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Abstract

Streams of integers and streams of integer arrays are natural repre-
sentations for the signals processed in speech analysis, image analysis,
and seismic exploration, among other computer applications. In this
paper we show how typical signal processing operations may be ex-
pressed in functional programming languages as tail-recursive functions
using stream data types. Several programming styles are considered,
with emphasis on illustating the support for streams proposed for the
Sisal 2 language. A signal processing application often decomposes as
a set of modules that transform signals (data streams), where pairs
of modules are connected by links and operate in producer/consumer
mode. Such compositions of modules are readily expressed in a func-
tional programming language as a composition of recursive functions
operating on streams. One issue in compiling such programs into ef-
ficient machine code is the recognition of recursion schemes that may
be transformed into non-recursive dataflow graphs. Another issue is
recognizing when finite buffers may be used between processing mod-
ules without introducing the possibility of deadlock. These issues are
treated for an important class of signal processing programs and it
is suggested that multiprocessor computers with fine-grain scheduling
capability will prove to be attractive for these computations.

1 Introduction

A stream is a sequence of values which may be infinite (unending); a stream
of integers is a natural representation for a signal that has been converted
into digital form. Interconnecting modules that process streams of data is
a powerful means for combining program parts to build larger modules and



is well matched to the needs of signal processing tasks. However, stream
data types have seen little use in practical signal processing applications be-
cause programming languages generally do not provide support for streams,
and because implementations of sufliciently high performance to meet the
demands of applications are not available.

In this article we illustrate the use of stream data types, as has been
proposed for the Sisal 2 functional programming language, to express typi-
cal signal processing operations as recursive functions on streams. We show
how the producer/consumer type of concurrency that occurs naturally in sig-
nal processing may be exposed and exploited by transforming the recursive
schemes into (non-recursive) dataflow graphs. In this form, a multiprocessor
computer built of multithreaded procesing units is an attactive implemen-
tation vehicle.

Sisal 2[18] is a proposed extension of the Sisal language[16] and is a
functional programming language intended to support high performance ex-
ecution of scientific codes on highly parallel computers. Sisal was developed
at the Lawrence Livermore National Laboratory and has been used to ex-
press a variety of substantial scientific application codes. Sisal evolved from
the Val language developed by the Computation Structures Group at the
M.I.T. Laboratory for Computer Science[2].

2 Stream Data Types and Operations

In Sisal a stream data type T2 may be created for any type T1 by writing
type T2 = stream [ T1 ]

This means that values of type T2 are streams (sequences of indefinite length)
of elements of type T1. Three basic operations are provided for stream data
types. Sisal provides the operations stream first and stream rest for
accessing the first element of a stream and for defining a stream consisting
of the remaining elements (all but the first) of the given stream. The Sisal
concatentate operation, denoted by ||, may be used to form a stream as a
combination of given streams, for example

s2 := stream T [x] || si;
in which

stream T [x]



defines a stream of a single element x of type T. The result s2 has x as its
first element followed by the elements of stream s1. These operations are
related by

s = stream T [ stream_first (s) ] || stream_rest (s)

Elements of a stream may also be accessed using subscript notation, as in
the familiar syntax for array elements. The first element of a stream always
has the index 1, so, for example

s[1]

stream_first (s)

and

s[2]

stream_first ( stream_first (s) )

3 Recursive Stream Processing Functions in Sisal

It is natural to write stream processing algorithms as recursive functions
that define a result stream as the result of concatenating a new element
with the stream produced by a recursive application of the function. The
examples used below are based on simplified algorithms taken from a large-
scale defense application studied by the Boeing Company. In a later section
we will show how the algorithms may be combined to define a complete
process suitable for execution by a massively parallel computer.

3.1 Example: Averaging Samples of a Signal

The first example is the program in Figure 1. Each element of the result
stream is the average value of two adjacent elements of the input stream. (It
is a simple a finite impluse response (FIR) filter.) This is a straightforward
use of tail recursion to represent the incremental construction of a stream
of integers from a given stream. The tail-recursive operator in this case is
the concatenation of one element at the head of the result stream.

There is little difficulty in uderstanding that this function definition cor-
rectly defines the result sequence in terms of an input sequence. However,
if this function were evaluated using conventional implementations of re-
cursion, the execution would perform an endless loop, generating a forever
growing set of stack frames! On the other hand, this function is a special
form of tail recursion that can be translated into a static dataflow graph
that has a small, fixed storage requirement (see below).



type Signal = stream [integer];
function AveragePairs ( D: Signal returns Signal )

stream integer [ (D[0] + D[1]) / 2 1]
[l AveragePairs ( stream_rest (D) )

end function

Figure 1: Stream function to average pairs of stream elements.

This example has the property that (after an initial transient) one ele-
ment is added to the output stream for each new element accessed in the
input stream. The next example does not have this property.

3.2 Example: A Rate Changer.

A frequent requirement in signal processing is to convert a signal to a differ-
ent sampling rate. The stream function in Figure 2 produces four samples
for each group of three samples in the input stream, thereby increasing the
sampling rate by the factor 4/3. Each sample of the result is obtained
by linear interpolation between the adjacent samples of the input stream.
The function Tail (p, s) returns the stream obtained by removing p head
elements from the stream s and may be implemented by p stream_rest
operations.

3.3 Dataflow Graphs for Stream Processing Functions

The Sisal programs for stream processing functions do not indicate explicitly
the concurrency that should be exploited; this is determined by the language
implementation. Present compilers for Sisal have not emphasized high per-
formance in stream processing becuase the kernels of scientific applications
are mainly array-defining modules that make no use of stream data types.

The most general implementation to support stream data will require
dynamic memory management, leading to considerable overhead cost on
conventional computer systems. However, many signal processing applica-
tions, including the examples in this article, can be implemented using only
statically allocated storage. We show this by converting the recursive stream



type Signal = stream [integer];
function FourForThree ( D: Signal returns Signal )

let
nl := D[1];
n2 := ( D[1] + 3 * D[2] ) / 4;
n3 := ( D[2] + D[3] ) / 2;
n4 := ( 3 * D[3] + D[4] ) / 4;

in
stream integer [ ni1, n2, n3, n4 ]
||  FourForThree ( Tail (3, D) )
end let

end function

Figure 2: The rate changer function written in Sisal.

functions into (static) dataflow graphs[7]. (Use of dataflow diagrams in sig-
nal processing goes back at least to[13] and has been studied extensively by
Lee[12, 15]. Recent work includes[11].) We give a general transformation
scheme in the next section.

The AveragePairs function may be described graphically as in Figure 3.
The function body has three parts: one that extracts some head elements
from the input stream; one that performs a computation on these element
values; the third component is the concatenate operator that may be re-
garded as affizing the computed element at the head of the result stream
and following it with the result stream from a recursive call of the function.
The graphical scheme shown in Figure 3 is a form of recursive dataflow
graph[7, 19].

Figure 4 shows an equivalent static dataflow graph. The identity and
gate actors in the box labelled Group extract successive groups (pairs) of
elements from the input stream and present them to the Compute compo-
nent. The Compute component is exactly the same as its counterpart in the
recursive scheme, except it must be able to process successive sets of data
(by pipelining, perhaps). In this example, the output stream consists of the
successive elements computed.

Figure 5 shows a dataflow graph for the rate changer stream function.
Again, the switch actors on the left access groups of four elements from the
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Figure 4: Dataflow graph for the averaging function.

input stream at positions separated by three elements. The merge actors
on the right place the four computed values in the output stream. The
control inputs to the gate, switch, and merge actors are specified by regular
expressions on the alphabet {true, false} in lieu of showing configurations of
dataflow actors that generate them. The figure shows the Compute box as
a coefficient matrix. Each group (vector) of four input samples is multiplied
by the matrix to yield the corresponding 4-vector of output samples.
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Figure 5: Dataflow graph for the rate changer function.

4 Translation of Stream Functions into Dataflow
Graphs

A general scheme for recursive stream processing functions is shown in Fig-
ure 6. We consider only tail-recursive functions in which the body, consisting
of the Compute and Auxiliary boxes, is well-behaved, that is, it produces a
single set of output values for each set of input values and the body is not
history-sensitive. Besides the stream input D, the function may have a tuple
S of additional inputs of arbitrary type. The pattern of operation of this
general scheme is defined by three integers p, g, and m. At each level of
recursion, the function accesses m elements at the head of the input stream
and emits ¢ elements of the result stream R. The remainder of the result
stream is the result of applying the stream function recursively to the in-
put stream with p head elements removed. The function body contains an
arbitrary function Compute with m inputs and ¢ outputs, which defines
elements of the result stream. The arbitrary function Auxiliary defines the
tuple S’ of additional input values for the next deeper level of operation.
The transformed (dataflow) scheme is shown in Figure 7. The Group box
corresponds to the Extract box in Figure 6. It forms groups of m elements
from the input stream, starting at indices 1,14 p,1 4 2p,... and presents
them to the Compute and Auxiliary boxes. The Assemble box takes suc-
cessive groups of ¢ elements defined by the Compute box and concatenates
them to form the output stream. The additional inputs to the Compute and
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Figure 6: General form of recursive stream function.

Auxiliary boxes are initially supplied from the additional schema inputs, but
come from the outputs of the Auxiliary box on subsequent iterations.

The construction of the Group and Assemble modules is illustrated by
the specific constructions shown for the rate changer in Figure 5. Proof
of equivalence may be done by an induction, provided in the appendix,
showing that the successive sets of values computed in the dataflow scheme
are identical to the sequences of sets of values occurring at successive levels
of recursion in the recursive scheme. The proof extends to stream processing
modules that have several input and output data streams.

5 Composition of Stream Functions

Complete signal processing tasks often take the form of a set of processing
modules, each generating a stream of values that is passed to other modules
for further processing. Thus the overall computation may be described by an
acyclic graph in which the nodes are stream processing modules such as those
we have presented, and each link indicates a producer/consumer relationship
between a pair of modules. It is well-known that such interconnections of
modules may lead to deadlock if the temporary storage for stream elements
in each link is bounded in capacity.

If each node in an acyclic composition of stream processing modules has
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Figure 7: General form of the transformed stream function.

the structure given in Figure 6, then each node may be characterized by a
gain that is the ratio ¢/p of tokens produced to tokens consumed. The gain
for a (directed) path in the graph is the product of the gains for each node
in the path. A necessary and sufficient condition that an acylic composition
of such stream processing functions be free of deadlock is that for any pair
of nodes a and b, all directed paths from a to b must have the same gain. A
test of this condition may be incorporated into a Sisal compiler to warn the
programmer if his program will deadlock.

6 Stream Computations in Other Languages

Functional programming languages are characterized by “referential trans-
parency”, a piece of program text has the same meaning regardless of the
context in which it appears, and freedom from “side-effects”, the notion
that arguments and results of a program module are distinguished and ar-
gument values to a module instantiation do not change. These concepts
provide functional programing languages with two advantages. The first is
that programming is easier and more productive because programs are sim-
pler, closer to mathematics, and easier to understand. The second is that
functional programs are far easier for compilers to analyze into parts that
may be executed concurrently on parallel computers.

The idea of programming with streams is old, having been described



by Landin in 1965[14]. However, most presentations of programming with
streams are in the context of languages influenced by their implementations
on conventional sequential computers.

In some languages the concept of stream is introduced as an application
of lazy lists. A stream is represented by a linear list structure so that
the cARr of the list is its first element and the cDR of the list represents
the stream consisting of the remaining elements. The problem with the
usual implementaion of lists is that a stream represented as a list will not be
accessible to a using program module until the list is completely constructed
by the list generating module. This leads to needless memory demands and
the impossibility of handling infinite streams, which are the usual form of
data in signal processing.

A solution to this dilemma is to represent the remaining elements of a
stream by an object variously called a “future” or a “promise to compute
on demand”. For example, the pair averaging function may be written in
Scheme[1] as

(define (average-pairs D)
(cons
(divide (plus (car D) car (force (cdr D))))
(delay (average-pairs (cdr D)))

)

The delay operator defers the recursive call of average-pairs until access
to the cdr of the list element is attempted by a consuming steam function.
The force operator must be used to call for evaluation of a list component
that may not have been computed yet. Treating all lists as composed of com-
ponents to be evaluated on demand (the “lenient coNs”) was suggested by
Friedman and Wise[10]. The functional programming language Miranda|[3]
has embodied this concept of universal lazy evaluation so that use of special
operators is not necessary to avoid waste of memory in stream processing.
The pair averaging function may be written in Miranda as

average-pairs (el : e2 : d ) =
(el +e) / 2 : average-pairs ( e2 : d )

In this illustration, the colon stands for the associative list constructor
(cons) and pattern matching is used to detect when sufficient elements
of the input list are available to define more output.

10



A major drawback of Scheme and Miranda is the difficulty of exploiting
the opportunities for parallelism offered by acyclic compositions of stream
processing modules. Correct interpretation of Scheme programs calls for a
co-routine-like execution which must be honored because Scheme (and Lisp)
are not free of side-effects. Thus there is always a single locus of control. It
seems that Miranda implementations are similar because this author is not
aware of any efforts to develop parallel implementations of Miranda, and
permitting “eager beaver” evaluation to achieve concurrent execution would
alter Miranda semantics.

In contrast, Sisal is one of few languages that introduce streams as an
explicit type generator, is free of side-effects, and is intended to support
parallel implementations. The functional language 1d[17] has similar goals,
but does not include a stream type generator. Instead it provides support
for lazy lists and eager evaluation. The operational mechanism to support

streams by this combination of lazy and eager evaluation has been studied
by Dennis and Weng][6, 5].

7 Image Processing: Streams of Arrays

The elements of the stream being processed need not be simple scalar values.
The next two examples illustrate how operations on images may be repre-
sented in a way that allows massively parallel processing of image data.
Typical image information takes the form of a sequence of frames or scans.
It is often convenient to view the input data as an array of streams where
each stream contains data for a particular line in successive frames or scans.

7.1 A Two-Dimension Filter

The function TwoDimFilter shown in Figure 8 represents a two-dimension
filter by a single Sisal function. The filter is defined by a three-by-three
array Filter which is applied at each position in the image data for which
an output value is desired. The input is an array of streams indexed from
1 to w. The output is an array of streams indexed from 2 to w — 1. (The
boundary elements are omitted from the result data to avoid applying the
filter function to non-existing array positions.)

As written, this function leads to duplicate computation of many inter-
mediate values. This may be avoided, but requires more complex code[4]
which would not suit the purposes of the present exposition.

11



type ImageStream = array [ stream [integer] ];

function TwoDimFilter (
D: ImageStream, w: integer
returns ImageStream )

let

Filter := array [-1:
array [-1: 1, 2, 1
array [-1: 2, 3, 2
array [-1: 1, 2, 1
1;

Dn := for i in 2, w-1

return array of
for g in -1, +1 cross h in -1, +1
return value of sum Filter[g, h] * D[g+i, h+2]
end for

end for

Dt := for i in 1, w

return array of
stream_rest ( D[i] )

end for

Dr := TwoDimFilter ( Dt, w );

>

>

—_

>

in
for i in 2, w-1
return array of
stream integer [ Dn[i] ] || Dr[il
end for
end let

end function

Figure 8: Two-dimension background filter in Sisal.
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7.2 A Peak Detector Algorithm

Figure 9 shows a PeakDetect function that identifies all elements of the
(image) data that have a value that is at least equal to the values of all
immediate neighbors and exceeds their average by a given threshhold Th.
The two conditions are tested separately and combined to determine the
result. The input is an array of integer streams indexed from 2 to w — 1.
The output stream is an array of boolean streams indexed from 3 to w — 2.
The peak detection fuction is similar in structure to the filter function;
each element of the result is true if and only if the data surronding the
corresponding input pixel satisfies the specified conditions. As in the case
of the two-dimension filter, a more complex code may be constructed that
avoids recomputation of intermediate results.

8 Composition of Stream Functions

The stream functions we have described may be combined as shown in Fig-
ure 10 to form a complete process and may be written in Sisal as in Figure 11.
This process may be partitioned advantageously for multiprocessing by di-
viding the streams into blocks allocated to each of several processors. This
corresponds to slicing the diagram vertically and allocating each slice to a
separate processing element.

9 Conclusions

The examples presented have shown how signal processing operations may
be expressed elegantly using the stream data types of the Sisal functional
programming language. A stream tail operation that truncates the head
of a stream by a specified number of elements would be a useful addition
to the language. A transformation into dataflow graphs was given from
which efficient implementations of compositions of stream functions may
be derived. Dataflow computers and multithreaded processors capable of
efficient fine-grain scheduling of threads would be attactive targets for this
approach to high performance signal processing[8, 9].

The work reported here applies the results of research conducted by
the Computation Structures Group of the MIT Laboratory for Computer
Science to practical signal processing algorithms. The algorithms are taken
from a real surveillance task, but simplified to permit easier presentation

13



type ImageStream = array [ stream [integer] 1;
type MarkStream = array [ stream [boolean] 1];

function PeakDetect (
D: ImageStream, w: integer
returns MarkStream )

let
Pk := for i in 3, w-2
P := D[1i, 2]
C := for g in -1, +1 cross h in -1, +1
return value of product
if (g =0 & h = 0) then true
else ( D[g+i, h+2] <= P )
endif
end for
S := for g in -1, +1 cross h in -1, +1
return value of sum
if (g =0 & h = 0) then O
else D[g+i, h+2]
endif
end for
return array of C & ( 8 * P > S + 8 * Th )
end for

Dt := for i in 2, w-1
return array of
stream_rest ( D[i] )
end for
Pr := PeakDetect ( Dt, w );
in
for i in 3, w-2
return array of
stream boolean [ Pk[i] 1 || Pr[i]
end for
end let

end function

Figure 9: The peak detector function in Sisal.

14
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Figure 10: Diagram of the composition of stream functions.

in a brief paper. The complete original algorithms were expressed in a
variant of the Val language[2] in a study performed by Dataflow Computer
Corporation under contract to Boeing. The report of this work[4] included a
suggested multithreaded processor design, manually derived machine code,
and performance calculations for the Boeing application.

A Appendix: Proof of the Transformation

We will show that the recursive scheme and the dataflow scheme implement
the same function mapping input data into result data.
We assume that the Compute and Auxiliary boxes are functions that

15



type Signal = stream [integer];
type ImageStream = array [ stream [integer] 1;
type MarkStream = array [ stream [boolean] 1];

function Process (
D: ImageStream, w: integer
returns MarkStream )

let
R :=for iin i, w
return array of
FourForThree ( AveragePairs ( D[i] ) )
end for
in
PeakDetect ( TwoDimFilter ( R, w ) )
end let

end function

Figure 11: Composition of stream functions in Sisal.

map vectors of scalars into vectors of scalars (Let the vector S have n ele-
ments.):

Compute : A™1" — A1
Auxiliary : A" 5 A"

The input and output streams are denoted by the (possibly infinite) se-
quences:

D = dy,dy,...

R = T1,72y...
First we present the relationships among values imposed by each of the
two schemes; a superscript r refers to the recursion scheme and a superscript

d refers to the dataflow scheme. For the tail-recursion scheme, Figure 6, let
the index j < 0 be the depth of recursion.

16



For the dataflow scheme, Figure 7, j indexes the successive values (tuples

Tail (p, DY)
Extract (m, D7)

S
Auxiliary (X7, 57)

Compute (X7, 57)

Affix (qa E;a ;4—1)

or stream elements) passed over links of the graph.

DI = D

a
Dy =

d _
x¢ =

We show by
J=0.

Basis (j = 0):

Tail (p, D)

Extract (m, D;l)
if 7 = 0 then S else Auxiliary (X
Compute (X]d, S;l)

d | pd || pd || pd
Eg|lEY[| ES || E5 | ...

Extract (m, D)
Extract (m, D)
Extract (m, Dg)
xg

17
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J=b

Si1)

induction that corresponding variables are equal for all



Sy = S=S5§

E; = Compute (Xg, Sp)
= Compute (Xél, S(CJl)
= R

Induction (j > 0):

Di = il (p, Di_y)
— Taﬂ(p7D;l—1)
- d
= D

X! = Bxtract (m, D})

= Extract (m, D?)

= x¢
ST = Auxiliary (r, Xj_y,57 1)
= Auxiliary (r, X;‘l_p S]C‘l—l)
= s

E? = Compute (X7, S7)
= Compute (X]C‘l7 Sgc'l)
o
= Ej

It follows that

R = Affix (¢, Eg, Affix (¢, Ef,...))

= EJ||ET] ---
= ES|EL] ...
= RY
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