re-
spective next values without changing the overall semantics
of the program. Such added data-dependences can remove
some of the WAR hazards.

Figure 12 show how this is applied to the loop in fib.
The left side of the figure shows the loop without this opti-
mization. As both p and ¢ have uses that are not strict for
(next p) and (next c) respectively, they need store-gates
as shown. With clever choice of triggers for the fetches, how-
ever, we can trigger the fetch of ¢ with the output from the
fetch of p. As (next p) is dependent on the output of this
fetch of ¢, this choice of fetch triggers effective makes (next
p) dependent on the only use of p, making it unnecessary to
gate the store of (next p). The resulting dataflow graph is
shown on the right side of Figure 12.

3Write After Read hazard is a term used in RISC literature to
refer to incorrect ordering of memory operations where a write that
should occur after a read from the same location is allowed to occur
before the read. The read ends up reading a newer value stored to
that location.

initial values

Figure 11: The frame-based-variable sequential loop schema
with the gated-store, explicit fetch, approach to dealing with
WAR hazards.

5.3.2 Fbv hazard solution 2: Using 2 frame slots.

The second solution to the hazard problem uses 2 frame slots
for each nextified variable. In the loop-body, we always read
from one location and store into the other. At the end of
each iteration, we move the values from the store-locations
to the read-locations before allowing the next iteration to
start. Figure 13 shows the resulting fbv sequential loop
schema. We will refer to this solution as the 2-slot approach.

This solution is very simple in that the compiler needs
to do almost no analysis to implement it. Surprisingly, even
though a move from one frame memory location to another
takes two instructions on Monsoon, the solution is still fairly
efficient as there is no gating whatsoever.

The one drawback of this schema is that the string of
fetch-store instructions performing the moves in-between it-
erations can result in rather long latency. This is partic-
ularly bad for Monsoon which is very sensitive to a single
long thread. Unlike most pipelined RISC processors, each
Monsoon processor interleaves eight independent thread of
computation, such that a single thread will only occupy one
out of every eight cycles. Latency of an n instruction thread
is therefore (8 X n). In addition, eight-fold parallelism is
needed on each processor to keep it busy. By linearizing
work into a thread, the 2-slot approach reduces parallelism.
We will see some of these effects in the next section when
we present some run time statistics.

6 Run Time Statistics on Monsoon

In this section, we present the run time statistics of eight

programs compiled using four different sequential loop schemata:

Culler’s schema, self-gating schema, gated-store-fbv and 2-
slot-fbv. The programs are run on a Monsoon configured
with one processing element (PE) and one I-Structure (IS)
board. The statistics are gathered with hardware support
and is non-intrusive to the first order[16, 12]. We will first

Figure 12: fib wired under the fbv sequential loop schema
with the general gated-store, explicit fetch, approach to
dealing with WAR hazards. The dataflow graph on the left
is without optimization while the one on the right optimizes
the triggering order.

briefly describe the eight programs before examining the
statistics.

6.1 The Benchmarks

The following benchmarks are used to compare the different
sequential loop schemata. Each has a sequential loop as its
innermost loop.

1. MATRIX MULTIPLY creates two n x n double-precision
floating point matrices, computes their product matrix
and returns the sum of the elements of the product
matrix as its result. The multiplication of matrices is
coded up as straight-forward, triply nested loops with
the innermost loop computing a dot-product.

2. BLOCKED MM is similar to MATRIX MULTIPLY except
that it is blocked so that each iteration of the inner-
most loop computes the inner-product of a 4 x 4 block
of the result matrix.

3. SIMPLE[4] is a hydrodynamics and heat conduction
simulation program. It uses a Lagrangian formula-
tion of equations to simulate the behavior of fluid in a
sphere. Unlike the other benchmarks described here,
this is a sizable program and is representative of a class
of numerical programs.

4. PARAFFINS enumerates all the distinct isomers of every
paraffin* with n or fewer Carbon atoms. The program
generates lists of paraffins and finally returns an array
filled with the number of distinct paraffins of each size
up to and including the maximum size specified by the
user.

5. FIB computes the n'* Fibonacci number. The code is
listed in Section 3.1 and does the computation with a
sequential loop. It runs in O(n) time.

4Paraffins are molecules with chemical formula Crn Hg, 49, where C
and H stand for carbon and hydrogen atoms, respectively, and n > 0.

initial values initial
trigger

Body fetch

final
s 2 values
store
A
<~

move nextified

variablesfrom fetch
storedotsto [sore
read slots

Figure 13: The frame-based-variable sequential loop schema
with the 2-frame-slot-per-nextified variable approach to take
care of WAR hazards.

6. MERGE SORT generates an array of n random numbers
and then proceeds to sort it using the merge sort al-
gorithm. The program is recursive but uses a loop to
perform merging.

7. STATS generates an array of size n, fills it with random
numbers and then finds the minimum, maximum, and
average of the values in the array.

8. FFT computes the Fast Fourier Transform of a degree
n polynomial. It takes O(nlogn) time.

6.2 The Results

Table 1 shows the results. Due to the lack of space,the
data is highly compressed. For each program, three pairs of
normalized numbers, each corresponding to using a new se-
quential loop schema during compilation, are reported. The
two numbers in each pair are separated by a slash “/”. The
first, token-count, corresponds to the total number of tokens
processed by the Monsoon processor and can be thought of
as the useful work done. The second corresponds to the
elapsed time for running the program, and is call the criti-
cal path length. The difference between the two numbers is
due to Monsoon’s 8-way interleaved pipeline which requires
eight fold parallelism at any time to keep a processor busy.
When there is not enough parallelism, idle cycles are in-
curred, which are included in the critical path length but
not the token-count. All the numbers are normalized, using
the token-count and critical path length of the same pro-
gram compiled with Culler’s schema as basis.

While critical path length is important if we are inter-
ested in how fast each program runs on its own, the token-
count matters more here as most of these benchmarks are

Program Self-gating Gated- 2-slot-Fbv
store-Fbv
Matrix Murtipry | 0.68/0.71 | 0.53/0.55 | 0.53/0.55
BrLockEpD MM 0.69/0.70 | 0.51/0.53 | 0.51/0.53
SIMPLE 0.96/0.96 | 0.94/0.95 | 0.96/0.96
PARAFFINS 0.88/0.89 | 0.89/0.90 | 0.88/0.89
FiB 0.71/0.75 | 0.35/0.80 | 0.41/1.06
MERGE-SORT 0.92/0.93 | 0.88/0.91 | 0.91/0.94
STATS 0.79/0.82 | 0.66/0.74 | 0.66/0.75
FFT 0.90/0.92 | 0.87/0.89 | 0.88/0.91

Table 1: Comparison of various Sequential Loop Schema.
Each box contains 2 numbers: normalized token-count/
critical path length. Normalization is with respect to the
run time of the respective programs compiled with Culler’s
schema.

small toy routines that we expect to find as inner loops of
larger programs. Real programs are expected to be larger
and have several instances of the inner-loops executing at the
same time which together provide the required parallelism.
We should, nevertheless, try to keep the critical path lengths
closed to the token-counts so that the amount of parallelism
that has to be provided by other code running at the same
time is kept low.

The token-count of every program is lower when com-
piled with any of the three new sequential loop schemata
than with Culler’s schema. In addition, the fbv schema with
gated-stores gives the best run time in almost every cases.
Improvements ranges from 6% to 65%. The low improve-
ment for SIMPLE can be explained by noting that SIMPLE
contains loops with very few nextified variables, and also
fairly large loop bodies. This means that the loop overhead
was relatively small to start with, and hence there is little
scope for improvements.

The critical path length of the benchmark programs shows
similar improvement. The only exception is FIB compiled
under the 2-slot fbv schema where the critical path is actu-
ally longer than the same program compiled under Culler’s
schema. This example illustrates the short-coming of the 2-
slot fbv schema that we mentioned earlier, namely that of a
long single thread where data is move between the write and
read slots. Gated-store fbv is still the best in most cases. In
other cases it is also not too far off from the best timing.

Based on the run time for our benchmarks, the gated-
store fbv sequential loop schema emerges as the best sequen-
tial loop schema among those that we have studied, having
both low token-counts and critical path lengths.

7 Conclusion and Future Directions

‘We explored various ways of implementing sequential loops
efficiently on dynamic dataflow machines that perform match-
ing with frame memory. Several other good schemata were
not examined due to lack of space. We will quickly point
out a few of them, although we believe that what we have
presented in this paper are at least as good. One way of
reducing the sequential loop overhead of the 2-barrier ap-
proach is to use 2 copies of code, with a barrier between
each copy. In addition, the gates in the barriers can be re-
moved by simply gating the switch predicate instead. We

believe that the self-gating sequential loop schema is as ef-
ficient as this schema for most cases, given that most nex-
tified variables are strict in their current values. By using
the self-gating schema, we avoid the increases in code and
frame sizes that accompany duplication of code. The 2-slot
fbv can also be improved by duplicating code. This avoids
the explicit moves between the two slots by having each copy
use opposite slots for reading and writing.?

This work also pointed out very clearly the shortcom-
ings of pure dataflow execution. The comparison of pure
dataflow execution with RISC style code in Section 5.1 is
applicable to dataflow execution in general. The overheads
of switching, fanout and matching bubbles is inherent in
the pure dataflow execution model. These problems have
already been noted by other researchers, and means of over-
coming them have been suggested by lannucci[10], Culler[19],
Traub and Papadoupolos[18, 20]. In general, a fundamental
change in the way data is communicated, from only via to-
kens to using memory as well is needed. This together with
threading by the compiler allows redundant synchronization
to be removed.

The *T project[13], jointly undertaken by our research
group at MIT and Motorola, will be investigating and test-
ing these approaches on a real machine. Some interesting
open questions remain, including what sort of memory hier-
archy, instruction set and scheduling will efficiently support
this style of execution. It appears doubtful that the tradi-
tional RISC style three-address register-to-register instruc-
tion sets with generic general-purpose registers is a good
match for this style of execution due to the expected high
frequency of thread switch.

Acknowledgements

Funding is provided in part by the Advanced Research
Projects Agency of the Department of Defence under Office
of Naval Research contract N00014-89-J-1988.

References

[1] B. S. Ang. Optimization of Loops for Dynamic
Dataflow Machines. Master’s thesis, MIT, EECS, Lab-

oratory for Computer Science, December 1992.

[2] Arvind and R. S. Nikhil. Executing a Program on
the MIT Tagged-Token Dataflow Architecture. IEEE
Transactions on Computers, 39(3):300-318, March
1990.

[3] D. T. Chiou. Activation Frame Memory Management
for the Monsoon Processor. Master’s thesis, MIT,
EECS, Laboratory for Computer Science, September
1992.

[4] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy.
The SIMPLE Code. UCID 17715, Lawrence Livermore
Laboratory, February 1978.

[5] D. E. Culler. Managing Parallelism and Resources in
Scientific Datalfow Programs. PhD thesis, MIT, EECS,
Laboratory for Computer Science, June 1989.

[6] D. E. Culler and G. M. Papadopoulos. The Explicit
Token Store. Journal of Parallel and Distributed Com-
puting, 10(4):289-308, 1990.

51 would like to thank one of the referees for pointing out these
possibilities.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

V. G. Grafe and J. E. Hoch. The Epsilon-2 Multiproces-
sor System. Journal of Parallel and Distributed Com-
puting, 10(4):309-318, 1990.

J. E. Hicks. Id Compiler Back End for ETS and Mon-
soon. CSG memo 310, MIT Lab for Computer Science,
Cambridge, MA, June 1990.

K. Hiraki, K. Nishida, S. Sekiguchi, T. Shimada, and
T. Yuba. The SIGMA-1 Dataflow Supercomputer: A
Challenge for New Generation Supercomputing Sys-
tems. Journal of Information Processing, 10(4):219—
226, 1987.

Robert A. Iannucci. Parallel Machine, Parallel Ma-
chine Languages: The Emergence of Hybrid Dataflow
Computer Architectures. Kluwer Academic Publishers,
1990.

Y. Kodama, S. Sakai, and Y. Yamaguchi. A Proto-
type of a Highly Parallel Dataflow Machine EM-4 and
its Preliminary Evaluation. Proceedings of InfoJapan,

10(4):291-298, 1990.
Venkat Natarajan, Derek Chiou, and B. S. Ang. Perfor-

mance Visualization on Monsoon. Journal of Parallel
and Distributed Computing, May 1993. (To appear).

R. H. Nikhil, G. M. Papdopoulos, and Arvind. *T:
A Multithreaded Massively Parallel Architecture. In
Proceedings of the 19th ISCA, Gold Coast, Australia,
May 1992.

R. S. Nikhil. Id Reference Manual, Version 90.1. CSG
memo 284-2, MIT Lab for Computer Science, Cam-
bridge, MA, September 1990.

R. S. Nikhil and Arvind. Id: a Language with Implicit
Parallelism. CSG memo 305, MIT Lab for Computer
Science, Cambridge, MA, February 1990.

G. M. Papadopoulos. Program Development and Per-
formance Monitoring on the Monsoon Dataflow Mul-
tiprocessor. In Proceedings of the Workshop on In-
strumentation for Future Parallel Computing Systems.
ACM Press, 1989.

G. M. Papadopoulos. Implementation of a General-
Purpose Dataflow Multiprocessor. Research Monograph
in Parallel and Distributed Computing. MIT Press,
1992.

G. M. Papdopoulos and K. R. Traub. Multithreading:
A Revisionist View of Dataflow Architectures. In Pro-
ceedings of the 18th ISCA, Toronto, Canada, May 1991.

K. E. Schauser, D. E. Culler, and T. von Eicken.
Compiler-Controlled Multithreading for Lenient Paral-
lel Languages. In Proceedings of the 5th FPCA, Cam-
bridge, MA, pages 50-72, 1991. (Springer-Verlag LNCS
523).

K. R. Traub. Multi-thread Code Generation for
Dataflow Architectures from Non-Strict Programs. In
Proceedings of the 5th FPCA, Cambridge, MA, pages
73-101, 1991. (Springer-Verlag LNCS 523).

