LABORATORY rog gf;ﬁ;}gggﬂs

COMPUTER SCIENCE = TECHNOLOGY

(ACD Requirements \

Computation Structures Group Memo 357
June, 1994

B.S. Ang
D. Chion
J. C. Hoe
X.-W. Shen
Massachusetts Institute of T, echnology

J. Morris
University of Tasmaniq

S.K. Nandy
Indian Instityte of Science, Bangalore

and
M.J. Beckerle
Motorolyg Cambridge Research Center

Limited Distribution '
Distribution of this report is limited to these CSQ members: B.S, Ang, Arvind,
G.A. Boughton, A. Caro, D. Chiou, Kyoo-Chan Cho, D. Henry, J.C. Hoe, C.F.
Joerg, J. Morris, Hanpej Koike, Rajat Moona, S.K. Nandy, Andy Shaw, X.-W. Shen

This report describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of Defenge under the Office of
Naval Research contract N00014-92-J-1310.

LIMITED DISTRIBUTION

ACD Requirements
B.S. Ang, D, Chiou, J. C. Hoe, J. Morris, S.K. Nandy, X.-W. Shen and M.J. Beckerle
June, 1994

Abstract

1 Introduction

This copy of this report was current on June 27, 1994 at 12:05.

1.1 *T_Ng

The *T-ng system was designed as 5 message passing multiprocessor that also supports cache.
coherent distributed shared memory in order tg exploit temporal and spatial Jocality in memory
reference patterns, The *T-ng concept is described ip detail elsewhere][6, 7].

A *T-NG system consists of a number of sites connected by a switch fabric of Arctic routers[2].
A possible implementation of a site is depicted in Figure 1. This figure shows 2 site configuration
containing four NES modules (each consisting of a data Processor, network interface unit (NIU)
and an Arctic router). It is possible to replace three of the NES modules in Figure 1 with g module
containing two processors (each with a second level cache). Each Processor in a site may Carry out
normal computation (i.e. be a data processor or dP). There are two groups of functions which are

® processing of remote memory references sent to a site from other sites gnd

® maintaining directories of remotely cached lines to Support a coherent cache scheme,

1 LIMITED DISTRIBUTION

Arctic Switch Fabric to Other *T-NG Sites

/NES | ' INES | |

I |
1 1 1 |

! Arctic j : Arctic X : Arctic \ ! Arctic :

,' Router ' | Router r Router 4| Router v
L ' | Ly i
1 1 1

(NIU B LNI'U Dl
_ Cache Cachej :

O |
;LCachej !

MY

Q2
1S3
::('D
e

MESI Cache Coherent Interconnect

e N | Bridge ACD |-

Figure 1: *T-NG architecture

The optimum configuration for a site will depend on the type of programs to be run on it: this
report applies to any system configuration in which each site has at least one NES module whose
processor can assume the role of the nP and PP. Various alternative architectures for Hermes, the

communications unit for *T-NG are discussed in [1].

The Address Capture Device (ACD) is a key component of a *T-NG system as it provides the
distributed shared memory capability. The ACD’s function in a *T-NG system is the detection
of bus transactions which refer to shared memory locations, the capture and storage of sufficient
information to enable the nP to format and transmit Inessages to remote locations and also enabje
coherent caches to be maintained across all sites.

This report is organized as follows: the remainder of this introduction contains a glossary of terms
used. Section 2 sets out the requirements for a *T-Ng system. Requirements for the ACD are
derived from these system requirements. Section 3 describes the ACD operation, beginning with a
discussion of memory addressing, following with descriptions of blocking and non-blocking memory
operations and listing some design issues that need further information or study. Section 4 describes
the functions of the ACD hardware. Outstanding design issues are identified in Section 5.

1.2 Nomenclature
The following terms are used in this report:

site a collection of dual-processor modules, memory, I/O device interface (containing the
ACD), and one or more NES modules

processor a data processor in a site (in this context, processor may refer to the processor on a
dual-processor or NES module) '

dp a synonym for processor
process any one of the multiple Unix processes

ACD Address Capture Device - a block of fast logic which is designed to capture an address
transaction from the bus within the time constraints imposed by the PowerPC processor

SMU Shared Memory Unit - term used in the original *T-ng bapers for the collection of
state machines and buffer logic which provides support for remote loads and stores by
Benerating messages and the part of the cache coherence praotocol which is not handled
by the nP - included the ACD. In the architecture described in this report, all the
functions of the SMU are handled by the nP, rendering the SMU unnecessary as a
separate hardware unit.

nP network processor: the processor in one of the NES modules which Processes messages
for the ACD (replaces sP)

pP protocol processor: the processor in one of the NES modules which is responsible for
maintaining the cache coherence protocol - usually the same processor as the nP, but
the architecture permits distinct processors to carry out the two functions

NES Network Endpoint System - a module (presumably contained on a single PCB) com-
prising a processor (dP, nP or PP), NIU and an Arctic router

L3 bus The main processor-memory-1/O device bus!: a three-level bus architecture is assumed
- an internal L1 bus supports the primary cache and a fast external L2 bus supports a
co-processor or 2nd level cache, thus the main system bus is L3

TIF Transactions-In-Flight - transactions which are currently propagating through the net-
work or being processed by a pP at a remote site

2 System Requirements

This section summarizes the requirements for a *T-NG system. Some background constraints on
the whole system are

1. The machine will consist of a number of PowerPC-based sites each consisting of four processor
module slots. Each slot may contain a dual processor module or an NES module (at least
one of the slots must contain an NES module), memory and an interface to I/Q devices.

2. The operating system will be an essentially un-modified Unix.

3. The additional hardware to support message passing and shared memory will be as simple as
possible commensurate with performance.

2.1 Programs
The system must be able to run C and FORTRAN programs such as those in the SPLASH bench-
mark suite. Thus it must provide global shared memory and a mechanism for passing messages.

It is intended that it will also be able to run programs compiled from implicitly parallel languages,
e.g. pll, efficiently,

2.2 Shared Memory

Individual processes running on any site {or any processor within a site) will be able to create
threads which will run on any processor in the machine. Those threads will be able to see a large
virtual memory space which may be distributed over the physical memory of all the sites.

2.3 Threaded Code

Either hardware of software (or some combination thereof) will need to provide support for
1. split-phase loads from remote memory locations,
2. joins,
3. starting threads on remote processors and

4. suspending and resuming threads on the local processor.

'The term bus is used here and elsewhere to refer to a general interconnection matrix, which may or may not be
& bus in the conventional sense.

Split-phase loads will have two flavours -

L. cached - a remote memory location is loaded into a register via the local processor’s cache

2. uncached - a remote memory location is fetched into a local frame.

Cached loads will be needed when the compiler generates code to convert a local cache miss to a
split-phase load. Uncached loads will be generated by pH and other compilers loading values to
local frames and expecting values to be cached using the local frame address as the cache tag rather
than the global address which will be used for cached loads.

2.4 Operating system

A Unix variant will run on the data processors in each site. This implies:
1. Processes may be interrupted at any time, e.g. when a time-slice ends.

2. The memory system may not block processes for unbounded times.

Thus the nP will need to keep track of outgoing blocking transactions and be able to com plete them
after it has assumed that so much time has elapsed that the network or receiving processor has
had some error, e.g. a receiving processor has died. Some mechanism to alert the process receiving
invalid data from an nP-ACD completed transaction will be needed.

If a protocol of ‘heart-beat’ messages were implemented, then processes would be able to determine
precisely that sites or individual processors had failed and thus enhance reliability. However it
alone would not allow for messages lost or corrupted by the network.

2.5 Reliability

Applications and operating system software are primarily responsible for handling network faults.
The system must provide sufficient information to allow reliable protocols to be implemented in
software. It may be assumed that the communications hardware is sufficiently reliable that respon-
sibility for implementation of error management and recovery protocols can be left to software.

Normal messages (generated by user processes) must not be able to block high priority messages
(generated by kernel software).
Memory management and protection throughout the system must be at least as strong as that

provided on individual processors, so that user programs are unable to corrupt the operating
system and operating system faults on one site do not affect the operating system on another site.

2.6 Performance

Global cache coherence will need to be maintained. Message generation will need to consume as
few cycles in the data processors as possible. Message latency through the network will need to be
minimized.

3 ACD operation

3.1 Memory Addressing
3.1.1 Memory addresses

The address space seen by any process will be divided into local and shared spaces. A process
which is running on more than one site will have a distinct local address space on each site, but the
shared space will be common to all threads of the process. (This separation allows the bus-snooping
protocol to maintain cache coherence for the local address spaces and only requires the ACD to
monitor shared addresses.)

3.1.2 Virtual Memory

All shared addresses pass through two Mmemory mapping units - one on the requesting dP and one
on the nP of the home site.

For a shared address, the first translation, which takes place in the requesting dP’s MMU, converts
a shared virtual address into a pseudo-physical address (which - because the dP hardware believes
it to be a physical address - is constrained to a maximum of m bits, where m is the number of
bits in a physical address impressed on the bus). This pseudo-physical address is sent to the home
site’s nP which treats it as virtual address and transforms it to a physical address on the home
site. If the page containing this address is paged out, the home site’s page tables are updated: the
requesting site’s page tables are unaltered as they point to a location in the home site pP’s virtual
address space?.

This enables *T-NG to provide all the facilities normally expected of a virtual memory system
e page faults are handled transparently and

¢ the protection and sharing capabilities of individual MMUs are available globally.

With the dual translation, there is no need to maintain consistency of page tables, as only the home
site page tables change on paging operations.

3.1.3 Pseudo-physical addresses

The pseudo-physical address will have the format:

Bits r P q
Function || selector | site_id | address

The processor’s MMUs will hide the mapping of site_id’s to actval processors from application
software. One simple scheme would interpret a zero sife_id as a reference to unshared memory on
the current site, a site_id matching the site’s id as a reference to shared memory on the current
site and any other value as a reference to a remote site. Note that if this scheme is adopted, the
ACD may be able to ignore references to shared memory on the current site: this will depend on
the cache coherence protocol used and therefore would ideally be made a configurable option.

*Note that the pseudo-physical address (40 bits) is considerably smaller than a virtial address (52 bits): thus
total shared memory space is constrained by the physical address space size,

Since there are m bits in a physical address impressed on the bus, then
m=p+qg+r

It is assumed that p will be some small integer (say 6-8). The r bits of selector may include a bit
designating global /local and for kernel /WBeT address spaces. r may also be zero.

3.2 *T-NG architecture

The system in which the ACD resides is illustrated in Figure 1. Each processor shown has a direct
connection via an NIU to every other similarly equipped processor in the network?, One of these
processors will perform the functions of the nP - sending messages to implement blocking loads
and stores and maintaining cache directories.

3.3 Principles of Operation

There are two major operations which the ACD must support:

Blocking Loads/Stores A blocking ioad or store is a reference to a memory location on a remote
site which is satisfied while the processor waits.

Non-blocking Loads A non-blocking or split-phase load is a reference to a remote memory lo-
cation which, if there is a miss in the local caches, the software in the requesting
processor converts to a message requesting the data and then suspends the current
thread of computation, '

Remember that non-blocking loads come in two flavours: those which return values into registers
and leave them cached at the global address and those that load data into local frames (cf. Section
2.3). We are concerned here with the former type as the latter type is handled entirely by the
transmission of messages and doesn’t need intervention from the ACD.

Note that due to the 620 ability to pipeline reads and writes, the notion of a ‘blocking’ load or
store is somewhat more complex than it might be in a simpler processor. However, since the number
of outstanding data transactions is limited, the processor must eventually block in the conventional
sense until one of the ‘blocking’ transactions completes.

3.3.1 Basic Function

the dP from which it originates.

*1t is possible to add processor modules to the system which contain a pair of processors and no N IU.
‘The 620 cache will pushout a modified cache line, but not one marked exclusive or shared.

3.3.2 Blocking Loads/Stores

When a dP makes a reference to a memory location in a remote site, the sequence of operations
will be (see also Figure 2):

1. The ACD will recognize the transaction by noting that p bits of the physical address appearing
on the bus refer to a remote site.

2. The ACD will capture the address in a block of internal memory addressed by the
processor_td|transaction_id.

3. The ACD will also capture and store the signals identifying the type, size, etc of the trans-
action.

4. If the transaction is writing to memory, the ACD will read up to a full cache sector from the
data bus.

5. The ACD will signal the nP that there is a blocking transaction for it to process.
6. The nP will read the transaction data from the ACD’s memory.
7. The nP will format a message and transmit it to the remote site.

8. The pP on the remote site will receive the message, read or store the data, format a reply
message and despatch it to the originating nP.

9. The requesting nP receives the return message and places the data in the ACD’s memory.
10. The nP alerts the ACD to complete the transaction.

11. The ACD completes the bus transaction.

When completing the bus transaction, the ACD must ensure that the state of the cache line in the
requesting dP is:

shared if a read was issued or

exclusive if a write (appearing as RWITM on the bus) was issued.

Thus the ACD must assert the AResp lines appropriately.

Lost or corrupted messages

PowerPC processors cannot start to process interrupts while there are outstanding bus transactions.
This means that a Unix process context switch cannot take place while blocking transactions are
incomplete. Since the failure of the network should not lock up the whole system, if a message
is lost, a mechanism must be provided to enable the requesting process to be swapped out. The
kernel must then be advised that the process lost some data and the kernel should send a signal to
the process to that effect. (It will be up to the process itself to determine how to handle the signal:
the optimum procedure will depend on the individual process - some might simply abort, others
back up to the last checkpoint, etc.) The nP will need to keep TIF records and advise the ACD to

' Requesting Site

dp
PowerPC 620 L ACD

dP issues load, misses in cache, ACD
captures address transaction on L3

ACD notifies nP via control line
nP reads transaction from ACD via L3

nP formats and sends message to pP

PP receives message,
does protocol processing

pP formats and sends message to nP
nP receives message, writes returned
cache line to ACD.

ACD satisfies request.

dP completes blocking load

Figure 2: Steps in a blocking load

complete transactions for which no responses have been received after some interval. An optimum
value for this interval will need to determined: it will depend on the size of the Arctic network and
the amount of traffic. The Arctic routers themselves cannot guarantee to deliver a general (i.e. low
priority) message in a finite time, although a reasonable upper bound to the delivery time can be
derived readily enough.

There are a number of possible mechanisms for the nP to alert the Unix kernel that a process has re-
ceived incorrect data: the optimum one will depend on the Unix implementation, but consideration
needs to be given to allowing the ACD to interrupt any processor for this purpose.

3.3.3 Non-blocking (‘Split-phase’) Loads

Split-phase loads are designed to tolerate network latency by switching the processor to another
computation thread after remote loads are initiated. The message sent to the remote site contains
a continuation which is to be activated on the requesting site when the value from the remote site
is available to the requesting thread.

To maximize cache utilization, the compiler will emit code which first attempts to load the shared
datum from the local cache. If the software detects a special pattern (the miss pattern, Fmiss)
returned from this attempt, it will assume that a cache miss occurred and switch to a sequence
of instructions which forms a message requesting the same datum from the remote site. Once the
message is despatched, the processor will switch to another thread so as not to idle while the remote
access is being transmitted through the network.

This code relies for its efficiency on the compiler being able to select a data pattern which is highly
unlikely (#miss) as a real data value. In general, this will be no problem, e.g. for floating point
values a NaN pattern can be used. If the desired value is actually #miss, then it will be returned
on the second read. Thus the code will become extremely inefficient, but remain correct, if Fmiss
is a constant of the program! To avoid the pathological situation, it may be necessary to enable
a process to set the miss pattern. The chosen value for #miss then becomes part of the process
state and needs to be restored on a context switch.

In the following, we outline three schemes for handling blocking loads, in each case, we set out the
code emitted by the compiler and consider the sequence of operations which are performed by the
ACD, nP and pP for the following task:

load register r, from a global address, ga, in register r,,.

Register r,,;;,; contains #miss and msg, save_state, next and rest_state are pseudo-operations
for which the compiler emits appropriate sequences of instructions.

We explain why the naive Scheme A is not sufficient and discuss the conditions necessary for
Scheme B. If the operation of sync and tlbsyne allows Scheme B to produce a correct result, then
Scheme C may be considered as a possible alternative which may give better performance under
some operating conditions.

Scheme A

1d TysTga

10

cmp crf,,r,, Tmiss
bne crf;,split

ok: r. loaded from [ry,]
split: dcbf r, force miss pattern
from cache
msg spread,r,;,sp.ret
split read msg
save_state Save state
next Jump to next runnable thread
Spret: rest state
1d Ta,Tgn This load must succeed
b ok Continue thread

This code requires that the ACD is able to guarantee that the second read succeeds. Thus the
value returned must be stored at the local site until the second read is issued. A first solution to
this problem would have the nP store the returned cache line and its address in buffers in the site’s
main memory when the message returned from the remote site. When the second read arrives, the
value is fetched from the buffer memory and supplied to the data bus. The line is then cleared from
the local buffer memory, However it is possible - and highly probable - that another thread might
also issue a read to ga in the interval between the return of the original value to the local ACD and
re-activation of the original thread via the continuation. This would cause the ACD to assume that
this read is the second one issued by the original thread, supply the value and remove it from its
memory. When the second read from the original thread is finally issued, the ACD would assume
- it to be a first read and supply the miss pattern, leading to incorrect execution.

Scheme B

To avoid this problem, it is necessary to be able to set the ACD into two states:

convertible Reads are convertible to split phase reads. the ACD and nP will attempt to satisfy
the read from local memory (or L3 caches) and, if unsuccessful, will return #miss.

blocking Reads are blocking. The ACD and nP will attem pt to read from the local memory
and issue a blocking read to the remote cluster if unsuccessful. If the read is satisfied

from the local memory, local memory will be cleared.

Thus the initial read is issued in convertible mode and the second in blocking mode.

Thus the compiler-emitted code needs to be: (racp contains the address of the ACD configuration
register, #£convert is the command which when placed in this register sets the ACD into convertible
mode and #blocking is the command which sets the ACD into blocking mode. The steps in this
load are shown in Figure 3.

st TAcD,#convert
ensure correct mode
sync force ACD configuration out

11

dp nP | pP Mem

PowerPC 620 ACD PowerPC 620 PowerPC 620

Phase I: non-blocking load (local miss->remote fetch)
0. dP syncs, writes ACD control to non-blocking ¥
syncs, performs load, syncs

1. dP issues load, misses in cache, address goes to L3
ACD captures address transaction

2. ACD returns miss pattern to dP

3. dP receives miss pattern, check, branches
sends split-phase global caching load via
its own NIU

4. pP receives message, does protocol processing
returns cache line to nP

5. nP receives message, stores cache-line, writes
continuation to dP queue

Phase I1: blocking load (local hit)

6. dP reads continuation, executes
dP issues load, misses in cache, address goes to L3
ACD captures address transaction

7. ACD notifies nP via control line

8. nP reads transaction from ACD via L3

9. nP finds cache-line in software cache, writes
cache-line to ACD

10. ACD returns cache-line to dP via L3

11. dP completes phase 2 of split-phased load

*It méy be better to toggle between blocking and non-blocking,
rather than setting it each time

Figure 3: Steps in% split-phase load

1d TysTgg

sync Note 1

cmp Crf vy, Tiniss

bne crf;,split
ok: r, loaded from [r,,]
split: dcbf r, flush miss pattern

msg spread,rgy,,sp.ret

split read msg

save_state Save state - Note 2

next Jump to next runnable thread
sp.ret: rest state

st TAcD,#blocking

sync Config must be written before .

1d Ty,Tga this load is issued

sync Note 1

b ok Continue thread

Notes

1. Although reads are specified to have priority over writes in access to the bus, it is essential
that this read completes before the ACD state can be changed by another store operation.

2. Because a context switch may occur between the sync and Id instructions, the state saved
on context switch must include the ACD configuration register.

3. In order that the cache line is marked shared in the requesting processor’s cache, the ACD
must assert the appropriate lines when completing the second read.

Auto-reversion to convertible configuration

This scheme requires two instructions {one - sync - a potentially expensive one} to be inserted by
the compiler ahead of each load from a shared address. If the ACD was to revert automatically to
the convertible configuration after each load in the blocking configuration, then the cost of each
load can be significantly reduced.

Note that we will need to distinguish between an always blocking configuration (needed for
'standard’ blocking loads) and this auto-revert blocking configuration.

Scheme C

If we make the most pessimistic assumption {cf. Sections 3.4.1, 3.4.2) about the behaviour of the
synchronizing instructions, Scheme B may also fail if the nP issues a synchronizing instruction
after the second read has been issued by the dP, but before the ACD has been able to complete
it, since this requires nP assistance. It appears that sync does not inhibit the issue of new bus
transactions by the nP which are essential to the operation of Scheme B and thus does not preclude
Scheme B. However, unless tlbsyne operates in a very sophisticated manner (¢f. Section 3.4.2), it
will prevent new bus transactions being issued and thus make Scheme B unworkable.

13

In scheme B, the nP performs more of the overhead processing on behalf of the dP, but the dP
is blocked while the nP transfers the requested line to the ACD. In addition, using Scheme B, the
data may stay in the nP cache (and never be copied to main memory buffers as it can be invalidated
after the second read), so Scheme B may result in lower overall bus occupancy and latency.

The following scheme does not rely on the ACD and nP cooperating to complete a transaction
initiated by a dP. Depending on other demands on the system (particularly on the nP), overall
system efficiency may improve if this scheme is used as an alternative to Scheme B.

Instead of holding the returned cache line in buffer space managed by the nP, the line is returned
to the dP as part of the continuation. The dP reads the line from the continuation queue, but
must now arrange for it to appear in its cache at the right address and with the right state (shared).
It achieves this by writing the cache line into the ACD’s buffer and setting the ACD into a ’supply
next read from your buffer’ mode. (Now both the ACD mode and the buffered cache line become
part of the process state.)

In the following code example, rog contains a pointer to the head of the continuation queue from
which the continuation itself (IP:FP) has just been popped, T scDpe ¢ points to the ACD buffer and
#bufload is the ACD command which instructs it to supply the next shared memory load from
its buffer.

st Tacp,¥convert
ensure correct mode
sync force ACD configuration out
1d Tg:Tgq
sync cf. Scheme B note 1
cmp crf,, Ty, Tmiss
bne crf,,split
ok: T, loaded from [r,,]
split: dcbf T, force line from cache
msg sp-read,r,,,sp-ret
split read msg
save_state Save state
next Jump to next runnable thread

; continuation is resuvmed here
8p-rat: rest.state
Imw T34,TCQ lcad cache line
Stm¥ TACDpufsTy48tore in ACD buffer
debf racpbus force line to write buffers

st TicD#bufload

sync Config must be written before ..
1d | S this load is issued

sync cf. Scheme B note 1

b ok Continue thread

Note that this code uses lmw and stmw for simplicity: other sequences of instructions may be
needed or be more efficient.

14

This code sequence assumes that the ACD provides a configuration register and cache line buffer
for each dP and that it uses the processor_id bits accompanying each transaction to address the
appropriate buffer. I a process is interrupted and resumes on a different processor, then the
configuration register and cache line buffer for the new processor are replaced.

The number of ACD buffers required can be reduced by providing a lock on a single ACD buffer.
Acquisition of the lock could be combined with setting the ACD configuration register to reduce
dP cycles required. Single-threading all processes through a single ACD buffer would affect perfor-
mance, but the performance loss may not be significant. The lock is held for a very small number of
instructions and the probability of a context switch (and consequent high probability of contention
for the lock) in this small region may be acceptably low.

An alternative to locking ACD access is to save ACD state (including buffered data) on context
switch and re-try ACD accesses from other processors while the ACD is in bufload state. The
interval between setting the bufload state and clearing this state is sufficiently short (2 instructions
in the example above) that re-trying the other processors is acceptable. On a context switch, the
ACD state of the new process {generally this will not be bufload) is restored so that another
processor waiting will be allowed to proceed. Providing a buffer per processor would eliminate the
need for and potential performance penalty of re-trying.

3.3.4 L3 cache

In both styles of remote access, the nP handles the format and despatch of the message, so it
becomes a straight-forward exercise to implement a software cache of arbitrary size for remote
locations in the site’s main memory.

If an L3 cache is present, it may be optimal to consult the L3 cache (by alerting the nP which is
managing it) before completing a load with #miss: this issue is under study.

3.3.5 General Message Passing

dPs needing to send messages for synchronization, uncached blocking loads, etc. can do so efficiently
via the NIU attached to their L2 cache bus. Thus any system which needed to run applications
making extensive use of message passing capabilities would presumably be configured with four
NES modules so that any processor can send messages directly.

The ACD is therefore not required to participate in application generated messages.

3.4 Design Issues

This section highlights several areas where operation of the 620 may create difficulties in achieving
the desired functions. In some of these areas, the precise behaviour of the processor could not be
ascertained from the available documentation.

3.4.1 sync behaviour

An initial examination of the 620 documentation led to some doubt as to the precise behaviour of
the syne instruction. We have since been advised by Seye Ewedemi (Motorola, Austin) that

15

A sync seen by a snooper is not re-run by that snooper unless there are pending snoop-
based pushbacks.

As the ‘correct’ behaviour of syne is vital for the avoidance of deadlock in a number of situations,
the original question is documented here. All operations in which the ACD and the nP must
cooperate to complete a bus transaction are susceptible to this problem.

As noted in Section 3.3.3, there is a potential for deadlock if any processor issues a sync instruction
while an operation on which the ACD and nP need to cooperate is in progress. The following
sequence of operations illustrates the problem:

A dP issues a global blocking load which the ACD captures. The ACD signals the nP to
complete the transaction. The nP must now read the information from the ACD, thus
requiring a bus transaction. However, as part of some completely unrelated operation,
the nP has executed a sync instruction right after the dP issued its blocking load. The
nP has not issued instructions to load the ACD information at that time - in fact, it
probably does not even know about the ACD request at the point it executed the syne.

The nP may not issue any more general bus operations until the sync it executed
completes, although it may be able to issue pushout’s and other responsive bus

transactions®

Question: Does the sync have to wait until the blocking load completes? If it does, there is a
deadlock, since the nP must complete the sync and issue more bus operations in order to complete
the dP’s global blocking load. If the sync does not have to wait until the blocking load is complete,
than there is no deadlock in this situation. We need to find out what the sync instruction needs to
complete and what may occur while a sync instruction is outstanding. We also need to determine
the behavior for instructions other than loads.

Although it now appears that the syne instruction will not cause this problem, this point should be
checked carefully!

3.4.2 tlbsync behaviour

The tlbsynec instruction has the potential to cause the problem discussed in the previous section
for sync.

As currently implemented, tlbsyne requires completion of all outstanding transactions on a site
with a common shared set, of page tables before new transactions can be initiated. This implies that
if any processor, in the process of completing alterations to the page map tables as a consequence
of a page fault, issues a tlbsync

e after a remote site blocking load has been issued and

e before the nP has been able to complete the outstanding transaction,

the system will deadlock. The tlbsync cannot determine whether bus transactions may have been
caused by attempts to read page table entries which may be affected by previous tlbie operations
and must be completed.

5The documentation available does not give suflicient detail in this area.

16

If tlbsync doesn’t inhibit the issue of new transactions - simply requiring existing ones to complete
- then deadlock may still occur if the nP issues a tlbsync after a remote blocking load has been
issued and before the nP has been alerted to complete the load. This would require that the nP
run only “firmware’ style code that excluded thlsync.

3.4.3 Critical Regions

Locks, semaphores and critical regions will be handied by passing messages to the pP on each site.
Since the pP can effectively single-thread itself, then a variety of schemes for managing critical
regions globally may be implemented in software. No support is required from the ACD.

Note that this assumes the ability to compile a program with a library of synchronization primitives
appropriate for *T-NG. A program attempting to synchronize its threads with synec, (i.e. relying on
its semantics being extended across sites) will not run on multiple sites as attempting to implement
sync across sites will lead to deadlock situations.

3.4.4 Weak consistency

We can find no way to implement sequential consistency across sites when programs rely entirely
on blocking loads and stores. Thus weaker consistency models will need to be adopted. From an
efficiency standpoint, this is not a drawback.

The use of weak consistency and other relaxed cache coherency models is currently being explored.

3.4.5 Snoop Pushouts

Replacement of cache lines can cause data which must be written to memories on remote sites to
appear on the bus independent of any program-generated transactions at any time. The ACD must
capture these pushouts and alert the nP to process them.

Thus the ACD must provide at least one buffer to capture snoop-generated transactions. If the
minimal single buffer is provided then further snoop-generated pushouts must be re-tried until
buffer space is available.

3.4.6 Flushes required for cache coherence

Cache coherence protocols will generate flush operations to invalidate entries in processor caches.

These may be generated in a number of ways:

1. A dP may execute a debfinstruction. If this refers to a shared location, it must be captured
by the ACD and propagated to the L3 cache and other sites.

2. The nP may receive an invalidate command from a remote site. It may place the invalidate
operation on the site’s bus by issuing a debf instruction. In this case, the ACD may ignore
the Write-w-kill bus transaction, but must must capture and pushouts generated by it.

A possible deadlock arises if the nP generates a Write-w-kill which is captured by the ACD for
sevice by the nP. Thus either

17

Signal Name Label Bits | Monitored | Captured
Bus Operation Code AType< 0:4 > 5 Yes Yes
Size ASizeData< 0:3 > 4 No Yes
Burst Size ASizeBurst 1 No Yes
WIMAN codes Address< 0:4 > 5 ? ?
Processor ID BusPID< 0: 4 > 5 Index! Yes
Transaction ID TransID< 0:2 > 3 Index? Yes
Address
High bits Address< a : b > D Yes Yes
Low bits Address< c:d> |[m—p No Yes
Address Status AStatIn< 0:1 > 2 Yes No
Address Response ARespln< 0:2 > 3 Yes Yes
Total p+ 10 m+ 21

Notes
1. BusPID< 0:4 > |TransID< 0 : 2 > is used as an index into the ACD’s transaction tables.

Table 1: Bus signals monitored or captured by the ACD

o the ACD does not cause the Write-w-kill to be re-tried until complete - making sequential
consistency unachievable - or

¢ the ACD can recognize nPgenerated transactions and is thus able to ignore an nP-generated
Write-w-kill.

4 ACD Hardware

4.1 Signals monitored
Figure 1 lists the signals which need to be monitored and captured by the ACD. This table needs
careful review.

The ACD must be capable of completing the address transaction within tight time constraints
imposed by the processor.

The ACD will also need to detect cache-coherency related transactions for shared addresses.

4.2 Configuration Register

A configuration register in the ACD can be written by a process running in a dP to signal the
ACD that cache misses appearing on the L3 bus are to be converted to split-phase loads rather

than processed as blocking loads. Since up to 7 processors could be issuing references to shared
memory simultaneously, a configuration needs to be stored for each dP.

18

ACD state Description

blocking Read and store accesses are blocking

convertible ACD responds with miss pattern

blocking-auto revert | ACD blocks on next load and then reverts to convertible
buffer-load ACD responds to next load from its internal buffer

Table 2: ACD states required

4.3 ACD - nP control line

The ACD must be able to alert the nP that there is a transaction waiting for it to process. It
could do this by:

e interrupting the nP using the single interrupt line or

e setting a bit in a memory mapped register {e.g. the ACD configuration register) which is
polled by the nP.

Note that the requirement for handling lost or corrupted messages may require the ACD to be able
to interrupt all the dP’s.

4.4 Responses to bus transactions

This section summarizes the responses that the ACD should make to the various bus transaction
types.

4.5 ACD operations

For certain combinations of signals on the bus, the ACD will need to invoke a handler which
will capture the signals that will be needed by the nP to complete the transaction. This section
describes each handler in detail. The conditions under which each handler is invoked are set out
in Table 3. Essentially there is one handler for every bus transaction type (as determined by the
bus signals AType< 0 :4 >) which needs to be recognized by the ACD, but in some cases, other
signals on the bus (e.g. ARespln) will determine which ACD handler to select.

ACD handlers have been given names with a _a suffix (e.g. RWITM_a) to distinguish them from
the bus transactions of the same name which invoke them. Similarly messages which a handler
causes to be sent to the home location by the nP are given names with a _h suffix (e.g. DClaim_h).

Cache coherence protocols

Different cache coherence protocols will require slightly different handling of each ACD request by
the nP. The following descriptions indicate possible nP processing, but variations are possible.

19

Bus Program Cache ACD | AResp ACD
Operation Operation State AResp In Action
Out
read-cache LD Ca,l 5 Null read_cache_a
{or read-burst) | DCBT S See note 2.
LLARX
M read_transfer a
Retry [Do nothing.
Rerun | A write-w-clean could follow.
RWITM ST Ca, Wb Null Null RWITM a
DCBTST |1 See note 2,
STCX
M No ACD action needed - data
will be supplied by cache that
intervened.
Retry | Do nothing.
Rerun
DClaim ST Ca, Wb Retry | Null Not possible.
S
DCBTST
STCX Retry | Delaim_a
DCBZ Ca,Wb Rerun | Can this happen?
I8
Write-w-kill Deallocate | Ca,M Null Null write_w_kill a
DCBF
Retry | Do nothing.
Rerun
Write-w-clean | DCBST Ca,M Null Null write_w_clean_a
Retry | Do nothing.
Rerun
Read-no-cache | LD Noca Null Null read_non_burst_a
(also read-non- | LARX
burst)
M Should not happen.
Retry | Do nothing.
Rerun
Write-w-flush ST Ca,Wt write_w_flush_a
DCBTST | MESI
ST NoCa
STCX
Table 3:

Questions

1. If a flush of the cache line appears on the bus, what happens to this outstanding operation?

2. Will every processor be able to see ARespIn?

20

Bus Program Cache ACD | AResp ACD
Operation Operation State AResp In Action
Out
sync SYNC Nult No action cf. Section 4.5.9
eieio EIEIO
larx-reserve LARX Ca,MES
and L3
enabled
Dkill DCBI Ca,MESI
flush DCBF Ca,ESI
or
Noca
clean DCBST Ca,SEI
tlbsync TLBSYNC
tlbie TLBIE
ikill ISYNC
pio-load-
immed
pio-load-last
pio-store-
immed
pio-store-last

Table 4: Bus operations not supported globally

4.5.1 read_cache_a

ACD captures the address, completes the address part of the transaction with AStat=PosAck
AResp==5hared and notifies the nP. The nP is alerted and sends a read_cache_h message to the
home location. Eventually, a cache line worth of data is returned to the nP which writes it into the
appropriate ACD buffer (addressed by the transaction tags). Writing the returned value causes the
ACD to invoke the remainder of the read_cache_a handler to request the data bus and complete
the data part of the transaction. See note 2.

4.5.2 read_transfer_a

A read from processor A has caused processor B to push out a modified copy. The ACD captures
the address and data. The nP sends the data to the home with a write_w_clean_h message.

4.5.3 RWITM._a

This handler is invoked when AType=RWITM and ARespln#M. ACD captures address, completes
address transaction with AStat=PosAck and notifies nP. The ACD’s AResp will be PosAck. Com-
pletion of the data part of the transaction is essentially the same as for read_cache_a. See note
2,

21

4.5.4 DClaim-a

The DClaim bus operation with address X is used when a dP wants to write to a cache line that is
currently in its cache in the S state. The purpose of this operation is to obtain ownership of cache
line X so that the write operation can proceed. Since another process in a distributed environment
may attempt to write to the same cache line at the same time, the DClaim operation should not
complete until global ownership of the line has been obtained. This can be achieved by requiring
the originating processor to re-try the DClaim operation until the home site surrenders ownership
to the requesting site in the following manner:

The ACD first checks that it has not already initiated a message to the home in response to this
transaction. If this is the first time, the ACD captures the address but asserts ARespOut=Retry
to force retry until the Dclaim_h message can be sent to the home site by the nP and the ac-
knowledgement is returned. ACD’s transaction record will be marked so that retries continue to be
retried without alerting the nP again until the acknowledgement arrives from the home. The nP
then clears the retry flag in the ACD’s transaction record and the ACD ceases retrying the DClaim
bus transaction.

This method requires the requesting processor to retry the operation for an extended period, poten-
tially wasting considerable bus cycles doing so. A more efficient alternative is to retry the DClaim
when it first appears on the bus, but immediately perform a flush of cache line X after that. This
would remove the cache line X from the dP. The dP will then have to issue a RWITM in order to
perform the write. This alternative requires the ability to force a processor to abort a bus trans-
action and re-start it after having checked the cache line status (changed by the flush operation to
invalid) again and thus changing the bus transaction issued from DClaim to RWITM.

It is not clear whether the 620 would permit this alternative.

4.5.5 write_w_flush_a

write_w_flush is an single word (non-burst) transaction issued when segments are marked WriteThrough
or Cachelnvalid. Other caches holding this line must be flused and the updated word written to

memory. The ACD captures the address and data and responds with PosAck. The nP sends a
write_w_flush_h message to the home location.

4.5.6 write_w_kill_a

The ACD captures the address and data and then notifies the nP. The nP will send a write_w_kill_h
message to the home which will send an acknowledgement back.

4.5.7 write_w_clean_a
The processing for write_w_clean _a is identical to that for write_w_kill_a except that the message

sent is write_w_clean_h which causes the home directory to note the retention of the clean copy
on this site.

22

4.5.8 read.non_burst_a

The ACD captures the address and size and notifies the nP. The nP sends the read_non_burst_h
This data word is not cached and consequently may require minimal processing by the cache
coherence protocol. On receipt of the returned message, the nP will transfer the data to the ACD
which will complete the data part of the transaction.

4.5.9 Synchronization transactions

As user programs can send synchronization messages, the following synchronization operations wil
not be needed beyond a site:

® sync
e eieio

e tlbsyne

23

5 Outstanding Issues

5.1 Form of pseudo-physical address

The form of the pseudo-physical address needs to be resolved (cf. Section 3.1.3):
p=7

i.e. how many bits will be devoted to the sife_id?
r=07

Will the operating system make fixed divisions of the address space for specific purposes?

5.2 Operating system

When a process dies or is killed, outstanding messages which it generated must be flushed from the
network - or at least allowed to disappear gracefully. They must not perturb other processes.

5.3 Cache coherence

Many issues related to maintenance of coherent caches have not yet been resolved.

Some points which require further work are:

o [t is highly desirable to have a sizeable L3 cache for shared memory managed by the nP.
This would enable effective sharing of global data between the dPs at a site. Without an L3
cache, a dP requesting a cache line which is currently in the cache in shared state of another
dP on the same site will still need to send a message to the remote site. However, since the
functions of the original SMU will now be provided by software in the nP or pP, this does
not affect ACD design.

However the operation of tlbsyne may make it impossible to implement an L3 cache managed
by the nP.

24

read_cache_a
read_transfer. a
RWITM a
DClaim_a
write_w _flush_a
write_.w_kill_a
write_w_clean_a
read_non_burst_a

Table 5: Transaction handlers

6 Conclusion

6.1 ACD capabilities

In the following, let

& denote the maximum number of processors in a site,
t denote the maximum number of outstanding transactions per processor
and

u = st denote the total number of outstanding transactions.

The 620 specification provides 5 bits for BusPID< 0 : 4 >, thus s < 32 However as currently
envisaged a *T-NG site would have fewer processors, so: s < 7.

Three bits are provided for TransID< 0 : 2 >, thus ¢t < 8.

6.1.1 Configuration

The ACD mode must be able to be set to the modes listed in Table 2.
The miss pattern for each processor should be able to be set.

Thus s registers must be provided for both mode and miss pattern.

6.1.2 Transaction Handlers

Section 4.5 describes the transaction handlers that are required for the ACD. They are listed in
Table 5.

6.1.3 Status Register

The ACD needs to alert the nP when there are transactions for it to process.

One possible way to do this would be to provide a status register of u bits in which each bit is set if
the corresponding entry in the TTF record table has been updated since the last read of the status

register.

25

Thus whenever the ACD detects and captures a transaction, it sets the corresponding bit in the
status register. Every time the nP reads the status register it is reset by the ACD itself. Each poll
from the nP is able to read the flags for all the transactions that have been captured since the last
poll. This method reduces the number of bus accesses required by the nP, but uses more internal
cycles for shifting.

An alternative would be to provide a queue of inlet pointers in the ACD. Each inlet pointer addresses
a handler in the nP which processes the next transaction waiting in the ACD. This method requires
fewer nP cycles but more bus accesses and more complex ACD hardware.

6.1.4 Storage capacity

The ACD must be able to keep TIF records for the u = st transactions which may be ‘in flight’ at
any one time.

This implies buffer storage for a maximum of 4 = 7 x 8 = 56 TIF records must be provided.

If only one blocking read is permitted at any one time (cf. Sections 3.3.2, 3.3.3), we only need to
allow for pushouts, The 620 transaction buffers are partitioned into 4 read and 4 write buffers,
80 tyrite = 4 and the number of buffers required is s X turite + Rreadbuy Where fipesgpns > 1 is the
number of buffers provided for blocking reads.

The contents of each record is shown in Table 6.

Bits
Address 40
AType 5
Size 4
ASizeBurst 1
Data 512
Active 1

Table 6: ACD TIF record

These records will be indexed by BusPID < 0:2 > [TransID < 0: 2 > (assuming a maximum
of 8 processors per site, so that BusPID < 3 : 4 > may be ignored.)

If Scheme C for blocking loads is implemented with a lock for the ACD, the number of buffers
in the ACD needed to support blocking loads can be constrained to the maximum number that
resources will allow.

However the need to provide buffer capacity to support pushbacks can only be reduced by forcing
pushback operations to retry with consequent performance penalties through occupation of the L3
bus, Thus there is some minimum number of buffers for pushbacks which will be needed to ensure
optimal performance.

26

6.1.5 Interrupt capability

The ACD must be able to alert the nP when transactions requiring processing have been captured.
This could be achieved with an interrupt line from the ACD to the processor designated as the nP

or a line to the NIU of the nP.

When transactions have been completed with invalid data, there must be a mechanism by which
the kernel can be notified so that it can send a signal to the process which received the invalid data.

6.2 Concluding remarks

This report has identified a number of significant problems in the implementation of blocking loads
and stores using an architecture in which the nP and the ACD communicate via the L3 bus.
The major problems arise from synchronization operations which require transactions to complete
before they can complete themselves. If the nP needs to generate a new transaction on the L3 bus
in order to enable a transaction captured by the ACD to complete, then deadlock becomes possible
- either because the nP itself is waiting for the previous transaction to complete or because new
transactions are not possible until previous ones have completed.

27

References

(1] B.S. Ang et al, Hermes: Communicating *T-nGs, MIT LCS CSG Memo 357, 1994.
[2] G.A. Boughton et al, Draft Arctic User’s Manual, MIT LCS CSG Working Paper, 1994.
[3] Motorola Inc., PowerPC 601: RISC Microprocessor User’s Manuel, Motorola, 1993.

]

[4] IBM Microelectronics, Motorola Inc., PowerPC 601: RISC Microprocessor User’s Manual,
Rev 1, IBM/Motorola, 1993.

[6] IBM Corp., PowerPC Architecture, 1st ed, May 1993.

[6] R.S. Nikhil, G. M. Papadopoulos, Arvind, *T: A Multithreaded Massively Parallel Architecture,
MIT LCS CSG Memo 325-1, 1991.

[7] B.S. Ang, Arvind, D. Chiou, StarT the Next Generation: Integrating Global Caches and
Dataflow Architectures, MIT LCS CSG Memo 354, 1994.

[8] S.K. Nandy, Ranjani Narayan, Horace Thompson, In—Coherent - An Incessantly Coherent
Cache Scheme for Shared Memory Multiprocessor Systems, LCS CSG memo 356, in prepara-
tion.

[9] M.S. Allen, M.C.Becker, Multiprocessing Aspects of the PowerPC, IEEE CompCon, 1993.

[10] W.-D. Weber, Scalable Directories for Cache-Coherent Shared-Memory Multiprocessors, Tech.
Rep. CSL-TR-93-557, Stanford University, 1993.

28

