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Abstract

A popular approach to designing shared-memory computer systems is to specify a memory
model upon which a variety of program execution models may be implemented. Alternatively,
one may choose a desired program ezecution model (PXM) and specify a memory model suited
to the PXM. We argue that this second approach is to be preferred because it avoids the trap
of specifying features of the memory model (consistency, for example) that may not needed to
implement a desired program execution model. If the PXM is a dataflow model (one based
on or equivalent to recursive dataflow program graphs), then no cache consistency problem
need arise if the memory model supports synchronizing memory operations. Then why use
a memory consistency model as a basis for designing shared-memory multiprocessors? One
argument is that a general memory model can support a variety of PXMs. However, many
good PXMs, object-oiented programming, for example, may be built on top of a basic program
model that does not require memory consistency—a dataflow model for example. Perhaps
the principal justification for the consistent memory approach is the desire to build massively
parallel processors using conventional RISC and superscalar processors—processors that do
not offer efficient support for synchronizing memory operations. In contrast, we believe that
memory systems supporting synchronizing memory operations will be cheaper to implement
than memory consistency protocols, and will support a preferred class of program execution
models. This paper is written in support of this alternative view.

1 Introduction

One approach to designing shared-memory computer systems is to specify a memory model upon
which a variety of program execution models may be implemented. This approach has been used in
the design of most shared-memory multiprocessors, which are usually based on a memory consistency
model derived from Lamport’s concept of sequential consistency [Lamport 79]. This requires the
execution of a parallel program to appear as some interleaving of the memory operations on a



sequential machine. It has been argued that sequential consistency is “the property of the memory
system preferred by programmers”.

Alternatively, one may choose a desired program execution model (PXM) and specify a memory
model suited to the PXM. We argue that this second approach is to be preferred because it avoids
the trap of specifying features of the memory model (consistency, for example) that may not needed
to implement a desired program execution model.

If the PXM is a dataflow model (one based on or equivalent to recursive dataflow program
graphs), then no cache consistency problem arises if the memory model supports synchronizing
memory operations. A multiprocessor that implements such a program execution model can support
all determinate computation, including, for example, all scientific computations expressible in the
Sisal programming language [McGraw 85, Cann 92]. As we have shown elsewhere [Dennis/Gao 95],
a general class of nondeterminate computations can be supported by adding a single special memory
operation on non-cached locations, without introducing any additional consistency requirement to
the memory model.

These circumstances raise the question: Why use a memory consistency model as a basis for
designing shared-memory multiprocessors? The consistent memory approach is not the natural way
to realize an efficient machine that implements a sound and effective program execution model. One
argument is that a general memory model can support a variety of PXMs. However, many good
PXMs, object-oiented programming, for example, may be built on top of a basic program model
that does not require memory consistency—our dataflow model is an example. Perhaps the principal
justification for the consistent memory approach is the desire to build massively parallel processors
using conventional RISC and superscalar processors—processors that do not offer efficient support
for synchronizing memory operations. On the contrary, we believe that memory systems supporting
synchronizing memory operations will be cheaper to implement than memory consistency protocols
and will support a preferred class of program execution models. This paper is written in support of
this view.

We show how a general computing capability can be specified and implemented without the
memory system satisfying any global coherence requirement. We begin by presenting a dataflow
program execution model that uses dataflow signal graphs to represent function bodies, and uses
incremental arrays, arrays with I-structure semantics, to represent data structures. Next, an abstract
multiprocessor architecture is considered, and the interface of its memory system and the role of a
memory model are discussed. A formal memory model is presented that supports the dataflow signal
graph program execution model. Then we show how the abstract architecture may be implemented
with cache memory to achieve good performance while satisfying the requirements of the model, and
note that “coherence” of distributed memory is not an issue.

The closest realization of multiprocessor computer architecture to the implementation scheme for
dataflow graphs suggested here is the Monsoon multiprocessor [Papadopoulos 90], but the principles
may be applied to other multithreaded architectures derived from dataflow models.

2 Dataflow Signal Graphs

We wish to use a program execution model that has good generality so the concepts and principles
discussed will be credible for a broad range of compter applications. We also wish to keep the model
simple to avoid needless complexity. For generality, the model must encompass recursive nesting of
function activations, and it must allow data structures of arbitrary extent to be created, accessed,
and released.

We have chosen a dataflow model because it provides a simple semantic basis for parallel com-
puting that encompasses the desired level of generality. The particular dataflow model is based on
the graph/heap model [Dennis 74], but with function bodies specified using named variables and
activation of actors by signals. We call this model dataflow signal graphs. This choice provides a



data Set =
EMPTY |
NONEMPTY int Set

Insert set n :: Set -> Int -> Set

Search set n :: Set -> Int -> Bool
Insert set n = Search set n =
case set of case set of
EMPTY -> NONEMPTY n (EMPTY) EMPTY -> FALSE
NONEMPTY m rest -> NONEMPTY n rest -> TRUE
if m > n then NONEMPTY m rest ->
NONEMPTY n set Search rest n
else

NONEMPTY m (Insert n rest)

Figure 1: The Insert and Search functions written in Haskell.

straightforward mapping to the computer system and memory models that are the subject of this
paper.

For writing textual program examples we will use the Haskell language [Hudak 91]. We use
a functional language, not so much for the ease of programming it yields, but because functional
programming languages express parallelism implicitly—without use of any explicit parallel processing
commands. A compiler can readily translate functional programs into implicitly parallel dataflow
code. Figure 1 shows Haskell text representing two recursive functions that, respectively, insert
intergers into an ordered list, and search for an integer in the list. Figure 2 shows the Insert
function represented as a dataflow program signal graph. Each actor (denoted by a box) specifies an
action that occurs after all predecessor boxes (or the start node) have completed their actions. A
directed arc (u,v) between two actors u and v in the graph denotes that when u finishes its action,
a signal is to be sent to node v to signal its completion. Therefore we call these signal arcs.

An action is an operation that reads values of input variables, performs computation, and possibly
assigns results to an output variable. Some boxes, drawn as oblongs, perform tests on input variables
and signal successor boxes depending on outcomes of the tests. Application of a function causes: new
instances of the function’s variables to be created and initialized with the undefined value; argument
values to be made available to the new activation; and the start node of the called function graph
to be enabled. When the application terminates, the result value is assigned to a specified variable
of the caller. Each variable must be assigned a unique and unambiguous value (or not be assigned
or referenced) in any instantiation of the program graph. So that this is true, all data dependences
between variables in a program graph must be represented by the partial order defined by the signal
arcs of the graph.

Incremental arrays are implemented using I-structure operations [Arvind 89]. The CREATE n
operation creates (as a heap node) an array of n elements indexed by integers 0, ...,n — 1 in which
each element has the value UNDEF, meaning undefined. The CREATE operation yields a pointer to
the heap node that may be held by a variable, stored as an array element, and used to store and
access elements of the array. An action A[i]:v defines element i of array A to have the value v. Any
reference A[i] to an array element completes (yielding the element value) only when the element
has become defined.

Haskell programs and the dataflow signal graphs derived from them, as we have described them
here, are determinate—the result of any function evaluation is independent of the order in which



start

Insert set n |

a5: +
| set[0] -> m |
a6: \ 4 a10:
mT> n? L set[1] -> rest |
a2: ¥
a7 \ 4 all: Y | create 2 -> set' |
| CREATE 2 -> set' | | Insert rest n -> new
a3:. ¥
a8: \J al2: \ 4 | set[0]: n |
| set'[0]: n | | CREATE 2 -> set' |
ad: \
a9: \ 4 al3: \/ | set[1]: nil |
| set'[1]: set | | set'[0]: m |
ald: \ 4 —
| set'[1]: new ! > set'

Figure 2: Dataflow program graph for the Insert function.

enabled nodes of the graphs are chosen for execution. The extension of the dataflow model to
include nondeterminate computations is discussed in [Dennis/Gao 95], where it is shown how typical
programs may be implemented using a single special memory operation, SWAP, which operates on non-
cached memory locations, so that their correct execution does not depend on a memory consistency
model.

3 The Memory Model

A shared-memory multiprocessor consists of a collection of processors and a distributed memory
system organized so that each processor may access any object held in the memory. We view
this general architecture according to the abstract computer system model shown in Figure 3. In
this model, the processors interact with the memory system by presenting commands, and the
memory responds by storing information or returning responses containing values of stored data.
The Interprocessor Network supports function application as discussed below. In this section we
describe an architecture-independent memory model that is a specification of such a memory system
suited to supporting the chosen dataflow program execution model.

3.1 The Processors

Before discussing characteristics of the memory system, let us consider the nature of the processors.
For simplicity we assume that any one function activation is performed entirely on one processor;
that is, the instruction executions corresponding to one instantiation of a dataflow signal graph are
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Figure 3: Abstract computer system with memory system model.

all done by the same processor. This choice has been made in most, if not all, of the experimental
multiprocessors based on dataflow principles.

Given this choice, it makes sense to allocate memory for the data frames of function activations
in the processors executing them. Then all references to variables held in data frames will be local
memory references, and may be performed independently of the distributed memory system.

Function application is initiated by an APPLY instruction that starts the following sequence of
events:

1. A processor is chosen for executing the new function activation.

2. A memory segment is allocated at the chosen processor for the data frame of the new activation,
and each cell of the data frame is set to UNDEF!.

3. A return continuation consisting of the data frame address and the list of successors of the
APPLY instruction is stored in the data frame of the new activation.

4. The function argument value is placed in the argument location of the data frame, and the
start node is enabled for execution.

5. When a return node of the function is executed, the result value of the function is delivered
according to the successor list.

1'We do not discuss here the method of allocating data frames. If the data frame is always allocated in private
memory of the processor chosen to execute the activation, the process need not involve the (global) memory system.
However, this choice could lead to failure once local memory is full, even though memory may be available at other
processors. In the presence of concurrency, allocation actions are typically examples of nondeterminate actions, and
are treated elsewhere.



If a function has more than one argument or result value, the argument or result values are
made components of a (heterogeneous) incremental array. This choice provides lenient evaluation
semantics. We assume that function initiation and termination are performed using messages sent
over the Interprocessor Network.

3.2 The Memory System

For our program execution model, the function of the memory system is to support the operations
of defining and accessing elements of incremental arrays. We insist that correct operation of the
system as a whole not depend on immediate responses to processors from the memory system.
To enforce this requirement, the abstract memory system model (Figure 3) includes a buffer (the
Command Pool) for commands that have been presented by processors, but have not yet been acted
on by the memory system. The memory system acts upon commands chosen arbitrarily (subject
to fairness) from the Command Pool. Thus any criterion of correct behavior must recognize that
commands may be arbitrarily delayed?. (This is essentially the network delay assumption for scalable
multiprocessors.)

The basic memory operations are READ and WRITE. For the purpose of supporting execution of
dataflow graphs, one may view the memory system as a collection of locations where values may be
placed by one computing entity for use by others that act concurrently. The WRITE command is used
to place values in memory locations and the READ command is used to retrieve them. Now, even
if one could guarantee that each READ is presented to the memory system only after presentation
of the corresponding WRITE, it would be impossible to ensure that the memory system acts on the
WRITE before acting on the READ. This is because either command may remain in the Command Pool
arbitrarily long before being selected for action. For this reason we specify the memory system so
that a pair of READ and WRITE operations on the same memory location has the same effect regardless
of which operation 1s acted upon first. This requires that they be “synchronizing” shared-memory
operations.

Here we give a specification in the Haskell language of the Action Control module of the memory
system. The command messages sent to the memory have the following formats:

data Request =
READ Address Node Continuation
WRITE Value Address

In these formats the data type Address is the set of (global) memory locations, Value is the set
of possible contents of memory locations, Node is the set of processor identifiers, and Continuation
is information that identifies a specific activity to be continued by the requesting processor upon
completion of the command. For our program model a continuation would consist of the address
of a data frame and the offset of the instruction to be activated within the program segment of
the function. (The address of the program segment could be included in the continuation, but it is
usually preferable to retrieve it from the data frame.)

Messages sent by the memory system to processors in response to READ commands have the
format:

data Message =

(MESSAGE Node Response)
data Response =

REPLY Value Continuation

The state of the memory system consists of a pool of messages that have been presented by
processors to the memory system, but have not been acted upon, and a mapping from addresses to
memory items:

20f course, timing behavior must be analyzed and bounded where real-time performance guarantees are required.



data MemoryState :: ([Request], MemoryMap)

data MemoryMap :: Int -> Memoryltem
Items are of the following kinds:

data MemoryItem =
(UNDEF) I
(DEFINED Value) |
(QUEUE [Entry])

data Entry = (ENTRY Node Continuation)

The memory system acts on request messages according to the rules given in Figure 43. Note that
map denotes a function that maps locations into items, so map location evaluates to the memory
item of interest. The function MapUpdate yields a new mapping in which the specified location
contains the specified item.

A READ request contains the address of the location to be read, the processor identifier, and the
continuation that specifies the graph node (or nodes) to which the value read should be delivered.
If the state of the location is DEFINED, the value is sent in a response to the processor. If the state
is undefined (UNDEF), the READ request must be the first read access to the location. In this case
it creates a queue with the node and continuation in its first entry. If the state of the location
contains a queue, it just adds a new entry to the queue. A WRITE request contains a value and the
address of the location where the value is to be written. If the state of the location is undefined
(UNDEF), it writes the value into the location and changes the state to defined (DEFINED). If the state
is a queue, 1t writes the value into the location and sends a response message for each entry in the
defer queue. If the state is found to be defined (DEFINED), it signals an error.

3.3 Allocation and Reuse of Memory Cells

In the program execution model we have chosen, each array element has the value UNDEF when
the array shell is created. Thereafter each element may become defined exactly once, by a WRITE
operation, and then read any number of times. In principle, the definition persists forever. An
implementation of the model must ensure that memory cells used for array elements are not reused
before the last reference is made to the former value. Normally, this is done by run-time garbage
collection and storage allocation routines.

Since memory management functions are often relatively expensive, one may wish to add mecha-
nisms to permit reuse of memory cells without reallocation. A more sophisticated abstract computer
system could use memory cells with more than three states so that a second and further write com-
mands are delayed until all read operations intended for previous values have been performed. On
the other hand, it may be possible to transform programs so that exactly one read is performed for
each write, leading to a simpler implementation.

4 Implementation and Caching

Here we discuss an implementation of the distributed memory system that includes a caching ca-
pability. The goal of the design is to ensure that a large fraction of memory references are satisfied
in the cache memory associated with the processor making the reference. There are two gains from
caching:

1. Less demand for high bandwidth between processors and main memory

3In Haskell the prime character (’) is valid in identifiers and primed identifiers are often used to denote the modified
value of an object.



MemoryAction :: Request -> MemoryMap ->
([Message] , MemoryMap)

MemoryAction (READ address processor continuation) map =
let item = map address
in case item of
(UNDEF) -> let
q = (ENTRY node continuation (EMPTY))
map’ = MapUpdate map address (QUEUE q)

in ([], map’)
(QUEUE q) -> let
q’ = AddToQueue node continuation q
map’ = MapUpdate map address (QUEUE q’)
in ([], map’)

(DEFINED value) ->
(SendReply value node continuation, map)

MemoryAction (WRITE value address) map =
let item = map address
in case item of
(UNDEF) -> let
map’ = MapUpdate map address (DEFINED value)
in ([0, map’)
(QUEUE queue) ->let
msgs = MakeResponses queue node value
map’ = MapUpdate map address (DEFINED value)
in (msgs, map’)
(DEFINED value) -> ERROR

MakeResponses queue node value =
case queue of
1->11
[(ENTRY node continuation):queue’] -> let
content = (RESPONSE value continuation)
msg = (MESSAGE node content)
in [msg: (MakeResponses queue’ node value)

Figure 4: The state transition rules of the Abstract Memory System.

2. Lower average latency of memory accesses seen by processors

With caching, many read requests will be answered quickly from the local cache of a processor.
However, multithreaded architecture of the processor is needed to avoid wasting processor resources
and risking deadlock on attempts to read from undefined locations. Here we describe the organization
of the memory system, discuss options for implementing deferred read requests, and give a detailed
protocol for a scheme that appears attractive.

As shown in Figure 5, the memory system is built with a Memory Management Unit (MMU)
and fast Cache Memory (C) associated with each processor. The Memory Network interconnects
the MMUs with Memory Units (MU) that implement memory locations in disjoint portions of the
global address space. We assume that the network is reliable, but that messages are subject to
arbitrary but finite delays, and the network does not guarantee preservation of message order.

An important implementation question is where and how a record is kept of pending read requests
that must be answered when a location becomes defined. Possible approaches to storing this defer
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Figure 5: An implementation of the memory system with caching.

queue include:

1. Store all continuations for pending reads of a location in a continuation queue at the corre-
sponding Memory Unit.

2. Store the continuation for each pending read only at the processor originating the request.
When the location becomes defined, the home processor of the location broadcasts the value
to all processors.

3. Store at the memory unit a list (the waiting set) of identifiers of those processor nodes that
have one or more pending reads for a memory location. Each of these processors holds the set
of continuations for read requests it originated.

4. The MMU associated with the requesting processor tries repeatedly to access the location (at
gradually less frequent intervals) until the location becomes defined.

We have chosen (3) as the most promising approach, and outline the corresponding protocol in detail
below. Each location has a home node, the processor/memory module that has the location in its
portion of the main memory address space.

4.1 Assumptions

The specification presented below contains several assumptions for the sake of simplicity. One is
that the cache is fully associative. A benefit is that a new cache line may be stored in any free slot of
the cache memory. For simplicity, we assume that no cache line that contains a defer queue is ever
replaced until after the entry becomes defined; that is, we assume there is more than enough cache
memory to hold placeholders for all pending read requests. If a set-associative or direct mapped
cache organization were used, a more sophisticated mechanism would be needed to avoid blocked
reads due to occupancy of all possible slots by defer queue entries. A feature to help avoid potential
deadlock would be a buffer for unexecutable read commands at the processor interface with each
MMU. Since write commands are never blocked by program delays, they should be allowed to bypass



read commands held in the buffer. Discussion of these alternatives is beyond the scope of the present
paper.

Another assumption is that all memory units are in the same relationship to each and every
processor—we are not modeling a NUMA architecture. In the case of NUMA architecture it should
be possible to respond somewhat quicker to a remote read request if the location is represented in
the cache of the home processor, but we do not discuss these details here.

4.2 Overview of Memory System Operation

A READ command causes the local cache entry to be examined. If it is DEFINED, the value 1s
returned. If it is a defer queue, the new continuation is appended. Otherwise, a new cache entry
must be created. This is possibile only if there is a cache slot with state EMPTY or DEFINED. If all
cache slots are filled with QUEUE entries, processing of the READ command must be postponed. When
a slot containing a DEFINED entry is chosen for replacement, the existing entry may simply be deleted
because there will be a duplicate at its home memory unit. When a new cache entry is created for a
READ request, a read message is also forwarded to the home memory unit for the specified address.
If the location is DEFINED at the home MU, a reply message is generated. Otherwise the identifier
of the requesting processor is added to the waiting set of the location,

In the case of a WRITE command, the local cache line is examined and the queue of continuations
is replaced by the value. If there is no matching cache line, one is created if a slot can be made free.
In any case, a write message is sent to the home memory unit. The value is also passed to activate
any continuations held by the local MMU. At the home memory unit, the entry for the location of
interest 1s changed to DEFINED and each processor in the set of waiting processors for the addressed
location is sent a reply message notifying it of the written value.

4.3 Formal Model

In this section we use the Haskell language to give a specification of the implementation of our
memory model. We use Haskell lists to represent sets of various objects. In doing this we, of course,
do not wish to imply that a hardware implementation would utilize list operations!

The specification consists of functions that specify the actions performed by the Memory Man-
agemnent Units (MMUs) and the Memory Units (MUs). The states of an MMU and of an MU are
modelled by elements of the data types Cache and MemMap, respectively. For an MMU the specifi-
cation is a pair of functions: one that specifies its action in reponse to commands presented by the
assoclated processor. The ProcessCommand function acts on READ and WRITE commands to produce
an updated state of the local cache, a set (possibly empty) containing at most one message directed
to the home MU of the addressed location, and a set of responses to completed READ commands.

ProcessCommand :: Request -> Cache —->
([Response], [Message], Cache)

The ProcessMessage function specifies the MMU’s action in response to REPLY messages from the

MUs.

ProcessMessage :: Message -> Cache —>
([Response], [Message], Cache)

The MUs are specified by a function that describes the action performed in response to messages
received from the MMUs.

ExecuteCommand :: Message —> MemMap —>
([Message], MemMap)

10



These functions may be viewed as an operational semantics for the memory system as follows:
The overall state of the memory system consists of the states of all MMUs (elements of Cache),
the states of the MUs (elements of MemMap), the set of messages in transit through the memory
network, and, for each processor, the set of commands presented but not yet acted upon, and the
set of responses generated by the MMUs but not yet acted upon by the processors. The overall
state is advanced by selecting arbitrarily a message or command and using the appropriate semantic
function to determine the new overall system state.

The states of the MMUs and MUs are modelled as follows:

State of the Memory Units: This is simply the memory map function that maps locations to
entries.

data MemMap = Location -> Entry
data Entry = (UNDEF) | (DEFINED Value) | (QUEUE Set)

data Set = [Node]

An element of the data type Set is a set containing identifiers of the processors in the waiting
set for the location. This set would most likely be implemented as a fixed-length bit vector, as in
simple directory protocols of cache coherence schemes.

State of the Memory Management Units: Each cache entry contains an address key and the
contents of the line that includes a state tag and either a value or the defer queue.

data CacheState = [CacheLinel]

data CachelLine =
(EMPTY) |
(DEFINED Address Value) |
(QUEUE Address Defer)

data Defer = [Continuation]

As memtioned earlier, the Continuation type contains a data frame pointer and an instruction
address. The defer queue would probably be implemented as a list structure. A single-element
queue would be held in the cache slot; otherwise the slot would contain a pointer to an overflow area
in separate memory within the MMU.

The formats of commands and responses, and of the messages passed in the Memory Network
are as follows:

Commands and Reponses: The two command types presented to the MMUs by processors, and
one type of response have been specified in Section 3.

Messages held in the Memory Network: There are two command types sent from the MMUs to
the MUs and a single reply message type.

data Message = (MESSAGE Node Content)
data Content =

(READ Location Node) |

(WRITE Value Location) |

(REPLY Address Value)

In these messages Location is the set of local addresses for any MU, and Node is the set of processor
identifiers.

11



4.4 The Memory Management Unit

The actions performed by the MMUs in response to READ and WRITE commands are specified by
the ProcessCommand function given in Figures 6 and 7. An MMU'’s processing of reply messages
from MUs is specified by the ProcessMessage function given in Figure 8. In these routines, special
functions are used to invoke operations on the cache memory

e CacheHit cache address: Return True if the cache contains an entry for address address.

e CacheAvailable cache: Return True if the cache contains any entry in state UNDEFINED or
DEFINED.

e CacheFetch cache address: The line held by the cache for address address is returned. If
no entry exists, an error occurs.

e CacheUpdate cache address line: If the cache contains a line for address, it is replaced
with the given line. Otherwise an error occurs.

e CacheReplace cache address line: If the cache contains a line for address, it is replaced
with the given line. Otherwise, the line replaces any one line that is UNDEFINED. If there is no
such cache line, a line that is DEFINED is replaced. If none exist, an error occurs.

Three functions are used to disect global addresses into node identifiers and locations, and to
construct global addresses from their components:

. AddressNode :: Address -> Node
° AddressLocation :: Address -> Location

. MakeAddress :: Node —-> Location -> Address

4.5 The Memory Unit

The Memory Unit reponds to write commands by storing the given value and sending REPLY messages
to each node, if any, in the waiting set. For read commands, a REPLY message is sent if the location
is DEFINED; otherwise, the number of the originating node is added to the waiting set. These actions
are specified by the function ExecuteCommand defined in Figures 9 and 10. The MakeReplies
function returns a set (list) of reply messages, one for each node in the waiting processor set.

5 Cache-Coherent Multiprocessors

Shared-memory multiprocessor architectures based on memory coherence models start from an as-
sumption that the sequential consistency model of Lamport is the ideal view of memory for the
processors of a parallel computer. It provides programmers with a memory model familiar to
them from working with single-processor computers, and it is hoped that (multi-process) soft-
ware written for single processor systems may be migrated to the parallel processor without sig-
nificant modification. This philosophy of multiprocessor architecture is represented by two main
styles: the cache-coherent nonuniform memory access architecture (CC-NUMA), and the cache-only
memory architecture (COMA) Examples of CC-NUMA machines are the Stanford DASH architec-
ture [Lenoski 90, Lenoski 92] and the MIT Alwife Machine [Agarwal 90], while examples of COMA
machines include the KSR-1 [KSR 1992] and the DDM [Hagersten 92].

In these systems, cache coherence is achieved by maintaining a directory at each processor. The
directory contains, for each block of memory in its portion of the global address space, a record of

12



ProcessCommand (READ address continuation) cache =

if not (CacheHit cache address) then

if (CacheAvailable cache) then let
list = [continuation]
line’ = (QUEUE 1list’)
cache’ = CacheReplace cache address line’

node = AddressNode address
location = AddressLocation address
content = (READ location MyNode)

cache miss

make new
cache
entry

forward
read
request

msg = (MESSAGE node content) to the MU
in ([1,[msgl, cache’)
else Error "no space for read request"
else let --- cache hit
line = CacheFetch cache address
in case line of
(DEFINED value) -> let
response = (RESPONSE value continuation) --- return
in ([response],[],cache) --- value
(QUEUE 1list) -> let
list’ = [continuation:list] --- append
line’ = (QUEUE list’) --- continuation
cache’ = CacheUpdate cache address line’ --- to the queue

in ([1,[1,cache’)
Figure 6: Actions by an MMU for a READ command.

which processors hold cached copies of the block. When a processor writes a location in a block,
messages are sent to all processors in the directory record to invalidate cached copies of the block.
An attempt to read an invalidated block causes the block to be fetched from its home node. Some
cached blocks will be invalidated even though there may be no future attempt to read them. Also,
when an invalidated block is read, there will be two additional messages to request and retrieve the
updated value.

In the execution model of this paper, a write operation causes the written value to be delivered to
all processors containing activities that have pending reads. This protocol uses fewer messages (two
instead of three) to implement the transaction, and all messages are productive (each request and
its reply concern a word actually used in the computation). Thus communication from a producer
of data to one or more consumers is more efficient.

Let us illustrate this by a simple example. Let X be a shared location used to transmit data
values between a producer and a consumer. To implement this interaction, a semaphore or lock, say
S, must be used to ensure the correct synchronization. The producer code may look like

X := ...
unlock(S)
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ProcessCommand (WRITE address value) cache =

if not (CacheHit cache address) then --- cache miss

if (CacheAvailable address) then let

line’ = (DEFINED value) --- make new
cache’ = CacheReplace cache address line’ --- entry
node = AddressNode address --- forward
location = AddressLocation address --- write
content = (WRITE location MyNode value) --- request
msg = (MESSAGE node content) --- to the MU

in ([1,[msgl, cache’)

else let
node = AddressNode address --- forward
location = AddressLocation address -—- write
content = (WRITE location MyNode value) --- request
msg = (MESSAGE node content) --- to the MU

in ([1,[msgl, cache’)
else let -—- cache hit
line = CacheFetch cache address
in case line of

(DEFINED value) -> Error "multiple write"

(QUEUE queue) -> let

responses = MakeResponses queue value --- respond to
line’ = (DEFINED value) —--- deferred
cache’ = CacheUpdate cache address line’ --- reads

in (responses, [], cache’)
Figure 7: Actions by an MMU for a WRITE command.
and the consumer code may look like:

lock(S)
= L .X..

The lock and unlock operations can be viewed as playing the role of semaphore operations such as
the P and V operations of Dijkstra. Since performing a semaphore operation requires at least one
(global) memory reference, this mechanism is less efficient than when the synchronization is combined
with data transfer using I-struture operations. Moreover, implementation of the lock operation calls
for either busy-waiting or calls to operating system scheduling routines if a long wait is anticipated.
Furthermore, given the network delays in a shared-memory multiprocessor that utilizes a multistage
network, the implementation of locks is likely to be more expensive than in a simple shared-bus
architecture. Note that if the above producer and consumer code is in an innermost loop, the cost
will be proportional to the loop bound!

For the write to the shared variable X itself, different CC-NUMA cache-coherence protocols may
incur different overhead. Under a memory model based on (strong) sequential consistency, the
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ProcessMessage (REPLY address value) cache =
if (CacheHit cache address) then let
line = CacheFetch cache address
in case line of
(DEFINED _) -> Error "address already defined"

(QUEUE 1list) -> let

responses = MakeResponses list value --- update
line’ = (DEFINED value) --- cache and
cache’ = CacheUpdate cache address line’ --- respond

in (responses, [], cache’)

else Error "no pending reads"

Figure 8: Actions by an MMU for a REPLY message.

ExecuteCommand (READ location node) map = let
entry = map location
in case entry of
(UNDEF) -> let
set’ = [node]
entry’ = (QUEUE set’)
map’ = MapUpdate map location entry’
in ([], map’)

(DEFINED value) -> let
address = MakeAddress MyNode location
content = (REPLY address value)
msg = (MESSAGE node content)
in ([msgl, map)

(QUEUE set) -> let
set’ = SetUnion set [node]
entry’ = (QUEUE set’)
map’ = MapUpdate map location entry’
in ([0, map?’)

Figure 9: Actions by an MU for a READ message.

write to X in the producer will need to send invalidate signals to the consumers, and wait for their
acknowledgement before it proceeds. Under a weaker memory model such as the release consistency
model, some optimization may be introduced to relax the order constraints. For example, the write
operation may proceed before receiving the acknowledgement signals until the unlock operation
(called release) is performed. However, the overhead of the semaphore operations must still be paid.

An advantage of our program execution model comes from combining data transfer and synchro-
nization, avoiding altogether any separate cost of synchronization operations. In addition, our cache
management scheme involves no non-productive cache-coherence (invalidation) traffic. Of course,
the synchronization overhead may be reduced (per word) by grouping data into blocks and syn-
chronizing on each block. The result is medium or coarse-grain parallelism, and suffers from the
increased delay of the start of processing by the consumer.
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ExecuteCommand (WRITE location value) map = let
entry = map location
in case entry of
(UNDEF) -> let
entry’ = (DEFINED value)
map’ = MemUpdate map location value
in ([], map’)

(DEFINED value) -> Error "multiple write"

(QUEUE set) -> let
address = MakeAddress MyNode location
msgs = MakeReplies set address value
entry’ = (DEFINED value)
map’ = MemUpdate map location entry’
in (msgs, map’)

MakeReplies :: Set -> Address -> Value -> [Message]

MakeReplies set address value =
case set of
1->1
[node:set’] -> let
content = (REPLY address value)
msg = (MESSAGE node content)
in [msg: (MakeReplies set’ address value)

Figure 10: Actions by an MU for a WRITE message.

Another issue deserving attention concerns the problem of switching between jobs on a shared-
memory computer. The fact that continuations contain data frame pointers and are sequestered in
defer queues that may have a long lifetime will make it difficult to switch between jobs economically
unless the data frame pointers are in a universal address space and can be guaranteed to be unique.
In a conventional multiprocessor, some version of “gang scheduling” may be used in which all network
traffic pertaining to inactive jobs is intercepted and either reinterpreted or held in software queues
until the corresponding job is reactivated. This can be effective because only a relatively short time
is needed for network traffic related to one job to die out. With pointers stored in defer queues that
may produce network messages at unknown times in the future, a universal addressing mechanism
will be essential.

6 Multithreaded Architecture Projects

In this section, we breiefly discuss two related multithreaded architecture projects. These are the
Monsoon project, which implements a pogram execution model closely related to the one we have
presented; and the Tera computer and its forerunners, which also address multiprocessor latency
and synchronization issues.

6.1 The Monsoon Project

Several projects have designed and constructed multiprocessors to execute nested function programs
using dataflow principles. Of these, the design that comes closest to fulfilling the characteristics we
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have outlined is the Monsoon dataflow multiprocessor [Papadopoulos 90]. The program execution
model adopted in these machines derives from the original unravelling interpreter [Arvind 78], which
has much in common with the graph/heap model of [Dennis 74]. In Monsoon there are two forms of
data memory, the frame store and I-structure storage. These correspond, respectively, to the data
frames and heap storage of our implementation. Monsoon uses dataflow graphs as an intermediate
program form for compiling. Each function application in Monsoon is executed entirely by one
processor, and all local variables are held in a stack frame allocated in the local frame store.

Monsoon supports I-structures. Incremental arrays are held in separate memory units that act
on messages sent by processors to request read and write operations. Attempts to read an undefined
location in I-structure memory cause the continuation of the processor activity to be entered in a
defer queue held in the I-structure memory. If the queue has only one entry, it is stored in place
of the expected value; if more entries are needed, they are listed in an overflow area. For more on
I-structures, see [Arvind 89]. A write operation makes an entry in I-structiure memory defined, and
causes all waiting activities to be resumed with the element value. Experiments with Monsoon have
shown that defer queues contain only a few entries during program execution, most often no more
than one [Hicks 93].

There 1s no cache memory in Monsoon. Because the frame store is local and is built of fast static
RAM, there would be little benefit in caching local variables. The implementation scheme we have
presented could be applied to the Monsoon I-structure memory. It shows how caching of I-structure
words may be done so as to increase efficiency by reducing the number of network transactions and
decreasing the average latency of I-structure accesses.

A successor project to Monsoon, the Start-NG project [Ang 94], plans to implement a closely
related program execution model using a conventional superscalar microprocessor, the PowerPC
chip.

6.2 The HEP, Horizon and Tera

The HEP, Horizon and Tera multiprocessor architectures have considerable conceptual commonality
with the designs considered here. The processors are multithreaded and can tolerate latency of
memory accesses through the memory network. Each processor has a large register set built of
fast static memory. The Tera commercial supercomputer [Alverson 90] is designed upon the ideas
and experiences from the Denelcor HEP multiprocessor [Smith 81] and the Horizon project at the
Supercomputing Research Center [Kuehn 88]. The Tera architecture includes four tag bits in each
memory word to support thread synchronization. These tags could be used to support I-structure
operations for incremental arrays, but software support would be required to manage the queue of
deferred read operations and to schedule activities. To avoid excess network traffic from repeated
attempts to complete a memory access blocked until a tag is set by another process, an automatic
retry mechanism is provided.

The Tera architecture does not include cache memory. Instead, it depends on its large register
set to reduce required main memory bandwidth, and multithreading to ameliorate the latency of
main memory access. Implementing caching as we have described above could improve the efficiency
of I-structure operations significantly.

The program execution model for these machines is a set of independent processes running in
a shared address space, and the architecture does not provide any specific support for function
application as in Monsoon. Hence it appears that support of modular nests of functions will be left
to the run-time software and compilers for high-level languages.

7 Conclusions

We have presented our view that the design of shared-memory multiprocessors should be guided by a
sound program execution model. In particular, we have outlined a program execution model derived
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from dataflow and functional programming principles that applies to determinate computations. We
have also described an implementation of the model as a multiprocessor architecture containing a
distributed memory system supporting synchronizing read and write operations. We specified the
memory using a state-transition system and showed how it may be implemented to incorporate
caching of remote words without depending on any memory consistency property.

Our program execution model and its implementation lie in contrast to shared-memory multi-
processor design based on memory consistency models, in which the memory interface is designed
to present desirable characteristics to programmers. We believe that memory systems supporting
synchronizing memory operations will be cheaper to implement than memory consistency protocols,
and will support a preferred class of program execution models.
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