CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

In-Coherent - An Incessantly Coherent Cache Scheme
for Shared Memory Multiprocessor Systems

S.K. Nandy

In Proceedings of the First International Workshop on
Parallel Processing, Bangalore, India, December 26-31, 1994

1994, December

Computation Structures Group
Memo 356

n ~
e

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

/

An Incessantly Coherent Cache Scheme for Shared
Memory Multithreaded Systems

Comutation Structure Group Memo 356
September 15,1994

S. K. Nandy
Ranjani Narayan

To appear in Proceedings of The First International Workshop on Parallel
Processing, Bangalore, India, December 26-31 1994

This report describes research done by the authors at the Laboratory for Com-
puter Science, Massachusetts Institute of Technology. Funding for the Laboratory
is provided in part by the Advanced Research Projects Agency of the Department
of Defense under the Office of Naval Research contract N00014-92-J-1310. Finan-
cial support for the first author was provided by Indo-U.S. Science and Technology

\ Fellowship Program. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

An Incessantly Coherent Cache Scheme for Shared Memory
Multithreaded Systems *

S. K. Nandy and Ranjani Narayan
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts, MA 02139
e-mail: nandy@theory.lcs.mit.edu

Abstract

An incessantly coherent cache consistency proto-
col is proposed in this paper. The protocol supports
limitless sharing and obviates the need to invalidate
shared cache lines by automatically self invalidating
cache lines after the expiry of its lifetime. The proto-
col mandates that all writes be performed at the home
locations only. The worst case performance of this
protocol bears the potential to perform as good as any
other directory based protocol. It relieves the network
of the additional traffic due to invalidations that are
in vogue in any of the existing directory based cache
coherence protocols.

1 Introduction

Supporting global shared references in massively
parallel architectures is a major concern. The cost
of accessing remote shared memory locations has a
direct impact on the performance of an application
on such architectures. Caching global shared memory
reduces the overall latency of global references. The
choice of a shared memory cache coherence protocol is
to a large extent determined by the messaging proto-
col and the processor-memory bus bandwidth which
in turn determines the performance of the architec-
ture.

Alewife[1] supports shared memory by integrat-
ing message passing and a directory based cache
coherence protocol called the LimitLESS scheme[2].
The DASH][3] shared memory multiprocessor also im-
plements a directory based cache coherence scheme
which is an invalidation-based ownership protocol.
The model of consistency provided in DASH is called

*The authors are from Supercomputer Education and Re-
search Centre, Indian Institute of Science, Bangalore, India.

release consistency[4] and is an extension of the weak
consistency model proposed in[5]. The Stanford
FLASH Multiprocessor[6] is yet another multiproces-
sor that supports cache coherent shared memory us-
ing a directory based cache protocol. The protocol is
based on two components, viz. a scalable directory
data structure and a set of handlers.

However, in all the three cited multiprocessor ar-
chitectures the cost of sending cache invalidation mes-
sages cannot be ignored. We conjecture that a sig-
nificant gain in multiprocessor performance can be
achieved by totally avoiding invalidations. We pro-
pose such a scheme in this paper. The Incessantly Co-
herent cache coherence scheme presented here main-
tains incessantly coherent shared memory by auto-
matically invalidating cache lines after a specified pe-
riod called the lifetime. The protocol supports limit-
less sharing and permits writes in home locations only.
The worst case performance of the proposed scheme
is guaranteed to be at least as good as any directory
based scheme. Additionally the proposed scheme re-
lieves the network traffic due to invalidations which is
unavoidable in directory based schemes.

The rest of the paper is organised as follows. In
section 2, we describe the incessantly coherent cache
coherence protocol. This is followed by section 3 that
elaborates on the proposed scheme using an walk-
through example. We comment on the performance
of the proposed scheme in section 4, and finally in sec-
tion 5 conclude with a summary of the contributions.

2 Incessantly Coherent: A Cache Co-
herence Protocol

We propose a cache coherence scheme for a system
comprising multiple processor sites in a network. A
site is a set of tightly coupled processors. Each proces-

Cluster #1 Cluster #2 e o o Cluster #n

Cluster Interconnection Network

Figure 1: System Model

sor in this system supports a multi-level cache and ex-
ecutes multi-threaded code. The programming model
assumes a single global address space. Every global
address has an owner site called home Global shared
memory support for the system is realized as shared
memory modules physically distributed amongst the
sites. Each site has a shared memory unit(SMU) and
a controller to handle shared references. An exam-
ple architecture of this model is *T-NG [7]. Other
distributed memory multicomputer systems are also
based on a similar model. Figures 1 and 2 give the
conceptual model of such a system.

Directory based cache coherence protocols [9] and
its variants must invalidate all shared cache lines be-
fore a cache line is written. The cost of invalidates in
a relatively low bandwidth interconnection network
can far offset the performance gains obtained by ex-
ploiting parallelism. Invalidations add to the network
traffic that lead to network congestion. On the other
hand, if only a site is allowed to own a cache line then
for programs that exhibit spatial locality, traffic on
the interconnection network will increase enormously
since single ownership of cache lines will lead to re-
peated invalidations followed by wandering of cache
lines.

We propose an Incessantly Coherent Cache Scheme
that supports limitless sharing, alleviates wandering
and eliminates invalidations. All READs are per-
formed at the granularity of a cache line. WRITES
are permitted at the home location only. The prob-
lem of wandering is alleviated by enforcing a finite pe-
riod of validity time ¢. (called lifetime) for each cache
line. A cache line is automatically invalidated after its
lifetime. Limitless sharing is supported by honoring
multiple READ requests simultaneously. Note that
the cache line could be “live” in multiple sites.

A WRITE operation on a cache location is hon-
oured when the lifetime of the latest READ has ex-
pired. Multiple WRITES to the same cache line must

to site interconnection network

Network Interface

R R
v v
Processor Processor
Cache Cache

Processor

Local

Memory

Global

Module #i

|
|
|
|
|
: Memory
I
|
|
|

Shared

Memory

Controller

Cache
Module #1

Cache
Module #n

|
|
|
|
|
|
I
|
|
Cache :
Module #2 I
|
|
|
|
|
I
|
I
|
|
|
|

Network Interface

to site interconnection network

Figure 2: Details of a Site

therefore be queued. It is important to note that a
WRITE operation is delayed only if it arrives within
t. of the last READ operation.

In systems that implement global memory cache at
a lower level in the overall cache hierarchy, it is pos-
sible that cache coherence in higher level caches (in
processors within a site) is maintained using an en-
tirely different protocol. It is therefore necessary that
on the expiry of lifetime of cache lines in the global
cache, copies of this cache line in all higher level caches
be invalidated. In such cases, SMU sends appropriate
invalidate messages on the site’s processor-memory in-
terconnection network.

2.1 Limitless sharing, No wandering, No
invalidations

Read requests for locations of a particular cache
line originating from different sites may result in the
cache line to “wander” from one site to another.

This problem is alleviated by enforcing a lifetime
for a cache line. A cache line is “live” within a site
for t., a finite period of time called its lifetime. (¢,
starts immediately after the cache line is loaded.) A
cache line is automatically invalidated after its life-
time. Multiple READ requests to locations within the
cache line are honoured by sending the entire cache
line. In this case, note that the cache line could be
“live” in multiple sites.

A WRITE operation on a cache location is hon-
oured when the lifetime of the latest READ has ex-
pired. Multiple WRITES to the same cache line must
therefore be queued. It is important to note that a
WRITE operation is delayed only if it arrives within
t. of the last READ operation.

3 An Example

Consider the following instruction sequence in a
program segment.

global shared variable a
Instruction i>A := A+ B
Instruction i+1> P := A + 5

A multi-threaded code corresponding to the above
program segment will appear as follows. In addition
to the shared variables defined in the program, ad-
ditional global and local counters are defined in the
code generated by the compiler for synchronization.

global shared variable: A
global shared counter: syncA=1
local synchronization counter: C
local variable: B

Thread T1;generated by instruction i

Thread T2;generated by instruction i

Thread T3;generated by instruction i

Thread T4;generated by instruction i

Store A from global memory
into frame

Decrement C

If C=0 then start T4

else stop

Store syncA from global
memory into frame
Decrement C

If C=0 then start T4
else stop

Store B from local memory
into frame

Decrement C

If C=0 then start T4

else stop

Frame fetch syncA

Frame fetch A

Frame fetch B

A:=A+B

Decrement syncA

Perform a guarded write of A
and syncA in global shared
memory

3

Thread T5;generated by instruction

i+1

Store syncA from global
memory into frame

If syncA = 0 then start T6
else retry

Thread T6;generated by instruction

i+l

Store A from global memory
into frame
Frame fetch A

Add 5
Store into P in frame

Let us assume that threads T1, T2, T3 and T4 are
scheduled on processors in site; and threads TS5 and
T6 are scheduled on processors in site;;1. Further,
we assume that A and syncA are resident in the global
memory module of site;11. Clearly the order of execu-
tion of threads T1, T2 and T3 are of no consequence.
Also thread T4 cannot start before T1, T2, and T3
have completed. This is ensured by maintaining a lo-
cal counter C in the frame. Threads T1,T2,T3 and
T4 together share the same frame in site;. Threads
T5 and T6 together share a frame in site;y1. Thread
T5 cannot start before T4 completes. This is achieved
by maintaining a global counter syncA that guaran-
tees that thread dependencies are not violated.

The Incessantly Coherent cache coherence protocol
can now be verified for the above thread executions.
To start with we will impose the following artificial
constraints that will be relaxed later.

1. Sites i and i+1 maintain clocks that are globally
synchronised

2. Communication latency on the site interconnec-
tion network is finite and very close to zero.

The following sequence of actions takes place at global
caches.

1. Thread T1 executing in site; encounters a READ
miss on A. The global memory controller sends
out a request for a cache line to site;;.

2. Site;41 forwards a cache line containing A to the
global memory controller of site;.

3. Since communication latency is zero, site; re-
ceives the cache line immediately. This cache line
is self invalidated after its lifetime ¢. in site;.

4. Thread T2 executing in site; encounters a READ
hit on the global memory cache for a reference to
syncA. (It is assumed that syncA and A are in the
same cache line because of locality of reference.)

5. Thread T3 executing in site; results in no global
memory operations.

6. Thread T4 executing in site; results in a guarded
global WRITE operation. Since all writes are
made in the home location, the WRITE oper-
ation is delayed until the expiry of the lifetime
of the cache line(s) containing syncA and A in
site;y1.

7. Thread T5 executing in site;y; results in a READ
miss on syncA. The global memory controller of
site;y1 fetches the cache line. If syncA is not
zero, the cache line is brought in again after a
retry interval. The number of retries depends on
the lifetime t.. Each retry is a READ miss.

8. Thread T6 executing in site;4; encounters a
READ hit on the global memory cache for A. This
results in no global memory operation.

Clearly, the above sequence of operations are hazard
free. Now we relax the artificial constraints and re-
view the above set of operations under the following
conditions.

1. Processors site; and sites;;1 maintain indepen-
dent clocks

2. Communication latency on the site interconnec-
tion network is finite but not constant over all
transactions

Figure 3 (a) gives the sequence of global memory
references between site; and site;;; when the com-
muncation latency is zero. Figure 3(b) shows the same
set of operations with finite communication latency.
It is clear from the figures that with non-zero com-
munication latency the global memory remains con-
sistent throughout its execution since the same set of
transactions are stretched in time. There is however
an increase in overall latency of program execution.
Thus the Incessantly Coherent protocol guarantees
cache coherence throughout the execution of a pro-
gram.

4 Performance

The performance of any caching depends on the
model of multi-threaded computation. In a data
driven model of computation, threads of compu-
tations can be viewed as representing nodes in a
dataflow graph. In such a model, thread schedules
are not known a priori. In contrast, in data paral-
lel model of computation threads are scheduled stat-
ically. In the implicit parallel programming model
synchronization of threads is automatically handled
by the compiler. Synchronization is normally em-
ulated with software counters in memory locations.
In a data driven model synchronization is absolutely
necessary to ensure proper execution order of instruc-
tions. In the Threaded Abstract Machine (TAM) [§]
such synchronization threads are called inlets and are
executed in response to messages.

The synchronization operation is essentially an
atomic read-modify-write to a memory location, fol-
lowed by a branch on the result. Usually these mem-
ory locations are shared. In [7] the expected frequency
of such syncronization events is stated to occur once
every 50 or so instructions. Further it is reasonable to
assume that the same synchronization counter is not
accessed more than once by the same thread. This
behaviour of synchronization threads clearly swings
the pendulum in favor of the Incessantly Coherent
protocol since a cache line is always read without
the additional latency to invalidate previously shared
copies in other caches. Further since the syncroniza-
tion events are compiler generated, the compiler can
additionally specify the lifetime of such cache lines.
Clearly such cache lines will have shorter lifetimes
compared to computation threads. In general, the
compiler can choose to specify different lifetimes for
different cache lines. This feature is particularly valu-
able if prefetches are used to bring global data into
the cache before they are actually used.

Further, based on the reference pattern, a given
site can send messages in advance to the home site
to renew its lifetime. The lifetimes of cache lines can
thus adapt to the reference pattern in multi-threaded
program execution.

Based on these observations, it is expected that
on the overall, the average latency of accessing global
shared memory through cache (using the Incessantly
Coherent protocol) is lower than that compared to any
directory based caching scheme. Since the lifetime of
cache lines is very sensitive to the overall system ar-
chitecture and the model of multi-threaded compu-
tation, it is a good candidate to experiment on the
*T-NG [7] architecture for which coherence protocols
can be implemented in software.

5 Conclusions

In this paper we proposed a new shared memory
cache coherence protocol. The salient features of the
protocol being that it supports limitless sharing and
relieves the network of any traffic due to invalida-
tion messages. Since cache lines auto-invalidate them-
selves on the expiry of their lifetime, and writes are
done only at the home location on the expiry of the
lifetime, all caches are always coherent.

Acknowledgments

The authors acknowledge the discussions and sug-
gestions received from Prof. Arvind and thank Dr.
Horace Thompson, Prof. John Morris, Prof. Guang
R. Gao, Derek Chiou, Boon Seong Ang, Xiao Wei,
James Hoe,and Any Boughton for their helpful com-
ments for a better understanding of the issues in
global cache coherence.

References

[1] John Kubiatowicz and Anant Agarwal, “Anao-
tomy of a Message in the Alewife Multiproces-
sor”, 7th International Conference on Supercom-
puting.

[2] David Chaiken, John Kubiatowicz and Anant
Agarwal, “LimitLESS Directories: A Scalable
Cache Coherence Scheme”, Proceedings of the
fourth International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems (ASPLOS IV), pp. 224-234, ACM,
APril 1991.

[3] Daniel Lenoski, James Laudon, Kourosh Ghara-
chorloo, Anoop Gupta and John Hennessy, “The
Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor”, Proceedings of the
17th International Symposium on Computer Ar-
chitecture, pp. 148-159, Seattle, WA, May 1990.

[4] Kourosh Gharachorloo, Daniel Lenoski, James
Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory Consistency and Event ordering in
Scalable Shared-Memory Multiprocessor”, Pro-
ceedings of the 17th Annual International Sym-
posium on Computer Architecture, June 1990.

[5] M. Dubois, C. Scheurich, and F. Briggs, ”Mem-
ory Access buffering in Multiprocessors”, Pro-
ceedings of the 13th Annual International Sym-
posium on Computer Architecture, pp. 434-442,
June 1986.

[6] Jeffrey Kuskin, et al “The Stanfoed FLASH Mul-
tiprocessor”, Proceedings of the 21st Annual In-
ternational Symposium on Computer Architec-
ture, 1994 (to appear).

[7] Boon Seong Ang, Arvind, and Derek Chiou,
“StarT the Next Generation: Integrating Global
Caches and Dataflow Architecture”, LCS CSG
Memo 354, February 25, 1994.

[8]

[9]

D. E. Culler, S. C. Goldstein, K. E. Schauser,
and T. von Eicken, “TAM — A Compiler Con-
trolled Threaded Abstract Machine”, Journal of
Parallel and Distributed Computing, 18(3):347-
370, 1993.

A. Agarwal, R. Simoni, J. Hennessy, and M.
Horowitz, “An evaluation of directory schemes
for cache coherence”, Proceedings of the 15th
Annual International Symposium on Computer
Architecture, June 1988, pp. 280—289.

Time

| .. lclifeimeofacacheline |
Sitet
| TL READ misson A | Cacheline soif invalicited
: ¢ T2: READ hit on syncA
¢ T4: WRITES acacheline
| TS READ missonsyncA | T5: Retry for synca
. . Cache line containg A is forwarded :
Sitef(i+1) 9 ki
(a) Zero communication latency; Globally synchronized clocks
o b oo |
Siteth
|TLREAD misson A | | cachelinesaf invalidated
' y | T2: READ it on synca
| T4 WRITESacacheline
el .
K c2 03
)/ ¢ T5: READ miss on syncA R . ¢ T5: Retry for syncA
Sitef(i+1) T Cache line containing A is forwarded v
. . >I ””” ©
o @ (R N
3

c1,c2,c3 are the communication latencies

(b) Redlistic communication latency; Independent clocks

Figure 3: Global memory accesses

