CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Parallel Programming Based on
Continuation-Passing Threads

Michael Halbherr, Yuli Zhou, Chris Joerg

In Proceedings of the 2nd International Workshop on
Massive Parallelism: Hardware, Software and Applications,
Capri, Italy, October 3-7, 1994

1994, October

Computation Structures Group
Memo 355

n ~
e

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

MIMD-Style Parallel Programming
Based on

Continuation-Passing Threads

Computation Structures Group Memo 355
March 7, 1994

Michael Halbherr, Yuli Zhou and Chris F. Joerg

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-92-J-1310.

_ v

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

1

This paper presents the parallel continuation machine (PCM), a dynamic execution model
creating patterns of locality which are necessary to harvest the computing power of today’s
message passing architectures. We will first concentrate on explaining the key ideas under-
lying the implementation, and then demonstrate how they give rise to extremely efficient

MIMD-Style Parallel Programming
Based on
Continuation-Passing Threads

Michael Halbherr* Yuli Zhou* Chris Joerg*

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 01239

Abstract

Today’s message passing architectures are characterized by high communication
costs and they typically lack hardware support for synchronization and scheduling.
These deficiencies present a severe obstacle to obtaining efficient implementations of
parallel applications whose communication patterns are either highly irregular or de-
pendent on dynamic information.

In this paper we present a model based on continuation-passing threads in which
we try to overcome these difficulties. The model incorporates two effective software
mechanisms targeted towards lengthening sequential threads in order to offset the costs
of dynamic scheduling, and towards preserving the locality of computations to reduce
the network traffic. The model is currently implemented as a C language extension
along with a runtime system implemented on the CM-5 that embodies a work stealing
scheduler. Real world applications written in this package, such as ray-tracing and
protein folding, have shown impressive speedup results.

Introduction

parallel programs via two real-world examples.

munication regularity, and whether the execution depends on runtime data.

Parallel programs can be classified along several dimensions, such as grain-size, com-

We believe

*Research performed at the Laboratory for Computer Science of the Massachusetts Institute of Tech-
nology. Funding for the Laboratory is provided in part by the Advanced Research Projects Agency of the

Department of Defense under the Office of Naval Research contract N00014-92-J-1310.

that existing programming models, such as data parallel programming and explicit mes-
sage passing, have been successful in addressing the needs of programs with simple static
communication patterns. For these programs it is usually possible to carefully orchestrate
communication and computation to statically optimize the overall performance.

On the other hand, it proves far more difficult to find static solutions leading to high
machine utilizations for parallel applications whose communication patterns are either highly
irregular or dependent on dynamic information. In this paper, we are mostly interested in
investigating the needs and characteristics of these classes of programs, which must rely on
runtime mechanisms to enable efficient solutions.

Multi-threaded computation models have typically been proposed as a general solution to
exploit dynamic, unstructured parallelism. In such a model, dynamically created instances
of sequential threads of execution cooperate in solving the problem at hand. To efficiently
execute such an application, it is necessary to have efficient runtime thread placement and
scheduling techniques. Although this general thread placement problem is known to be NP-
hard [9], it is possible to implement schedulers based on simple heuristics, achieving good
machine utilizations at reasonable cost. These heuristics usually work well for a broad class
of applications, making it possible to implement the scheduling and placement task as a
fairly generic service that resides at the core of the runtime system.

Unfortunately, current parallel architectures present severe obstacles to achieving accept-
able results for multi-threaded applications. These machines typically consist of a collection
of computing nodes that communicate with each other through a message-based communica-
tion network. The individual RISC-like nodes have been optimized for sequential computa-
tions with a high locality of reference, and the cost of network accesses are often one or more
orders of magnitude more expensive than local memory accesses. Multi-threaded programs,
however, often require frequent global communications. In addition, by exposing multiple
threads a parallel program tends to both lose locality and incur extra runtime overhead in
synchronization and scheduling.

Several research machines, such as the HEP [12], the Monsoon dataflow system [19],
or the forthcoming Tera machine [2], are designed to overcome these problems in hardware.
They provide highly integrated, low overhead, message interfaces as well as hardware support
for scheduling and synchronization. Disregarding the debate of whether such machines are
commercially or technically viable, the problem of programming most of the current parallel
machines, which have no special hardware support for multi-threading, still remains.

We are thus left with the only alternative solution, namely software. The programming
challenge, in view of the above difficulties, is to minimize network communication and to
provide longer sequential threads to offset the runtime scheduling and synchronization over-
head.

The static set of sequential threads making up the multithreaded program can either
be generated implicitly by a sophisticated compiler, or explicitly by the programmer. Pro-
gramming languages advocating the implicit style, such as Id [16] and Sisal [14], usually
take a high level description of the actual problem, extract the available parallelism from
the declaration and partition it into sequential threads. While implicit programming lan-
guages simplify the programming task, they usually fail to produce threads long enough to
adequately amortize the overhead introduced by a dynamic execution model.

In terms of reducing network communication, the execution of threads must exhibit
communication locality. This precludes scheduling policies such as round-robin or random

placement, but favors solutions such as work stealing where all threads are created locally
per default, but may later migrate to other nodes upon demand. Other solutions may be
built around explicit policies specialized for the application program at hand.

The PCM model presented in this paper is aimed at solving the aforementioned problems.
The intended target architectures are simple message passing machines which support the
implementation of low-overhead communication layers such as Active Messages [24]. We do
not assume any additional hardware support.

----- network communication @ memory communication

&S register communication

Processor 1 Processor 2 Processor 3 Processor 4
Figure 1: maximizing communication locality

We have provided C language extensions where threads can be specified along with con-
ventional sequential C code. A program consists simply of a collection of threads, which are
pieces of sequential code which are guaranteed to terminate once they have been scheduled.
Threads represent the basic scheduling units that can be executed on any processor. By
exposing threads in this way, we can experiment with various static and dynamic schedul-
ing policies to optimize the overall machine utilization. In particular, we have found two
strategies which can have a great effect on the performance of a program.

e A thread can be made to directly transfer control to another thread, similar to the con-
trol transfer mechanism used to implement tail-recursions. This mechanism bypasses
dynamic scheduling entirely, thus avoiding all of its associated costs.

e The scheduler uses work stealing as its default policy. This creates patterns of locality
in which threads can pass arguments through local memory rather than across the
network most of the time, thus greatly reducing the communication frequency.

We show the effect of these optimizations in Figure 1. As this diagram suggests, there
are three communication levels, namely register communication, memory communication
and network communication. Preferably, we would like to transfer data through registers
as much as possible, but the very nature of a dynamic execution model will force us to
resort to memory communication or, even worse, to network communication. Note that
an application increases the working set whenever it exposes additional parallelism, making
it impossible to keep the entire working set in registers. The implementation goal will be
to provide an optimal compromise between increasing the sequentiality of the application
to increase its locality and exposing enough parallelism to enable dynamic load balancing.
The second optimization, work stealing, will then attempt to minimize the work migration
frequency, thereby minimizing network communication.

1.1 Related Work

The idea of continuation passing has been with us for some time now, since Steele and Suss-
man [21] forcefully argued its advantage in optimizing function calls. Several compilers for
sequential languages convert programs into continuation passing style [3] before optimiza-
tion and generating machine code. It is also used in parallel programming, for example, in
[10]. We note that dataflow diagrams are essentially CPS in disguise [4], with additional
structures to implement function calls.

Active Messages were popularized by von Eicken et al [24], although our current CM-5
implementation is based on a faster version in the Strata package [6]. There are numerous
message passing libraries for conventional sequential languages, which implement the func-
tionality of the underlying network hardware, but none of them matches Active Messages in
terms of raw performance.

There also exist many parallel coordination languages, for example PVM [22] and Linda
[7], which provide additional support for scheduling and synchronization. These packages
typically arise from the needs of distributed computing, therefore are suitable mostly for
coarser grained parallelism.

Parallel programming languages are more often modeled after communicating sequential
processes, which gives rise to preemptive threads. For example, Mul-T [1] has blocking tasks
which are context switched when an embeded future construct has not yet been computed
to provide a value. An important feature of the Mul-T runtime system worth mentioning
is that it uses lazy task creation, supported by work stealing, to increase the granularity of
tasks [15].

The evolution of parallel computing based on the dataflow model has advocated the use
of non-preemptive threads, also called micro-threads. Models based on this approach [19, §]
also superimposes upon threads a runtime environment consisting of a tree of frames (the
parallel equivalent of the call stack in a sequential program) to support the function call
abstraction. PCM is in fact the result of optimizing away this super-structure, replacing it
with structures more resource-efficient and flexible in scheduling.

The rest of this paper is structured as follows: Section 2 introduces the PCM thread
specification language and present in some detail all of its components. Section 3 introduces
a cost model, intended to clarify the costs involved in dynamic execution. Section 4 contains
in depth explanations of two actual problems, implemented with the PCM package. Section 5
states some possible future work and Section 6 concludes the paper.

2 The Parallel Continuation Machine

The parallel continuation machine implements an SPMD programming model, where all
processors keep their own local copy of the entire code. The execution itself is completely
asynchronous, meaning that each node may execute entirely different pieces of the program.

2.1 Elements of the PCM

A PCM program consists of a collection of threads that cooperatively solve a single problem.
Statically, a thread identifies nothing more than a sequence of instructions, written in the

machine language of the processor. At runtime, an application can create arbitrary numbers
of dynamic instances of a static thread, each with its own set of arguments.!

The PCM thread specification language, which is explained in section 2.2, allows the
programmer to define threads and to specify how threads communicate with each other. All
machine specific execution details, such as dynamic load balancing or the mechanism require
to enable transparent inter-thread communication, are part of the PCM runtime system and
do not have to be specified by the user. This should simplify the task of writing explicit
multithreaded applications without sacrificing the programmer’s power for experimentation.
The key elements of PCM’s execution environment are illustrated in Figure 2.

Ready Queue: Thread Code

k1: thread: T1 _\

join count: 1

= T1:

- empty
cont: <t,3> argument slot

: 569,908
ready queue contains pointers
to all full closures
K2: thread: T2

send_argument(v, cont:<k1,2>) join count: 0

. —> T2

]

o0

cont: <k1, 2>

456,789

Runtime Structures Closure Memory Program Memory

Figure 2: Elements of the PCM model

New dynamic instances of threads can be created by making closures. Closures form the
contract between the application code and the runtime system. They contain a pointer to
the thread code and all the arguments needed to execute the code. The thread is ready
to execute when the closure becomes full; in other words, when it has obtained all the
arguments. Full closures are passed to the scheduler, which keeps them in a ready queue and
will later schedule them for the encapsulated threads to run.

In order to enable points of synchronization, a closure can be created with some of the
arguments missing. These arguments are supplied by other threads in the future. A thread
supplying an argument to a non-ready closure must obtain a reference to where the argument
is to be sent. Such references will be called continuations; a continuation is just a pointer
to a closure plus an integer offset into the closure. Note that we are slightly abusing the
term continuation here, which is used to refer (in sequential computations) to the rest of the
computation seen from a particular program control point. In parallel programs, however,
there is usually no such thing as “the rest of the computation” from a single control point,
and the issue of how a thread can be regarded as “continuing” from another thread, which
sends one of the needed arguments, is further complicated by the synchronization involved.

In order to detect when a closure becomes full, every closure has an additional slot called
the join counter that indicates the number of its outstanding arguments. The join counter
is initialized with an integer equal to the number of missing arguments at closure creation

!We decided not to introduce a new term for these dynamic thread instances. No confusion should occur
if the reader bears in mind that the word thread is used both in a static and in a dynamic sense.

time, and decremented each time the closure receives an argument. No closure is given to
the scheduler until the join counter reaches zero.

2.2 The Thread Specification Language

The thread specification language described in this section is implemented as an extension
to C. An example program computing the Fibonacci function is shown in Figure 3.

thread fib_fork (Cont parent, int n){
if (n<2) send_argument (n, parent);
else
{ closure k1, s1, s2;

k1l = make_closure (fib_sum, parent, _, _);

sl = make_closure (fib_fork, cont{kl,fib_sum:x}, n—1);
s2 = make_closure (fib_fork, cont{kl,fib_sum:y}, n—2);
post (sl);

post (s2);

}

thread fib_sum (Cont parent, int x, int y) {
send_argument (x+y, parent);
}

Figure 3: PCM program to compute Fibonacci

In this language a program consists of threads, marked by the specifier thread, and
normal C functions. A preprocessor expands just the threads into C functions, while copying
the rest of the C code literally. The resulting C program can then be compiled and linked
with the PCM runtime library.

Runtime primitives are used by the threads to create closures, send arguments, and
transfer closures to the scheduler:

e make_closure (Thread, arg, ..., arg,) Allocates a closure of size n + 2, and returns
a pointer to the closure. The two additional slots are reserved for the code pointer
and the join counter. Closures can be created without specifying all the arguments,
in which case a missing argument is indicated by “_”

_7. The join counter is always
initialized to the the number of missing arguments.

e post (k) Hands the closure k over to the scheduler. Only a full closure can be

posted inside the thread that created it. Closures with empty slots will be posted by

send_argument when the join counter reaches zero 2,

2Note that for all examples shown in this paper except the protein folding problem of section 4, it is
possible to let make_closure automatically post full closures, thus omit the explicit post operation.

e send_argument (v, ¢) Sends value v to continuation ¢ and decrements the join counter
of the target closure. The closure is posted if the join counter becomes zero. A continu-
ation has the type Cont and contains two fields: a pointer to a closure, and an integer
offset within the closure. A new continuation can be constructed, for example, using
the expression cont{k1l, fib_sum:x}, where k1 is a closure pointer and fib_sum:x a
symbolic reference to the first argument slot.

The preprocessor expands a thread, for example £ib_fork, into a C function that takes
a single argument, namely a closure, and fetches all specified arguments from the closure
before starting its actual execution.

2.3 Executing a PCM Program

Figure 4 illustrates the sequence of events, when the Fibonacci program runs on a single
processor. When there are multiple processors the only difference is that full closures may be
migrated to ensure a balanced load across all available processors. These scheduling issues
will be discussed in more detail in section 3.

The execution of a PCM program can be divided into three phases: initialization, compu-
tation, and termination. We did not show the initialization and termination code in Figure
3, since they are not really important. The first and third phases are usually very short,
with the computation phase constituting the bulk of the overall execution.

During the initialization phase, shown in Figure 4.0, the program creates two closures.
One specifies the start of the computation, in this example a ready instance of fib_fork,
and one specifies the actions to be taken when the computation ends, in this example a non-
ready instance of a special thread called top. This top thread is supplied by the runtime
system and its responsibilities are to terminate the computation and to print the result(s).
The top closure can be instructed to expect any number of results and must be the one to
execute last.

During the computation phase, the scheduler enters a perpetual loop: popping a full
closure from the ready queue; calling the thread function, such as fib_fork or £fib_sum,
as specified in the closure, with the closure pointer as its only argument. Figure 4.1-4.7
show snapshots of the machine state, once after each full closure has executed. For example,
in figure 4.1, the thread fib_fork with argument 3 has just terminated. It created three
closures: two full ones for £ib_fork with arguments 2 and 1 respectively, and a closure for
fib_sum waiting for two arguments. The full closures were immediately posted. These full
closures contain continuations which point to the place in the sum closure where they will
send their results. Similarly the sum closure contains a continuation pointing to the top
closure, which is where its result should be sent.

During the termination phase, shown in Figure 4.8, the top thread is run. It will print the
result of the computation and then cause the scheduler to exit the loop, thereby terminating
the computation. For multiprocessor computations, the processor on which the top thread
is executed also signals schedulers on other processors to exit their work loops.

2.4 Tail-Calls

A thread may directly call other threads via the following runtime primitive:

Ready Queue

top :77775
fork <
3
o |
Figure 2.5.0
Ready Queue

Figure 2.5.3

Ready Queue

Figure 2.5.6

Ready Queue

Figure 2.5.1

Ready Queue

Figure 2.5.4

Ready Queue

Figure 2.5.7

fork

Ready Queue

Figure 2.5.2

Ready Queue

L
sum

1
0
L o

Figure 2.5.5

top
2

Legend:
e— continuations

[empty slot

completed thread

Figure 2.5.8

Figure 4: Snapshots of the state of PCM after each thread completion.

e tail_call (Thread, argy, ..., arg,)

A tail-call represents a more efficient invocation of a thread, avoiding any of the the
dynamic execution overheads incurred otherwise. In the example shown in Figure 3, the
thread £ib_fork creates two full closures s1 and s2 and posts both of them before releasing
control and returning to the scheduler. After receiving control, the immediate action of the
scheduler will be to pop the s2 closure and to call its thread function fib_fork, which in
turn needs to unpack the s2 closure prior to doing actual work. We can thus avoid this
costly detour through the scheduler by rewriting the code with a tail-call as follows:

sl = make_closure (fib_fork, cont{kl, fib_sum:x}, n—1);
post (sl);
tail_call (fib_fork, cont{kl, fib_sum:y}, n—2);

To implement this mechanism, the thread preprocessor actually expands a thread into
two C functions: a general entry version, which is what we mentioned before; and a fast
entry version which receives all arguments directly. A tail_call is thus converted into a
standard C function call to the fast entry version. The actual performance improvements
obtained with the tail-call mechanism can be quite impressive, especially for fine-grained
applications, such as the Fibonacci example, where the performance improved by almost
twenty-five percent. The effects of using the tail-call mechanism can be seen in Figure 1.

2.5 Passing Vectors in Closures

An additional mechanism provided by the thread language allows structures to be passed in
closures. One of these structures may even be of arbitrary length. These vectors can then
be referenced within a thread like any other local variable. The one vector argument which
is allowed to be of arbitrary length needs to be specified as the last argument, to make sure
it is packed into the tail of the closure.

thread foo (..., type vecti[10], ..., type vectZ]])

declares a vector argument vect of type type. It is the responsibility of the creator of the
closure to initialize the vector. For example, the expression

make_closure (foo, ..., vect1[10], ..., vect2 = [size])

creates a closure for foo, dynamically defining vect2 to consist of size entries. In addition,
vect! and wvect? will be declared to be pointers initialized to the zeroth word of the cor-

responging vector arguments. These pointers must be used subsequently to initialize the
won

vectors, which would otherwise be left empty. If we use instead of a vector name when
allocating a closure, then the vector is intentionally left empty, and its size will be added to

the initial join count.

2.6 Partitioning Functions into Threads

Consider the following C program, which can be viewed as the “source” of the two threads
shown in Figure 3.

int fib (int n) {

if (n<2) return (n);

else return (fib(n—1) + fib(n—2));
}

The function £ib as shown has no parallelism. It order to expose parallelism, we must
post one or both of the sub-calls to fib. But here we encounter a major difficulty: the
addition depends on the return value of both calls. How can we set up the linkage between
threads or instruct the scheduler to execute the addition after both sub-calls are complete?

One well-known solution is to use a blocking thread model. In such a model, the runtime
system would suspend an executing £ib thread after it forked off its two sub-calls and later,
when the two sub-calls terminate, resumes the thread so that it can continue its execution.
The costs for suspending and restoring a thread can be fairly expensive, depending on the
number of registers that need to be saved?®.

The solution shown in Figure 3 uses a non-blocking thread model. In this model, new
threads are created at points where context switches would otherwise occur. For example,
thread £ib_fork makes a closure for £ib_sum, which is exactly saving the context needed for
fib_sum to execute later. Consequently, threads always execute to completion once started.
In other words, we are essentially following a caller-save convention, which tends to save
fewer registers. For instance, in the fib_sum closure, only the continuation parent needs to
be saved.

From a language point of view, threads provide an abstraction which is lower than the one
of functions. As we have seen, a function such as £ib translates into two static threads, which
will then expand into three dynamic threads at runtime. As pointed out in the introduction,
there are compilers with automatic partitioners that systematically convert and package a
function into threads. Automatic partitioning is still a very active area of research (see for
example, [23]), but we will not touch it further, since we are mainly interested in using the
thread language in its own right in this paper.

3 Scheduling PCM Threads on a Multiprocessor

This section introduces a cost model for the PCM to motivate the work stealing scheduling
system which we implemented to schedule PCM threads on the CM-5 parallel processor.
All communication mechanisms required to implement the work stealer and the inter-thread
communication have been built using a version of Active Messages [6].

As Figure 5 illustrates, we will equate useful computation with what a sequential program
would have to do and classify everything else, such as communication, synchronization, and
dynamic scheduling as additional overhead. The goal of this classification is to study the
factors that determine the efficiency of a parallel computation with respect to its sequential
counterpart.

To simplify the analysis, we will ignore the effect of idles and assume that each processing
element is either executing a thread or one of the overhead tasks depicted in Figure 5. Under
this assumption we can reduce the analysis to that of an average thread. The corresponding

30n the CM-5, for example, when suspending the current thread, it is necessary to save the entire context
kept in the register windows. Generally, if the function call follows the callee-save convention, then all the
callee-save registers must be saved.

10

Make

Closure receiption of s overhead

local arguments receiption of a <, actual work
global arguments Post

Closure gchedule

Closure
e Run Thread
time 2 45434

Figure 5: Anatomy of a PCM Thread

efficiency, €, defined as the fraction of the overall execution time actually spent executing
the useful computation, can then be calculated using equation (1).

There are three important ratios in the equation, reflecting the effects of tail-recursions
(1), global send arguments (m3) and closure migration (m3) on the overall efficiency. m;
equals the fraction of threads not using the tail-call mechanism, 75 equals the fraction of
arguments that have to be sent across the interconnection network and 73 equals the fraction
closures that migrate from one processing element to another, as a result of the work stealing
scheduler. R; defines the average run length of a PCM thread and k defines the threads arity.

Make Closure (M,.): At thread creation time, a closure must be allocated and initialized.
Both closure allocation and initialization are constant and do not depend on the actual
closure size (M. ~ 10 cycles).

Send Local Argument (5;): Local send arguments are fairly cheap and reduce to sim-
ple memory-to-memory transfer plus an additional check to see whether the closure
becomes ready for execution (.5;) &~ 10 cycles).

Send Global Argument (S5, + 7y -7,): For arguments that must be sent across the net-
work, we have to add an additional overhead factor 7, (~ 100 cycles)* to the constant
costs of S| to account for the transfer costs.

Post closure (P. + 73 1.): After receiving all of its arguments a closure is posted and
becomes subject to dynamic scheduling (P. ~ 10). If migrated to a remote processing
element, additional transfer costs of T, (= 500 cycles for a closure consisting of eight
words) need to be charged in addition to constant cost P, reflecting the local posting.

Schedule closure (5.): The costs for transferring control to the thread at the beginning
of its execution and back to the scheduler after its termination are S, (&~ 15 cycles).

R;
— 1
mo-(Me+ k- (Si+me-Ty)+ (P.4m3-T.) 4+ 5.) + R: (1)

With the communication costs T, and 7. ranging in the hundreds of cycles, it becomes
imperative to reduce both 73 and 73 in order to avoid disappointing efficiencies. 7, on the
other hand, cannot be reduced to arbitrarily small values, thus the only remaining alternative
to amortize the non-transfer related overhead is to increase the thread run length R,.

c

4The transfer cost include both the sending and receiving overhead.

11

R,
= 2
M AP AS k- Sitm Tkt 1) +R, @)

schedule dependent schedule independent

To illustrate the effect of 3 and 75 on the overall efficiency, we transformed equation(1)
into equation(2), seperating schedule dependent and schedule independent costs and Figure 6
shows the resulting execution efficiency as a function of 7y and 73. For simplicity, we turned
off the tail-call mechanism, which results into a value for m; equal to one, and set 73 equal to
m3. In fact, for most computations we can expect 7 and 73 to be fairly dependent — higher
migration frequencies will cleary force more of the arguments to be sent global.

0.80 - o ‘
-« operating area
0.70 A\ of work stealer Run Length R;
150 cycles
0.60 100 cycles
: - 50 cycles
.~ 10 cycles
0.50 -
0.40 -
0.30 -
0.20 - S
0.10 -
N‘
0.00 TG
0.0 0.2 0.4 0.6 0.8 1.0
high locality small locality

Figure 6: execution efficiency (€) versus fraction of local global operations (3)

3.1 Implementation

To achieve minimal values for m; we have adopted a lazy scheduling policy known as work
stealing. In such a system, closures are always scheduled locally per default, and will only
be transferred across the network upon explicit requests initiated by starving processors.

Each processing element maintains a local queue of full closures, called the ready queue.
When a closure becomes full, it is posted to its local ready queue. The local scheduler
communicates with schedulers on other processing elements, and may later schedule the
closure to execute locally, or may migrate it to another processing element. It is worth
pointing out at this point that the actual schedule chosen is not going to affect the result
of the computation. It will, however, have a significant impact on the efficiency of the
computation.

In our current implementation, a computation executes locally using a depth-first schedul-
ing policy. This heuristic can be expected to result in lower resource requirements for most
computations when compared with a breadth-first policy. Steal requests, on the other hand,

12

will always be served using a breadth-first policy (see Figure 1). Such a steal policy can
be expected to result in significantly reduced steal frequencies for computations, such as
recursions. For examples, both examples considered in the remainder of this paper typically
migrated less than one percent of all dynamically created closures, as annotated in Fig-
ure 1. In addition, recent theoretical results described in [5] show that breadth-first stealing
achieves linear speedup in the presence of modest parallel slackness.

4 Two Case Studies

In the following section we present two applications implemented with the PCM thread
package.

4.1 Parallel Ray Tracing

The parallel ray tracer presented here is an optimal example to illustrate the virtues of the
PCM thread package. First, the task of tracing a complicated picture with a reasonable
size, like the one shown in Figure 9, contains enough parallelism to justify the use of a
powerful parallel processor. Second, the variance in the amount of processor cycles required
to trace individual rays necessitates the use of a dynamic load balancing schema to guarantee
acceptable utilizations and to ensure scalability. Third, we can package the ray tracer into
threads and obtain threads with grain-sizes coarse enough to offset the overhead introduced
by a dynamic execution model.

The simplest of all ray tracing algorithms intersects a ray with every object surface
and displays the object whose intersection is closest to the position of the observer. This
algorithm is known as exhaustive ray tracing, since it calculates all possible ray-surface in-
tersections. The ray-tracer we used improves upon this basic algorithm. It uses a bounding
volume which requires relatively simple intersection calculations, such as a sphere, to enclose
more complex objects. If a ray does not pierce the bounding volume then all the objects con-
tained within can be eliminated from consideration which substantially reduces the average
costs of ray surface calculations. This technique is further improved by arranging bounding
volumes into hierarchies. In such a scheme a number of bounding volumes could themselves
be enclosed within an even larger bounding volume so that many objects can be eliminated
if a given ray does not intersect with a parent bounding volume.

This algorithmic improvement reduces the linear time complexity of exhaustive ray trac-
ing to one which is logarithmic in the number of objects. However, this optimization also
creates a large variation in the time needed to trace a ray, making it hard to find a static
work distribution that sufficiently balances the available work.

4.1.1 Ray Tracer Parallelization

To show the power of our thread package as a tool to retarget existing sequential programs
for parallel processors, we took the POV-Ray package that implements the optimized method
described above and rewrote its kernel with our thread language. A simplified version of the
original sequential kernel can be seen in Figure 7. The details of ray-object intersection
caculation are not required to comprehend the transformations explained in the remainder

13

void Trace(){
int x, y;

for (y = First_Line; y < Last_Line; y++)
for (x = First_Column ; x < Last_Column ; x++) {
pixel = calculate_intersections(x, y);
write_pixel(x, y, pixel);

Figure 7: kernel of sequential ray tracer

of this section. In fact, the threaded version shown in Figure 8 uses the exact same function,
calculate_intersection that the sequential version used.

The Trace thread traces a subwindow of the original picture, specified by the four coordi-
nates in the argument list. Trace accomplishes this task by recursively splitting its subwindow
into even smaller subwindows until the size of the newly created windows reaches the size of
a single pixel. The implementation shown tries to split a trace job into four jobs by splitting
the picture along both the x and y dimension.

Note that unlike the Fibonacci example, neither the sequential nor the parallel ray tracer
return results. They simply write the RGB-values for the computed pixels into a preallocated
buffer. The absence of a result forces us to resort to an alternative way to detect the
termination of the program. The thread Join is used to implement a fairly general concept
of a signal tree. The underlying idea is to use a tree to collect all the signals produced by
the bottom cases of the recursion and to return a single signal to the top closure after all
the signals have been collected.

4.1.2 Ray Tracer Results

To test our multithreaded implementation, we traced pictures of different complexities on
various machine sizes. We adjusted the picture size so that enough parallelism would be
generated to justify the use of the largest machine configuration used during our test runs.

We first compared the uniprocessor timings of the multithreaded code with those of the
original sequential code, both running on the same CM-5 processing node. The results
showed no measurable difference between the sequential and the multithreaded timings. To
explain this, we need to have a look at the actual thread granularity. To trace the picture
shown in Figure 9 with a resolution of 512x512 pixels, around 300,000 threads are created
over the running time of about 1590 seconds, resulting in an average running time per thread
of about 3 milliseconds (&~ 100,000 Sparc cycles). This long thread run length makes the
average overhead of 80 cycles/thread negligible.

In a second step, we compared the speedup behavior of our multithreaded ray tracer with
that of an implementation using a static load balancing scheme (see Table 1). The static
algorithm employs a simple work distribution that assigns exactly the same number of rays
to each node. For the static case we listed two timings: the execution time of the fastest
processor and the execution time of the slowest processor. We can see that already with
two nodes, the slower processor requires 64% more compute cycles than the faster processor.

14

thread Join(Cont parent_join, int s1, int s2, int s3, int s4) {
send_argument(SIGNAL, parent_join);
}

thread Trace(Cont parent_join, int sx, int ex, int sy, int ey) {
if((sx == ex) && (sy == ey)) {
pixel = calculate_intersections(sx, sy);
write_pixel(sx,sy,pixel);
send_argument(SIGNAL, parent_join);

}

else {
closure k1, pl, p2, p3, p4;
int xoff = (ex - sx) >> 1, yoff = (ey - sy) >> 1;

k1l = make_closure(Join, parent_join, _, -, -, _);

pl = make_closure(Trace, cont{k1,Join:sl}, sx, (sx + xoff), sy, (sy + yoff);

p2 = make_closure(Trace, cont{kl,Join:s2}, sx, (sx + xoff), (sy + yoff +1), ey);

p3 = make_closure(Trace, cont{k1,Join:s3}, (sx + xoff + 1), ex, sy, (sy + yoff);

p4 = make_closure(Trace, cont{kl,Join:s4}, (sx + xoff + 1), ex, (sy + yoff +1), ey);
post(pl); post(p2); post(p3); post(p4);

Figure 8: kernel of PCM ray tracer

Even worse, this gap widens as we increase the number of processors. With 64 nodes, the
slowest processor is already taking 3.6 times longer than the fastest processor.

As pointed out at the beginning of this section, the time required to trace an individual
ray can vary significantly, as shown by the execution timings obtained with the static load
balancer in Table 1. To show this uneven work requirement, we calculated a work histogram
for our example. The left part of Figure 9 shows the traced picture and the right part shows
the work histogram. In the histogram brighter points represent higher workloads, darker
points lighter workloads.

As a comparison, the multithreaded ray tracer not only performs better for all machine
configurations than the static solution, it even achieves perfect linear speedup.

We added two additional columns to the data, showing the range of number of pixels
traced per processor. Those numbers reflect the effect of the dynamic load balancer. As
we expect, the difference between the maximum and minimum number of pixels traced per
node increases as we move to larger machine configurations.

4.2 Protein Folding

A second application that we have implemented is protein folding. The reasons for choosing
this application are similar to the reasons for choosing ray-tracing. The problems are large
enough to warrant the use of parallelism. A common problem size takes over two hours when
run sequentially, and we would like to run a series of problems. Also, an initial attempt to

15

Figure 9: Traced picture and work histogram

static load distribution dynamic load distribution

nodes || min. time ‘ max. time ‘ traced time ‘ max. traced ‘ min. traced || impr.

1 node 1590 sec. | 262144 rays || 1590 sec. | 262144 rays
2 nodes 602 sec. 988 sec. | 131072 rays 795 sec. | 135312 rays | 126832 rays || 24 %
4 nodes 236 sec. 523 sec. | 65536 rays 396 sec. 79073 rays | 48867 rays || 32 %
8 nodes 101 sec. 257 sec. 32768 rays 189 sec. 45175 rays | 21464 rays | 35 %
16 nodes 46 sec. 128 sec. 16384 rays 90 sec. 22616 rays | 10711 rays || 43 %
32 nodes 23 sec. 70 sec. 8192 rays 46 sec. 12543 rays 5859 rays || 52 %
64 nodes 10 sec. 36 sec. 4096 rays 23 sec. 7210 rays 2595 rays || 56 %

Table 1: ray tracing result overview

parallelize the program did not make efficient use of the machine. This attempt statically
broke the computation into subcomputations; but the subcomputations were too coarse, and
their run times too variable, to keep all processors busy. An implementation using PCM
avoids this problem.

The work on this problem was done in conjunction with Vijay Pande of the Center for
Material Sciences and Engineering at MIT. In their work [18] they use the lattice model
[20] for protein design. In this approach to the problem a protein is described as a chain
of monomers (each monomer may represent a number of amino acids). It is assumed that
each monomer will sit on a lattice point (i.e., a point on a 3D grid). Each possible folding
of the polymer can then be described as some path along the set of lattice points. Figure 10
shows a polymer of length 26; each shade represents a different type of monomer. The model
assumes the polymer will take on the most compact possible paths, so it is only concerned
with paths that completely fill some cube. In a folded polymer, two neighboring monomers

16

will exert some attractive or repulsive force on one another. This force depends on the types
of the two monomers. The energy of a folded polymer is the sum of the forces between all
of the neighboring monomers. Of course, this energy value depends greatly on the way in
which the polymer is folded. For this work it is necessary to consider all possible foldings
of a given polymer and compute a histogram of the energy values. This is what we have
implemented using the PCM model on the CM-5.

Figure 10: A folded polymer

For the rest of this section we will be concerned mainly with the implementation of this
problem using PCM. For more details on the algorithms used and the results obtained see
[17]. At its heart, this program is a search program that finds all possible unique paths in
a cube; each path must traverse each point in the cube exactly once. Each complete path
represents one possible folding of the polymer; so each time a path is found the energy value
for that folding is calculated and a result histogram is updated with the value.

This algorithm works by incrementally building up paths through the cube until complete
paths are reached. The function Count_FEntries performs the core of the search. An outline
of the sequential code for this function is given in Figure 11.

The first argument to this function is a STATE structure. This structure defines the
partial path that has been constructed so far. This structure contains information describing
which points are occupied, the type of monomer at each occupied point, and other data used
to increase the efficiency of the search. The size of the STATE structure is on the order of
100 bytes. The second argument to the function is point, the lattice point to be added to
the partial path. This function returns an integer, namely the number of paths found. The
function first adds point to the partial path. If this completes the path it updates the result

17

int Count_Entries(STATE st, int point) {
memcpy (state,st,sizeof(STATE));
add_point_to_path(point,state); /** add point to path **/
if (complete_path(state)){
update_result_histogram(state);
return 1 ;
}
[** If no complete paths are possible return 0 ***/
give_up = f(state,point);
if (give_up) return 0;
[** Otherwise call Count_Entries recursively on each neighbor **/
else{
sum = 0;
for(i=0;i<num neighbors;i++){
next_neighbor=neighborli];
if (not_occupied(next_neighbor,state)){

}

sum += count_entries(state, next_neighbor);

¥
¥

return sum;

Figure 11: Kernel of sequential protein folding

histogram with the energy value of this new path and returns. Otherwise it applies some
tests to see if it impossible for this state to lead to a complete path. If a complete path
is impossible it prunes the search here. Otherwise it calls itself recursively for each empty
neighbor of point. At the end it returns the total number of complete paths found. Typically
we run the program on several polymers at a time. Each time we find a complete path we
just calculate several energy values. This amortizes the time spent searching over several
polymers.

We start the search by calling Count_Entries on a set of starting paths. The obvious way
to start this search is to call Count_Entries once for each point in the cube, each time using a
starting path consisting only of that point. The problem with this approach is that it would
count duplicate paths. Two paths are considered duplicates if one path is a rotation and/or
reflection of the other. Instead, we have a second (sequential) program which generates a
set of starting paths that guarantees that no generated paths will be duplicated. The initial
routine simply calls Count_Entries on each of these starting paths.

4.2.1 Protein Folding Parallelization

An earlier attempt at parallelization was made without using PCM. In this attempt the
starting paths were statically divided between the nodes. Fach node then ran the sequential
code for its subset of the starting paths. At the end the result histograms on all the nodes

18

are merged. This was trivial to implement but gave poor results because of inadequate load
balancing. The amount of work involved for calculating with different starting paths can
differ by many orders of magnitude.

To get a more efficient parallelization, the computation needed to be broken into finer
grains. PCM was ideal for this task. The procedure that makes use of the PCM primitives is
the Count_Entries procedure. A skeleton of the code for this procedure is given in Figure 12.
The major changes to this code to run it using PCM are similar to the changes made to
the ray-tracer. In particular, most of the recursive calls to Count_Entries are now made by
creating and posting a closure. Also, this version takes an additional argument parent. This
is the continuation to which the result will be sent.

There have been other changes to the code, however, most of these changes were made for
performance reasons rather than correctness reasons. The first difference is that this version
determines in advance the number of neighbors that will be visited. If there is just one
neighbor that needs to be visited, then exactly one recursive call needs to be made. We do
this by making use of a tail-call. In this instance the tail call eliminates two overheads: first,
the posting and scheduling of the closure, and second, the copying of the state argument
into the new closure.

If there are more than one recursive call to be made then a summation closure is created.
This closure will add up the results of the subcomputations and send the result to the parent
of this thread. The unusual syntax in the call to make_closure (i.e., “ - = [num_ntv]”) signifies
that a specified number of empty slots (here num_ntv) should be left in the closure. These
slots will be filled in later with the results of the subcomputations. Most of the recursive
calls are made by making and posting closures. The final call makes use of a tail call, for
the same reasons given above.

4.2.2 Protein Folding Results

Many variations of this program have been run on a range of problem and machine sizes.
Results for two problem sizes are shown in Figure 13. The first figure shows a smaller
problem size, namely a 3 x 3 x 3 cube which has 103,346 paths. The second shows a larger
size, namely a 3 X 3 x 4 cube which has over 48 million paths. In both figures the horizontal
line shows the execution time for the optimized sequential code. The sloped line shows the
execution time using PCM on various machine sizes.

The first observation is that the overhead added by the PCM model is fairly small. The
PCM program running on one processor was 14 and 22 percent slower than the sequential
version in these examples®. This overhead is due both to posting and scheduling closures
and to the copying of the state structure into each closure.

The second observation is that the speedup curves are almost perfectly linear for both
of these problems. (Even on the smallest problems we ran we saw nearly linear speedups.
On 64 processors we achieved a speedup of 60 and a run time of only 0.25 seconds.) This
is because the granularity of the threads is small enough that the workload can be evenly
distributed.

5Due to its large runtime, for the second example the sequential version was run on a standard Sparc,
not on one processor of the CM-5. The runtime on a single CM-5 node is likely to be slightly larger than
this. This causes us to slightly overstate the overhead.

19

THREAD Count_Entries(Cont parent; int point, STATE state,) {
add_point_to_path(point,state);
if (complete_path(state)){
update_result_histogram(state);
send_argument(1, parent);
return;

}

/** Determine number of neighbor nodes to be visited **/

give_up = f(state,point);

numantv = g(...); /** num_ntv = num of neighbors to visit **/
[** nbrs_to_visit[i] = ’i’th neighbor to visit **/

[** Case 0: If no paths to search, then return 0 (no paths found) **/
if (give_up || (num_ntv==0)) send_argument(0, parent);

[** Case 1: If exactly 1 neighbor to visit — only try that one **/
else if (numntv==1)
tail_call(Count_Entries,parent,nbrs_to_visit[0] state);
else{
/** General case — n neighbors to try [n>1]**/
[** create a closure to sum results of all sub-computations **/
[** post num_ntv-1 threads and perform a tail call for the last **/
sum_closure = make_closure(sum,parent,numntv, =[numntv]);
for(i=0;i<(numntv-1);i4++){
next_neighbor=nbrs_to_visit[i];
kl = make_closure(Count_Entries,
cont{sum_closure,sum:val[i] },
next_neighbor, new_st=[sizeof (STATE)]);
memcpy (new st,st,sizeof(STATE));
post(kl);
}
[**Perform a tail call for final neighbor **/
new_parent = Cont{sum _closure,sum:val[num ntv-1]};
tail_call(Count_Entries,new_parent,next neighbor+1,state);

Figure 12: Kernel of parallel protein folding

20

GLe8t-
& 5 16384
~ 641 8 T
Q 2 .
E Rce-——"=—""""""~""=~"="=-"-"-"--- D7 e
= 32 g e— e PCMcode
= e——e PCMcode =406 PCM code (projected)
16-— H > __ .
- — — sequential code <= 2048l sequential code
81— 10244
44 5124
AR 2564—
1284+
1+
641
0 | J | | | | I Y IR N N B
1 2 4 38 16 52 64 7 7z 8 16 32 64 178
number of processors number of processors
Run time on 3x3x3 cube (20 Polymers) Run time on 3x3x4 cube (1 Polymer)

Figure 13: Run times for protein folding

5 Future Work

An area that needs to be explored further, which will unquestionably constitute the bulk
of future research, is that of global data structures. Since global memory accesses typically
involve communication, it is necessary to split threads at the boundary of remote memory
accesses. As a consequence, it will be hard to scale applications with frequent global memory
references on architectures such as the CM-5.

Two key issues need to be addressed to enable efficient implementations. First, data
structures need to be evenly distributed across all processing elements and second, they
need to be aligned with the computation. Data structures and computational threads can
be aligned either by moving the data structure, as done by architectures based on globally
coherent caches [11][13], or by moving the computation. Our preliminary results show that
we need to use both techniques to achieve efficient solutions. However, no general solution
has yet surfaced.

Although the distribution and alignment of data structures will undoubtedly interfere
with the scheduling of computational threads, we excluded these issues in order to obtain
a clean and simple execution model, thereby clarifying the issues of dynamic execution.
We believe that this simplicity will make it easier to identify and to integrate additional
scheduling mechanisms targeted to address the alignment problem.

6 Conclusions

The performance of any parallel program must scale over the performance of the best se-
quential program to be truly practical. Because of the high costs of dynamic scheduling
and network communication in current message-passing architectures, this goal becomes a
serious challenge when programming applications with unstructured parallelism.

Barring revolutionary hardware solutions, we have argued that there are effective solu-
tions in software to (a) lengthen sequential threads in order to offset the costs of dynamic

21

scheduling, and to (b) preserve the locality of computations to reduce the network traffic.
We believe that these solutions have not yet been effectively explored by message passing
extensions to conventional languages, nor by higher level parallel languages, because their
level of abstraction is either too low or too high to enable the programmer to effectively tune
an application toward these key optimizations.

The parallel continuation passing model presented in this paper represents an attempt
to bridge this gap. The model can either serve as a compilation target for a higher level
language, or it can be used directly in conjunction with a sequential language, such as C. In
the latter case it comes as a simple extension, providing the essential structures needed to
synchronize computational threads and to optimize scheduling decisions. Although it could
be argued that PCM is difficult to program because of its explicit continuation-passing style,
we found it often the case that a program just has a small kernel that needs to be parallelized,
leaving the rest of the program in its original sequential form (see the ray-tracing example).
Moreover, such a parallelization always increases the granularity of the sequential threads,
resulting in more efficient parallel programs.

As the outcome of experimenting with PCM, we identified two scheduling policies of
general use, increasing the efficiency of parallel applications based on a dynamic execution
model. First, the tail-call mechanism gives the programmer the flexibility to glue short
threads into longer ones. Tail-calls will undoubtedly become extremely important for finer
grained parallel computation, as has been shown for the Fibonacci example. Second, a work
stealing scheduling policy enables almost-all-local computation, resulting in linear and near-
linear speedups of the ray-tracing and protein-folding examples. Since work stealing is often
the determining factor in whether or not a parallel application executes efficiently, we built
this mechanism into the PCM runtime system as the default scheduling policy.

References

[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A Pro-
cessor Architecture for Multiprocessing. In The 17th Annual International Symposium
on Computer Architecture Conference Proceedings, Seattle, Washington, May 1990.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The
Tera Computer System. In Proc. of International Conference on Supercomputing, pages

1-6, 1990.
[3] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

[4] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow
Architecture. IEEE Trans. on Computers, 39(3):300-318, March 1987.

[5] Robert Blumofe and Charles E. Leiserson. Work-Stealing Algorithms for Scheduling
Multithreaded Computations. Manuscript in progress.

[6] Eric Brewer and Robert Blumofe. Strata Reference Manual. Lab for Computer Science,
MIT, version 2.0 edition, January 1994.

[7] N. C. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444-458, April 1989.

22

8]

[14]

D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain Parallelism
with Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine.
In Proc. of the 4™ Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, Santa-Clara, CA, April 1991.

Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. Freeman
and Company, 1979.

J. F. Giorgi and D. Le Metayer. Continuation-Based Parallel Implementation of Func-
tional Languages. In Proc. POPL, pages 209-217, 1990.

Kendall Square Research. KSR1 Technical Summary, 1992.

J. Kuehn and B. Smith. The Horizen Supercomputer System: Architecture and Soft-
ware. In Proc. of Supercomputing ‘88, Orlando, Florida, November 1988.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-
Based Cache Coherence Protocol for the DASH Multiprocessor. In The 17th Annual

International Symposium on Computer Architecture Conference Proceedings, Seattle,

Washington, May 1990.
J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Odledhoeft, , J. Glauert, C. Kirkham,

W. Noyce, and R. Thomas. Sisal: Streams and Iteration in a Single Assignment Lan-

guage: Reference Manual Version 1.2. Technical report, Lawrence Livermore National
Laboratories, Livermore CA, March 1985.

E. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation. [EEE Trans. on Parallel
and Distributed Systems, 2(3):264-280, July 1991.

R.5. Nikhil. 7id language reference manual”. Computation Structure Group Memo
284-2, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Mas-
sachusetts 02139, July 1991.

V. Pande and C. Joerg.

Vijay Pande, Alexander Yu, Grosberg, and Toyoichi Tanaka. Thermodynamic Proce-
dur to Construct HeteroPolymers that can be Renatured to Recognize a Given Target
Molecule. submitted to Nature.

G.M. Papadopoulos and D.E. Culler. Monsoon: an Explicit Token-Store Architecture.
In The 17th Annual International Symposium on Computer Architecture Conference
Proceedings, Seattle, Washington, May 1990.

E. Shaklmovich and A. Gutin. J. Chem. Phys., 93:5967, 1990.

G. L. Steele and G. J. Sussman. LAMBDA, the Ultimate Imperative. Al Memo 353,
MIT AI Lab., March 1976.

V. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience, 2:315-339, April 1990.

23

(23] K. R. Traub, D. E. Culler, and K. E. Schauser. Global Analysis for Partitioning Non-
Strict Programs into Sequential Threads. In Proceedings of the 1992 ACM Conf. on
Lisp and Functional Programming, pages 324-334, June 1992.

[24] T. von Eicken, D.E. Culler, Seth C. Goldstein, and K. Schauser. Active Messages: a
Mechanism for Integrated Communication and Computation. In In The 19th Annual
International Symposium on Computer Architecture Conference Proceedings, Australia,

May 1992.

24

