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1 Introduction

The Computation Structures Group is interested in general-purpose parallel computation.
Our approach incorporates research in:

e a declarative, implicitly parallel language called 1d.
e scalable dataflow and multithreaded architectures.
e compilers and run-time systems for Id, targeting dataflow and other architectures.

e applications programs to guide compiler, language, and architecture research.

We reported last year on the initial work on the hardware implementation for *T. This year
we have continued this design work. The current structure of a physical *T node includes
two 88110MP’s, a memory controller, and DRAM. The nodes will be interconnected using
a packet switched interconnection network. The detailed design of the 88110MP is being
done by our industrial partner, Motorola. The gate level design has been completed and the
full custom layout is currently in progress. The memory controller is a standard Motorola
chip. MIT is responsible for the design of the network router chip (Arctic) that will be the
primary component of the interconnection network. The first draft of the RTL level design
for Arctic has been completed. A first draft of the gate level design of each of the modules
of Arctic has been synthesized from the RTL design. Motorola is handling the design of the
system packaging.

We have distributed Id world for SUN SPARCstations to 31 sites. An Id workshop was held
on Nov 15-16, 1992, with attendees from several institutions. An Id council and an Id-user’s
group was formed.

We have measured the performance of several strategies for frame management on Monsoon.
The *T runtime system was designed and a design review document was produced.

A preliminary backend for *T was completed in June. This backend takes output from
the Berkeley Id to TLO compiler, and does a direct translation of TLO to *T 88110MP

instructions. The compiler is tested on all of our major benchmarks.

An interactive debugger for Id programs on Monsoon has been completed. The Id debugger
provides two basic sets of tools for debugging Id programs: the first set allows the programmer
to control the behavior of executing programs and the second set allows the programmer to
inspect the state of executing Id programs. It provides an extensible set of graphic browsers
for data-structures, coupled with a novel type-reconstruction algorithm to provide access to
the complete state of an Id program.

A dataflow graph partitioning phase was completed in May for the Id compiler in Lisp.
The partioning algorithm exploits local and interprocedural dependencies to obtain larger
threads, as a necessary step in producing *T' code from Id.

We started working on parallel garbage collection techniques for *T. A framework has been
developed to compare various GC algorithms.



We completed a study of parallel dynamic storage allocation algorithms for allocating and
deallocating heap objects.

The Id compiler in Id development has reached the stage where we can compile four out of
five of our major bench-marks. The code produced by the Id compiler in Id is on the same
level of optimization as the Id compiler in Lisp. The data-structures and algorithms used in
the compiler were specifically designed for parallel execution, using explicit synchronization
mechanisms.

We have also made progress in compiling data-parallel programs for dataflow architectures
and identifying opportunities for data-parallelism within Id programs.

Finally, we have started research on high performance workstation based parallel-processing
systems. We are designing a prototype system in which the workstations are interconnected
through user-level network interfaces to a separated low-overhead network. We believe that
this approach will support fine grain parallelism more efficiently than existing workstation
based systems.



2 Personnel and Visitors

Arvind took a sabbatical at the University of Tokyo, where he taught in the Department of
Electrical Engineering for the year.

Greg Papadopoulos was promoted to Associate Professor.

In the spring of 1993, Gregory Papadopoulos received the Ruth and Joel Spira Teaching
Award.

In June of 1993, Greg Papadopoulos started a two year leave of absence to be chief architect
at Thinking Machines Corporation.

Joseph Stoy came to MIT from Oxford Computing Laboratory at Oxford University in
England in August 1992 to be a visiting professor for the academic year. He will be visiting
with the group until July 1993.

Jamey Hicks completed his Ph.D. in October 1992 and joined the Motorola Cambridge
Research Center.

Arun Iyengar completed his Ph.D. in December 1992 and joined HP/Apollo.

Michael Halbherr has been visiting the group since December 1991. He is working on his
Ph.D. thesis in conjunction with ETHZ.

Masato Motomura visited the group from August 1991 until November 1992. He is a fellow
with the Center for Advanced Engineering Studies.

Noah Rosen received the George C. Newton Prize for best undergraduate laboratory project.
Thomas Klemas was awarded the Charles W. and Jennifer C. Johnson thesis prize.

Neil Tender earned the Department Head’s Special Recognition Award for all the work he
completed as a Teaching Assistant for 6.004.



3 External Collaborations

Our research continues to benefit from the collaborative efforts of our group with researchers
from our industrial partner, the Motorola Computer Group, and with researchers from other
institutions. In the past year, these efforts have assisted us in the spread of Id to new
platforms and in the evaluation and testing of the Id software environment. On November
15-16 we held an Id Workshop preceding Supercomputing 92, which was successful in the
promotion and discussion of related research.

Our work with Motorola is discussed throughout this report.

3.1 Berkeley

Prof. David Culler at the University of California at Berkeley continues his investigations
into multi-threadid machine architectures, and its threadid abstract machine model, TAM.
We have been working closely with the Threadid Abstract Machine group to support our Id
Compiler in Id project. In the future, we look forward to experimenting with Id on Thinking

Machine’s CM-5 using Culler’s backend.

3.2 Colorado State University

Prof. Wim Bohm and Sumit Sur at the Colorado State University have written and care-
fully analyzed the following algorithms: LU decompostion and matrix inversion, Fast Fourier
Transform, Jacobi Eigen-solver, Householder tridiagonalization, QL decomposition, Dongarra-
Sorenson Eigen-solver, MCNP simulation, and a variety of sort routines.

These codes have provided the Id/Monsoon community, with a wealth of information on the
performance of Id on the Monsoon machine and have helped to keep the two-node Monsoon
system at CSU in heavy use.

These codes will be made available via anonymous ftp.

Bohm’s preliminary conculsion is that the following are important areas for continued study:
1. Implicit and leak-free deallocation of data structures
2. Copy avoidance
3. Control of parallelism

4. Loop and data distribution

3.3 DEC

Dr. Rishiyur Nikhil at the Digital’s Cambridge Research Lab is working on a compiler for
Id written in Scheme. Initially, the compiler will compile Id to C for subsequent compilation
on standard workstations.



3.4 Los Alamos

A team at Los Alamos, headed by Olaf Lubek, has completed a code called MCNP-ID, a
Monte Carlo photon transport code written in the dataflow language Id. It incorporates
complete photon physics, both simple and detailed with user-selectable crossover point.
MCNP-ID allows great flexibility in user specified problem geometry, including:

1. geometric cells specified as intersections and unions of planes, spheres, cylinders, and
cones

2. cell compositions of single or multiple nucildes of any densities
3. isotropic or unidirectional photon source, with energy distribution specifiable

4. variance reduction techniques, including energy cutoff, cell importances, and Russian
roulette

User-specified tally information includes cell collision counts, surface current, and surface
flux. These can be binned by energy bands specified by the user.

The code has been tested on various benchmark problems against the Los Alamos Fortran
MCNP and all results agree within the MCNP error estimates. Large runs have been made
on the 16-node Monsoon at Los Alamos (the biggest run was about 48 hours). The code is
available by anonymous ftp to ftp.c3.lanl.gov and going to the directory pub/MCNP-ID. The
code exists there, as well as a document describing the code and the benchmark problems.

3.5 McGill

Researchers at McGill University are using Id World (Id compiler + GITA) in order to imple-
ment a lazy variant of (a subset of) the Id programming language. Their goal is to examine
the impact of laziness on fine-grain parallelism, more precisely, to determine whether lazy
programs can provide sufficient parallelism to be exploited on fine-grain parallel machines.
Their approach uses a force and delay style of implementation (using the L-structures of S.
Heller), together with an inter-procedural form of backwards strictness analysis based on
demand propagation and optimization.

4 Id General Topics

4.1 1Id World

During the last year, R. Paul Johnson has distributed Monsoon Id World for Sun SPARC-
stations to 31 sites. In November, we released Monsoon Id World V2.0 at the Id Workshop.
The Id World distribution includes the MINT interpreter, SPLOT statistics viewer, all Mon-
soon client programs, EMACS editor support and Id World lisp image. The lisp image is
built using Lucid’s “SPARC Application Environment.” Both Monsoon Id World and the
application environment are licensed with “shrinkwrap” agreements.
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4.2 1Id Council

Following the Id Workshop, an “Id Council” and id-users (id-users@abp.lcs.mit.edu) mailing
list have been established. Both are intended to facilitate community and consensus in the
continued evolution of the Id language and systems. Tony Dahbura from MCRC has coor-
dinated the volunteers in the establishment of the council. These are the current members

of the Id Council:

e Arvind, MIT (arvind@abp.lcs.mit.edu)
e W. Bohm, Colorado State (bohm@cs.colostate.edu)

e G. Gao, McGill (gao@andy.cs.mcgill.ca)

J. Hicks, Motorola (jamey@mcrc.mot.com)

e R. Hiromoto, Los Alamos NL (reh@c3serve.c3.lanl.gov)

J. Kulik, MIT (jokulik@abp.lcs.mit.edu)

R. Nikhil, DEC (nikhil@crl.dec.com)
e K. Schauser, UC Berkeley (schauser@cs.berkeley.edu)

J. Stoy, Oxford (stoy@abp.lcs.mit.edu)

5 Id Compilers and Runtime Systems

5.1 Runtime Systems

During the past year, Derek Chiou finished his masters thesis, wrote two papers and worked
on the *T run-time system. The title of the masters thesis is “Activation Frame Manage-
ment for the Monsoon Processor”. It describes the design, implementation and performance
measurements of different frame manager strategies used for Monsoon. Load balancing is an
integral part of frame management for Monsoon and the simple schemes we tried are also
documented.

The title of the papers are “Performance Visualization on Monsoon” and “Performance
Studies of Id on the Monsoon Dataflow System.” Both papers will appear or have appeared
in the Journal of Parallel and Distributed Computing this year. The first describes the hybrid
software /hardware approach of statistics collection used in Monsoon. Several examples of
the use of the statistics tools are also given. The second paper describes experiments run to
determine the performance of Id running on Monsoon. Speedup results as well as comparisons
of Monsoon with stock hardware and languages is given.

The *T run-time system was designed along with other graduate students, faculty and staff.
Derek implemented the actual memory managers and load balancer. A design review docu-
ment was produced by the design committee.
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5.2 *T Backend

Andy Shaw started working on our first version of a *T backend, and finished it in early June.
This back-end is meant to be a starting point for a new back-end for *T. It takes output from
the Berkeley Id compiler in the form of TLO, and it does a direct translation from TLO to
*T 88110MP instructions. In order to test the compiler, he also implemented a rudimentary
run-time system. Presently, the compiler compiles and runs all of the basic benchmarks
in our test suite, including matrix multiply, wavefront, merge sort, paraffins, simple, and
gamteb. Future work will involve integrating the back-end to test a real run-time system,
which will be written and tested by Derek.

5.3 Interactive Debugger

Alejandro Caro has completed a master’s thesis entitled “A Debugger for Id”. The thesis
attacked the problem of debugging the implicitly parallel, non-strict Id language on the Mon-
soon Dataflow processor. The Id debugger provides two basic sets of tools for debugging Id
programs: the first set allows the programmer to control the behavior of executing programs
and the second set allows the programmer to inspect the state of executing Id programs.

Id programs on Monsoon exhibit a large amount of parallelism, in particular control paral-
lelism. This makes their run-time behavior quite difficult to understand at a low level since
there are many fine-grained threads of execution active concurrently. Traditional debuggers
provide tools such as single-stepping and statement-oriented breakpoints to control the be-
havior of sequential programs. These techniques are unmanageable for Id programs, so the
Id debugger takes a different approach.

Conceptually, Id programs are modified during compilation so that during execution, they
generate a stream of events. Events are generated when “important” things occur in a
program, such as procedure invocations, variable bindings, and data structure accesses.
Using a Halt Condition Language the programmer can specify a set of events which the
debugger is to monitor. When the set of events occurs in the event stream generated by the
program, the debugger halts the machine. The combination of events and halt condition
language provide a flexible mechanism for specifying dataflow-oriented breakpoints.

Once the machine is halted, the programmer is free to inspect the state of the program. A
graphical user interface has been incorporated into the debugger, and it provides powerful
tools to explore the structure of a program’s call-tree. The debugger provides an extensible
set of graphical browsers for data structures. These browsers are coupled with a novel type
reconstruction algorithm to provide excellent access to the complete state of an Id program.

5.4 Compiler-directed Type Reconstruction

Source Debugging and Garbage Collection for polymorphic languages like Id pose some
interesting challenges over conventional languages like C or Pascal. Due to polymorphism,
the compile-time types of functions and data objects may not fully describe their run-time



type instantiations. This additional type information has to be reconstructed at run-time so
that a source debugger can display the state of the machine in detail, or a garbage collector
can traverse and mark the reachable heap objects correctly. Traditionally, run-time objects
carry type-tags to allow such reconstruction which has its space and time overhead.

In Id, run-time objects do not carry any type-tags. Instead, the run-time type of objects
is reconstructed using a compiler-directed type reconstruction scheme developed by Shail
Aditya and Alejandro Caro. In this scheme, the compiler generates a polymorphic type-
map for every Id function that records the type of its local and free variables, and the type
instantiations of all call-sites within its body. In addition, using a new technique called type
conservation, the compiler identifies call-sites where type information may be lost or hidden
inside polymorphic closures and inserts code to capture and propagate the type information
explicitly in the form of encoded type-hints. At run-time, type reconstruction is done by
traversing the dynamic call-tree and instantiating the corresponding type-maps of the active
functions, using the explicit type-hints wherever necessary. This scheme incurs minimal run-
time overhead in the form of explicit type-hints, while achieving complete type reconstruction
of run-time objects without universal type-tags.

This type reconstruction scheme was implemented in the Id Compiler and is used by the
Interactive Source Debugger for Monsoon. Further work in this direction is underway to
apply this technique for tagless garbage collection on *T.

5.5 Dataflow Graph Partitioning

Generating code from Id source for a multithreaded machine such as *T requires that se-
quential instruction threads be identified from the intermediate dataflow program graphs
produced during the compilation process. Identifying which dataflow graph instructions can
be grouped together to ultimately form a thread is called partitioning. For the past year,
Yonald Chery has been working on implementing a dataflow graph partitioning phase for
the Id Compiler written in Common LISP as his Master’s thesis, completed this May.

Since Id is non-strict, the evaluation order of sub-expressions within a procedure is not
completely known at compile-time. This is because conflicting scheduling orders for these
sub-expression can be obtained depending on the invocation context of the procedure. These
static scheduling conflicts, the result of potential dependencies introduced by non-strictness,
are what complicate finding lengthy threads for code generated from Id programs.

Partitioning is performed by initially decorating all entry and exit points of a dataflow graph
“basic block” with unique names. An entry/exit point can be thought of as an endpoint
for an incoming/outgoing potential dependence, that is, a dependence not expressed as a
dataflow arc but one that may exist due to dependencies exposed at run-time. Entry point
names are called “inlets” and exit point names are referred to as “outlets”. These inlet and
outlet names are propagated through instructions in the graph. Partitions are created by
alternately grouping instructions according to the inlet or outlet names with which they are
associated. Partitioning of a dataflow graph ceases when successive passes of inlet and outlet
based partitioning find no further opportunities for consolidation instruction partitions.



Further dataflow graph partitioning opportunities can be exposed if information about the
functions graph’s calling context can be obtained. To this end, an inter-procedural dataflow
graph is constructed to link a dataflow graph to its calling contexts. Upon locally parti-
tioning a dataflow graph, inlet and outlet names are recomputed using information provided
by adjacent calling and callee graph in the inter-procedural graph. These new names are
propagated to other adjacent graphs regions in the inter-procedural graph and expose further
local partitioning opportunities.

5.6 Loop Optimizations for Monsoon

Boon Ang finished his master’s thesis and wrote three papers. The title of his thesis is
“Optimization of Loops for Dynamic Dataflow Machines”. There are two main parts of
the thesis. The first explores ways of implementing sequential loops efficiently on Monsoon,
while the second describes automatic strip-mining. Of the three papers that Boon wrote, two
were written in collaboration with other members of the group and were mentioned under
*T Runtime System section. The third one appeared at FPCA 93 and is based on the first
part of his MS thesis, i.e. efficient implementation of sequential loops.

5.7 Garbage Collector for *T

Christine Flood began research on parallel garbage collection (gc) techniques as part of the
run time system support for ID on *T. She developed a framework which will allow us to
experiment with various gc algorithms including: mark and sweep, incremental mark and
sweep, conservative mark and sweep, and mark and compact. The framework provides utili-
ties such as processor synchronization, draining the network of ID messages, and determining
if a slot in a frame is empty or full.

She developed a program to model an ID heap. This makes it possible to begin implemen-
tation and test of various algorithms on the *T' emulator even though the ID compiler for
*T' is not completed yet.

This garbage collection work will build on top of the work already done in explicit storage
reclamation, type reconstruction, and resource management.

5.8 Heap Managers

Arun Iyengar completed his doctoral thesis on parallel dynamic storage allocation algorithms.
These algorithms are used to allocate and deallocate heap objects. The lifetimes and sizes
of heap objects are not always known at compile time. The overhead for managing heap
objects in languages which utilize dynamic data frequently may be significant. Iyengar’s
thesis compares parallel versions of several new and previously proposed algorithms. The
algorithms were compared using both real implementations and simulations.

He developed three new dynamic storage allocation algorithms which achieve better perfor-
mance than all previous ones tested. The new algorithms use an approach similar to quick fit
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for managing small blocks. More complicated methods are used for managing large blocks.
Multiple free list fit I uses several linked lists for large blocks. Modified quick fit uses a con-
current B-tree for large blocks. Multiple free list fit 1] uses several free lists and a concurrent
B-tree for large blocks.

Multiple free list fit I is the best algorithm when the set of different large block sizes is big.
Multiple free list fit 1T is the best algorithm when the set of different large block sizes is small.
Heap managers using multiple free list fit I, quick fit, and a first fit system with boundary
tags have been implemented on Monsoon.

Iyengar experimented with a number of different B-tree algorithms in order to implement
modified quick fit and multiple free list fit II. BT —trees store all elements within leaf nodes of
a tree. Basic B-trees store all elements within internal nodes of a tree. Maximum concurrency
on BT —trees is obtained by using B-link algorithms. However, he found cases where B-link
algorithms perform poorly. B-link algorithms cannot easily be adapted to basic B-trees. The
best performance on basic B-trees is obtained using an optimistic, top-down restructuring
algorithm.

6 Id Compiler in Id

In the past year, the Id compiler in Id is mostly the collective work of the “Id-in-Id team”:
Shail Aditya, Jan-Willem Maessen, Joanna Kulik, Paul Johnson and Yuli Zhou. Professor
Joe Stoy (visiting from Oxford) and Proffessor Jack Dennis spend many hours during the
weekly Id-in-Id meeting to help clarify the major design decisions made and to oversee the
overall progress of the project.

As of now, the compiler compiles four out of five of our major bench-marks: wave-front,
matrix multiply, paraffins and simple. The code produced by the Id compiler in Id executes
the same amount of instructions in all categories except for identities, the latter mainly due
to the fact that the Id compiler in Id has no phase for peep-hole optimization on TTDA
graphs. This is not seen as a problem since we are not interested in further optimizing for
TTDA, whose performance model is very different from that of *T.

6.1 Structure of the Id Compiler

The Id compiler reads Id source files and produces object code for TTDA (The MIT Tagged-
Token Dataflow Architecture).

6.1.1 Internal Representations

During compilation the compiler transforms a program successively through five intermediate
representations:

e AID (Abstract Id) Close to Id.
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e KID (Kernel Id) syntactic sugars in AID are removed, complex pattern matching is
replaced by simple multi-way branches, and expressions are flattened by introducing
temporary variables for each intermediate result.

e KG Graph representation of KID, for optimizations.

e PTAC (Parallel Three-Address-Code) data structure and closure handling are exposed
in terms of primitive operations on the heap.

e TTDA Graph machine instructions for TTDA.

6.1.2 Functional Modules

e Parsing LALR[l] parser in Id. The parser is generated from a modified version of
Berkeley YACC, the lexer is produced by FLEX.

e Desugaring This is a macro expansion phase in which multi-clause definitions and
functions, list and array comprehensions, and other minor “syntactic sugars” are re-
placed by simpler AID constructs.

e Scope Analysis A record called variable structure is allocated and partially filled
for each distinct identifier, and shared by all occurrences of the identifier. Empty
[-structure slots in the record are to be filled by later modules (e.g. type-checking).

e Translation to KID The main task of AID to KID translation is the compilation of
pattern matching. Unnecessary blocks are flattend and as few temporary variables are
introduced as possible.

e Type-Checking The type-checker synthesizes a type for every KID syntax tree node,
and replaces every overloaded identifier by one of its monotype instances.

e Translation to KG Every KID identifier becomes a node in KG, references to the
identifier become pointers to the node. KG is a mutable graph structured as nested

blocks of nodes.

e Optimizations on KG Optimization are performed by mutating the graph, using
traversal overseers to synchronize the individual rewriting steps. A group of optimiza-
tions are implemented: constant folding, common subexpression elimination, fetch
elimination, call substitution, etc.

e Translation to PTAC KG is translated to PTAC during a traversal of the KID graph
Closures and data structures are represented as vector of words in the heap, and their
manipulation is expanded into explicit heap allocation, fetch and store operations.

e Optimizations on PTAC Similar to KG optimizations. The previous translation
phase introduces some redundant nodes, which can be effectively eliminated by opti-
mizations such as fetch-elimination and hoisting.
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e Triggers and Signals Triggers and signals are needed to complete the control network
within a dataflow graph.

e Translation to TTDA Graph

The translation from PTAC to TTDA graph is very much like that from KG to PTAC,
except that TTDA graph is built on a simpler abstraction. Every constant definition,
function or loop is translated into a code block.

e Fanout Certain TTDA instructions for two-phase memory operations can only have
one target. This phase simply adds identity instructions (the fanout trees) to such
instructions whenever they have more than one target.

e Assembler Currently writes the TTDA object code file in standard format.

6.2 Implementation

The Id-in-Id compiler is ultimately intended to run on parallel machines, therefore its algo-
rithms and data-structures have been designed for parallel execution. As soon as we leave the
realm of purely functional programs, parallel operations must be synchronized. Within the
compiler, synchronization is achieved by exploiting fine-grained producer/consumer paral-
lelism, using I-structure and M-structures — it is the only to avoid sequentializing a parallel
program.

6.2.1 Syntax Trees

Both AID and KID are tree languages. The algebraic type facility of 1d is naturally suited
for defining such languages. Modules working on syntax-trees are mostly functional, and
have ample latent parallelism. Some of the modules can be pipe-lined to reduce the overall
critical path.

6.2.2 Properties

Most of the properties of the program elements are collected in the variable structure. A
structure for storing other properties, such as position index in the source code, is provided
on every syntax-tree and graph node. Frequently, the variable structure or the property
structure is created with some empty I-structure slots, to be filled later by other modules
down the pipeline. I-structures used in this way allow producers and consumers to synchro-
nize without the need of explicit sequential barriers, which usually have adverse effects on
the parallelism of the program.
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6.2.3 Graphs

KG and PTAC share the same underlying graph abstraction. A graph is a collection of
nodes. Fach node is a storage cell holding a mutable descriptor. Optimizations on graphs
are implemented as graph rewriting during graph traversal.

In fact, graph rewriting cannot be implemented by simply mutating the descriptors in the
nodes. Instead, it is implemented as a parallel version of the union-find algorithm.

6.2.4 Traversal Overseers

Every module that works on graphs needs to perform some kind of graph traversal, sometimes
even repeatedly (e.g. during optimizations). A general mechanism is developed to exploit
producer/consumer parallelism during graph traversal, which in addition serves as a versatile
synchronization tool.

An overseer hides a mutable table of visited nodes. Typically, an empty table is allocated
when traversal enters a block within the graph. In the simplest setup, the first visitor will
default to be the producer, and later ones only consume the result. Thus a visitor to a node
A will first perform a lookup in the table, if an entry is found then it just returns the result
in the table; Otherwise it inserts an entry for A, computes the result, and fills the entry
with the result. The lookup-and-insert operation is atomic, thus each node is involved in the
computation only once.

A' result

Visitors X, Y and Z to node A
Synchronizes via the overseer:
Only one will produce the result,
the others simply read it.

Figure 1: Synchronizing Producer/Consumer with Overseer

In order to accommodate other kinds of visitors, each table entry is implemented as a S-box,
which has a mutable status and I-slot for result:

‘ node ‘ Istatus ‘ result ‘

The status indicates whether the result slot is full or empty. Upon visiting a node, in
addition to perform a lookup-and-insert, different kind of visitors synchronize according to
the following protocol:
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e Pure consumers immediately read the result slot, regardless of its status;

e Potential producers will always take the status first. If the status is full, it will put
back the status and become a consumer by reading the result slot; Otherwise it flips
the status to full, and proceeds to compute and fill the result;

e Pure producers always flip the status to full and fill the result (note that in this case
we have to make sure that all other visitors are pure consumers).

The traversal overseer provides several primitives to make it convenient for programming in
this style.

7 *T Hardware

We have continued the detailed design of a hardware implementation for *T this year. For
engineering reasons, the structure of a physical *T node has evolved. The current design calls
for a single logical *T node to be implemented on a physical *T node. The proposed overall
structure of a *T node is shown in Figure 2. As is shown in the figure, the node contains two
88110MP’s, a memory controller, and DRAM. The 88110MP’s and the memory controller
share a 88110 memory bus. One of the 88110MP’s is used to implement the Data Processor
and Start Processor (of the *T logical node). The other 88110MP is used in conjunction
with the memory controller to implement the RMem Processor.

128
— ™ 88110MP MC ‘+’ DRAM
-
network links
B8110 memory bus
—’,
88110MP

Figure 2: Implementation of a *T node

We have split the detailed design tasks with our industrial partner, Motorola. The design
of the 88110MP is being done by Motorola. MIT is responsible for the design of the Arctic

network router which forms the basis of the interconnection network for *T.

7.1 88110MP

(Much of the 88110MP description below is extracted from the Motorola *T Overview doc-
ument. )

The 88110MP instruction set is a superset of the 88110 instruction set. The 88110MP
includes additional register sets and an additional functional unit which integrate fine-grained
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communication and synchronization features directly into the instruction set. The new
instructions can be dual issued in the same way as other 88110 instructions.

The 88110MP provides a register-set model of network messaging. The user program sees
a set of transmit registers into which a message is composed. Issuing a special instruction
causes the message to be transmitted from the register set into the network. Message receiv-
ing on the 88110MP is also register-set oriented. The arrival of a message from the network
can be detected by either an interrupt to the OS or by a poll instruction (which can be exe-
cuted at user level). A special instruction can be used to move the message into the receive
registers. As implied above, the 88110MP allows user mode transmission and reception of
messages.

The 88110MP provides hardware support for efficient creation and synchronization of mi-
crothreads. The fork operation creates a new microthread by pushing its source operand
microthread descriptor onto the microthread stack. A later sched operation will pop this
descriptor and begin execution of the microthread by jumping to the IP contained in the de-
scriptor. The post instruction behaves like fork followed by sched. Conditional versions called
cfork and cpost are also provided and they allow testing a semaphore. These instructions
can be used to accomplish synchronization.

The 88110MP is being implemented by augmenting the existing full custom design of the
88110. The original 88110 design was done in such a way that it can be modified to include a
special additional functional unit. The extra functionality of the 88110MP will be provided
by a special functional unit called the Message and Synchronization Unit (MSU). The MSU
will connect directly to the primary busses of the 88110.

Motorola has completed the gate level design of the MSU. Much of the full custom layout of
the 88110MP has been completed.

7.2 Arctic

Andy Boughton, Greg Papadopoulos, Jack Costanza, Ralph Tiberio, roughly 10 undergrad-
uates, and two consultants have worked on the design of Arctic (A Routing Chip That Is
Cool). As was discussed last year, Arctic is an eight input eight output packet switch on a
chip.

Arctic will support two levels of priority. It will support normal packets and high priority
packets.

Most of Arctic will operate off a single 50MHz local clock. However each of the eight input
sections will operate off a separate 5J0MHz clock. Each of these input clocks may have a
different phase but all must have a frequency which is extremely close to the local clock.

Arctic will handle packets that range from 128 bits to 768 bits.

All buffering in Arctic is associated with the inputs as is shown in Figure 3. A 768 bit buffer
will be allocated for each packet. Obviously in most cases the buffer will not be fully utilized
(because the packet will likely be less than 768 bits and because the head of the packet will

likely be forwarded before the tail is received).
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The data crossbar in Arctic has an input connected to each buffer of each input section and an
output connected to each output section. Thus it can simultaneously transfer packets from
any eight buffers to the eight output sections. (For example, the crossbar can simultaneously
transfer 3 packets from input section 0 and 1 packet each from input sections 1 through 5.)

Arctic is being implemented on a Motorola gate array. Approximately 200,000 gates will be
utilized. The first draft of the RTL level design for Arctic has been completed. The design
has simulated correctly for thousands of packets. A first draft of the gate level design of
each of the modules of Arctic has been synthesized from the RTL design. We expect to have
finished the complete chip design and sent it to Motorola for fabrication before the end of
the calendar year.

& Other Work

8.1 Compiling Data-Parallel Programs for Dataflow Hardware

Andy Shaw finished his thesis titled “Implementing Data-Parallel Software on Dataflow
Hardware”, and gave a paper at Frontiers for Parallel Computation titled “Performance of
Data-Parallel Primitives on the EM-4 Dataflow Parallel Supercomputer” on October 16.

The primary result of his thesis was that dataflow-style hardware was suitable for running
data-parallel software — in particular, the low network-interface overhead of dataflow ar-
chitectures allows the software implementation of global scan-like operations such as global
reduction, one or multi-dimensional scans, broadcast and barrier synchronization. This has
implications for the design of computers which are meant to support data-parallel computa-
tion in the future: special purpose networks to support global synchronization or scan-like
operations are unnecessary in the presence of a high-performance general purpose network
with a good processor/network interface.

8.2 Data Parallel Computing in Id for *T

Many important scientific computations are amenable to expression in the data parallel
computing model and have demonstrated good performance when implemented in this way
for massively parallel computers. Professor Jack Dennis together with a few UROP students
have begun an effort to support data parallel computing in the Id language for the *T
multiprocessor. The work is being done within the framework of the Id in Id compiler. The
design of this data parallel capability is based on earlier work he has done for mapping Sisal
programs onto the CM-2 Connection Machine.

The data parallel capability will be implemented in three modules to be added to the 1d
in Id compiler: a Recognizer, a Mapper, and a Generator. The process starts from the Id
application program as transformed into its Kernel Id Graph representation by front and
middle end modules of the Id in Id compiler.
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The Recognizer traverses the Kernel Id tree to find opportunities for data parallel computing.
Initailly these will be nested for and while loops that define multidimensional arrays (I-
arrays). These nested loops will be transformed into data parallel code blocks, a new form
of graph encapsulator to be added to the Kernel Id format.

The Mapper determines the best mapping and alignment strategy for each collection of arrays
defined by data parallel code blocks that occur at the same level of loop nesting within the
application program.

The Generator module will implement each data parallel code block by constructing code
to be run at each node of the multiprocessor partition, including the necessary code for
interprocessor communication.

They believe that this data parallel capability will be able to achieve efficient utilization of
the *T hardware and provide attractive performance for such codes as the Simple benchmark
that satisfy the regularity requirements for data parallel computing.

8.3 Parallel Computing on Workstations

After a semester at MIT as a first year graduate student, James Hoe began his master thesis
work under the direction of Professor Greg Papadupoulus in the spring semester of 1993.
His thesis investigates the possibility of constructing an efficient parallel-processing system
based on a cluster of inexpensive commercially available workstations. Existing workstation-
based parallel-processing systems are confined to coarse-grained parallelization due to the
high overhead cost of interprocessor communication over LAN-type network. To overcome
this shortcoming, the thesis proposes a separated low-overhead network dedicated to parallel
processing. Fach workstation will be connected to the network through a user-level network
interface in the form of a peripheral card. We hope to make finer-grained parallelization more
efficient on workstation-based parallel-processing systems, and, therefore, attain speed-up
similar to those enjoyed by conventional MPP systems.

During the past semester, James began to study various network interface design issues to-
ward reducing communication overhead. To determine the effectiveness of different design
options, he has produced a simulator for the proposed system. The Proteus-based software
simulator offers sufficient fidelity and performance to execute realistic applications to thor-
oughly exercise the proposed designs. During this summer, he will continue to work with the
simulator to refine the network and network interface design. The final design will be cap-
tured in Verilog Hardware Description Language to be synthesized by a hardware compiler.
His expects that his master thesis, based on the simulated studies and Verilog-captured
hardware design, will come to a conclusion at the end of Fall semester 1993. The actual
synthesis of the prototype system will start following the completion of the master thesis.
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