LABORATORY FOR
COMPUTER SCIENCE

f

Semantics of Barriers in a Non-Strict, Implicitly-Parallel
Language

INSTITUTE OF
TECHNOLOGY

Computation Structures Group Memo 367-1
January 12, 1995
Revised April 2, 1995

Shail Aditya
Arvind
MIT Laboratory for Computer Science
{shail,arvind}@lcs.mit.edu

Joseph E. Stoy

Oxford University Computing Laboratory
joe.stoyQcomlab.ox.ac.uk

To appear in the ACM Conference on Functional Programming Languages and
Computer Architecture, La, Jolla, California, June 26-28, 1995.

The research described in this paper was funded in part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research con-
k tract N0O0014-92-J-1310.

S ———
545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS

|
|
|

Semantics of Barriers in a Non-Strict, Implicitly-Parallel Language

Shail Aditya Arvind
Laboratory for Computer Science

Massachusetts Institute of Technology

{skail,arvind}@lcs.mit.edu

Abstract

Barriers in parallel languages may be used to schedule par-
allel activities, control memory usage and ensure proper
sequentialization of side-effects. In this paper we present
operational semantics of barriers in Id and pH, which are
non-strict, implicitly-parallel, functional languages extended
with side-effects. The semantics are presented as a transla-
tion from a source language with barriers into a kernel lan-
guage without barriers where the termination properties of
an expression are made explicit in the form of signals. These
signals are generated using a monotonic, primitive operator
(W) that detects weak head-normal forms of expressions and
are used to control the execution of expressions via a strict
application operator (Sap). We present two versions of the
semantics — the first uses purely data-driven, eager evalua-
tion and the second mixes eager evaluation with 2 demand-
driven identifier dereference mechanism. We compare and
contrast the two for their ability to do resource management
and preserve useful semantic properties.

1 Introduction

Purely functional languages have the advantage of being
non-procedural yet determinate: the result of a functional
program is always the same regardless of the order in which
its sub-expressions are evaluated. The introduction of side-
effects in a language usually forces a strict, sequential or-
der of evaluation in order to guarantee determinacy (e.g.,
Scheme and ML). However, it is possible to specify only a
partial order on side-effects and still retain an overall con-
sistent picture of the computation. This paper studies the
use and the semantics of barriers as a partial sequentializa-
tion construct in Id [12] and pH [13], which are non-strict,
implicitly-parallel, functional languages extended with side.
effects.

The traditional view of barriers comes from data-parallel
languages such as *Lisp and CM-Fortran, where concur-
rently executing copies of the same program periodically
synchronize using a global barrier mechanism. Some paral-
lel machines like the CM5 and Cray T3D even provide such
global barrier support in hardware. However, in this paper
we study the semantics of barriers under a more general,

Joseph E. Stoy
Computing Laboratory
Oxford University
joe.stoy@comlab.ox.ac.uk

multi-threaded, MIMD programming model where barriers
may be localized to specified subsets of parallel tasks. This
allows the specification of a partial order among the various
tasks while providing fine-grain control over inter-task syn-
chronization, resource usage and scheduling of side-effects.

Id and pH support imperative operations on I-structure
{4] and M-structure [6] objects. I-structures allow the cre
ation of a data structure to be separated from the definition
of its components: attempts to use the value of a component
are automatically delayed until that component is defined;
attempts to redefine a component lead to an inconsistent
state. M-structures, on the other hand, are fully mutable
data structures whose components can be redefined repeat-
edly: a M-take operation reads and empties a full compo-
nent; a M-put operation (re)defines it; two successive M-put
operations on the same component lead to an inconsistent
state unless separated by a M-take operation.

Barriers were introduced in Id to provide partial sequenc-
ing of M-structure operations. However, their semantics
were not given precisely at that stage [5]. Subsequently, pH
was designed to follow the syntax and the type structure of
Haskell [8] combined with the eager evaluation model and
the non-functional extensions of Id. This prompted a for-
malization of barrier semantics for both Id and pH. The
first such attempt was made in [15], both in terms of CSP
[7] and (for the functional layer) denotationally. This paper

-presents a different formalization in terms of graph rewrit-

ng systems previously used to describe the semantics of Id
[3]-

! The rest of the paper is organized as follows. In Section 2
we discuss some important characteristics of non-strict, ea-
ger computations in Id and pH and introduce the concept
of control regions and barriers. Section 3 presents several
examples of using barriers in controlling parallelism, man-
aging program resources, and providing fine-grain control
over scheduling of side-effects. In Section 4 we establish the
formal framework for defining the semantics of barriers by
introducing a simple kernel language with parallel rewriting
semantics. In Section 5 we describe the concept of termina-
tion and propose semantics for barriers based on a “data
driven” eager evaluation model. This version is sufficient for
both resource management and side-effect control, although,
as shown in Section 6 it turns out to be a Lttle fragile with
tespect to some program transformations. In Section 7 we
present another formulation of the semantics for barriers
which attempts to overcome these shortcomings by mixing
eager evaluation with “demand-driven” evaluation. Finally,
Section 8 presents the suimnmary and directions for future

work. No knowledge of dataflow is required to read this
paper.

2 Non-Strict, Eager Evaluation

Operationally, a strict computation of a function cannot
return a result until the values of all jts arguments are
available: an expression needs the results of all its sub-
expressions: and a data structure is not available until all
its components are initialized. Non-strict computations, on
the other hand, relax these constraints {except when implied
by data-dependencies): a function may return a partial re-
sult before all its arguments are available, or parts of a data
structure may be read before it is fully computed. Id and pH
languages follow an eager evaluation strategy for non-strict
computations: all tasks execute in parallel, restricted only
by the data dependencies among them. This strategy auto-
matically exposes large amounts of parallelism both within
and across procedures. This is in contrast with a lazy evalo-
ation strategy followed by the Haskell language: only those
tasks are evaluated which are required to produce the result.
This strategy imposes a strong sequential constraint on the
overall computation, although the exact ordering of tasks is
decided dynamically.

We discuss the eager evaluation model of Id and pH in
more detail below,

2.1 The Fully Parallel Execution Model

A program in Id consists of an expression to be evaluated
within the scope of a set of top-level function and type dec-
larations. Each function is broken up into several threads
of computation (the length of the threads is determined in
part by the compiler’s ability to identify strict regions and in
part by the ability of the run-time system and the hardware
to exploit the exposed parallelism efficiently).

The parallel execution model of 1d and pH is shown picto-
rially in Figure 1. Each function application executes within
the context of an activation frame which records function
arguments and keeps temporary, local values. The program
starts by allocating a root activation frame and initiating the
main thread in order to evaluate the top-level expression.
Function applications within a thread give rise to paralle]
child activations, while loop invocations give rise to multiple
parallel iterations. Threads belonging to a function share its
activation frame and may be active concurrently. A thread
may enable ather threads by sending data or synchronization
mformation to their associated activation frame: this char-
acterizes the “data-driven” nature of this execution model.
Thus at any time the overall computation is represented by
a tree of activation frames, exploiting both intra-procedural
and inter-procedural parallelism.

In contrast, under lazy evaluation parallel computation
is spawned only if it is already known to contribute towards
the final result, Otherwise, every potentially concurrent
task is suspended in a thunk immediately upon creation.
A “demand-driven” evaluation of the suspended thunks ex-
poses only a small part of the parallel execution tree at any
given time. Of course, some of the thunks may never get
evaluated under demand-driven evaluation.

As shown in Figure 1, all threads participating in the
parallel computation share a globally addressable heap. An
activation frame is deallocated when its associated function
or the loop terminates, but the data structures allocated on

Tree of Activation Frarnes Global Heap of Shared Objects

(root} £ 3 3

P

188 88 acy

~ (14

3 LA

active threads

.

loop

Figure 1: The Fully Parallel Execution Madel of Id and pH.

the heap may continue to exist even after the function that
allocated them has terminated. Such data structures either
have to be explicitly deallocated or are garbage-collected
when no more references to them remain,

2.2 Result vs. Termination

An important aspect of non-strict, eager evaluation is that
the production of the result of a computation and its termi-
nation may not always coincide. For example, the function
f shown below is allowed to execute and return the resuit 3
before the internal application £ X terminates or even before
its argument x becomes a value because the result does not
depend on either of these events!,

Example 1:
def £ x ={y=gzx;in3);

Under lazy evaluation a computation proceeds only as far
as necessary to produce the requested result, so we never
have to worry about the termination of the computation
aside from the production of its result. On the other hand,
under eager evaluation several activities may be spawned
eagerly that do not immediately (or directly) contribute to-
wards the result. It is therefore semantically important to
separate the production of the result of g computation from
its overall termination. From now on we will use the term
Value Semantics to refer to the result of a computation,
and Termination Semantics to identify its termination?. Se-
mantically, a given computation may give rise to one of the
following possible outcomes [1:

1. Result with proper Termination — The compu-
tation produces a result and terminates.

2. Result with improper Termination — The com-
putation produces a result but does not terminate.
The non-termination could be either due to an infinite
computation or due to a deadlocked computation,

1AN our examples use the Id syntax [12). In Id, def introduces
function definitions, colon (:) is the infix list constructor, and block
expressions (enclosed in { }) evaluate the expression following in
within the scope of a set of parailel bindings,

?These correspond to what were called non-strict and strict se-
mantics, respectively, in [15].

i— Pre-Aagion
Trigger Froe identifiers 70
szl — Barrior
—— Post-Ragion
H %}%_: Tasks el

Signal Outpud Identifiers

(a): A Control Region. (b): Sequencing Regions with Barriers,

Figure 2: Control Regions and Barriers.

3. No Result or Termination — The computation
does not produce a result and does not terminate.
Again, the non-termination could be due to infinite
computation or deadlock®.

For example, the function £1 below produces an infinite
list of x’s as the result and terminates propetly, £2 produces
the same result but does not terminate because of infinite
computation, while £3 does not produce a resuit and dead-
locks because the + operator is strict in its arguments.

Example 2:
def f1 x = { a = x:a in a };

def £2 x = x:(f2 x);

def f3 x = { a = a+x in a };

2.3 Control Regions

Another important aspect of eager evaluation is the notion
of control regions (refer Figure 2 {a)). A control region is
informally defined as a set of concurrent tasks that are under
the same control dependence and therefore always execute
together. Tasks within the same control region may execute
in any erder or in an interleaved manner as long as the
data dependencies among them are respected. As Figure 2
{a) shows, a control region requires the values of its free
identifiers as input and produces one or more result values
as output. The combined termination of all tasks within
a control region may be used as a synchronization event
to initiate other control regions; a control region therefore
also takes a trigger input and produces a signal output on
termination.

As an example, the body of a function constitutes a
control region which is triggered when that function is ap-
plied to all its arguments. The termination of the func-
tion body is signaled by the joint termination of each of
its sub-computations which may be used to deallocate the
activation frame associated with that function application.
Control regions are always properly nested within one an-
other and therefore form a “tree” of parallel activities, For
example, the activation tree in Figure 1 shows the dynamic

3The fourth possibility, of proper termination but without produc-
ing a result, is not considered to be meaningful and is lumped with
the third ocutcome. Some graph-reduction based semantic definitions
[3) do, however, distinguish between these two cases.

nesting of function control regions. Similarly, each of the
branches of a conditional expression forms a control region
that is statically nested inside the enclosing region. In this
case only one of the branches is initiated when the predicate
is resolved, and the termination of the entire expression is
determined by the termination of that branch.

2.4 Barrier Specification

Barriers provide a mechanism to detect the termination
of a set of parallel activities enclosed within a control re-
gion. A barrier is specified in Id using three or more dashes
(~—-) creating two sub-regions within a given control re-
gion — one above the barrier called the pre-region and the
other below the barrier called the post-region (see Figure 2
(b)). Intuitively, no computation within the post-region is
allowed to proceed until all computations within the pre-
region have terminated*. The termination of control regions
must also respect their nesting, making the barriers hyper-
strict, i.e., the entire computation subtree spawned from the
tasks within a pre-region must terminate before any compu-
tation in the post-region is allowed to proceed.

Id also provides the ability to delimit the scope of a con-
trol region to an arbitrary subset of the parallel tasks at
hand. Unlike data-parallel computation, where all barriers
are global, barriers in Id may be localized to a specified set
of parallel activities by grouping those activities in paren-
theses. This is also illustrated in the example shown in Fig-
ure 2 (b). The activities (£1 x), and (£3 z) are initiated in
parallel because the post-region of the barrier excludes the
activity (£3 z) using parentheses. The activity (£2 y) is
initiated upon termination of (£1 %) as prescribed by the
barrier. The entire block terminates when all the activities
within all sub-regions inside it have terminated. The power
and usefulness of barriers in Id stem from the fact that the
granularity of the regions being sequentialized is completely
under user control.

Figure 2 illustrates another important point: the parti-
tioning of parallel computation in Id into control regions is
completely static and textual. The user always has a clear
picture of which computations will evaluate and under what
circumstances. This is possible only under eager evaluation.
Under lazy evaluation, even if some computations are explic-
itly sequentialized or scheduled using barriers, it is not clear
whether they will ever evaluate until something demands
their value: there is no natural notion of control region as a
group of concurrent activities.

3 The Uses of Barriers

In this section we describe the various uses of barriers under
the parallel execution model discussed in Section 2.

3.1 Controlling Parallefism

As shown in Figure 1, the eager evaluation strategy unfolds
the parallel computation into a tree of activation frames.
In some “embarrassingly parallel” computations the poten-
tial parallelism is limited not by the data dependencies but
purely by the size of the available frame or heap memory
in the machine. An unrestricted unfolding of the activa-
tion tree may cause the machine to run out of memory very

4Actually, all we care about is that the effect (computed values
and side-effects) of the post-region is not visible from outside until
the pre-region has completely terminated.

quickly. In such cases it is important to “throttle” the par-
allelism to match the available resources. Barriers allow the
programmer (or the compiler} to control the parallelism by
sequentializing some parallel activities. For instance, with-
out the barrier in the following example the fib function
would unfold into an exponentially large tree of activation
frames. The barrier reduces the resource requirement to be
linear in the size of the problem, albeit also reducing the

parallelism.

Example 3:
def fib n = if n < 2 then n
else { x = fib (n-1);
y = fib (n-2);
in x+y };

3.2 Controlling Frame Storage

Sometimes a group of activities that are initiated simulta-
neously may not exhibit a lot of parallelism because of pre-
existing data dependencies among them. But under eager
evaluation all the initiated activities can grab memory re-
sources and hold on to them for a long time without doing
any useful work. Barriers help in scheduling the activities
in the appropriate partial order so that the overall resource
requirement is reduced. This behavior is illustrated by the
following example.

Example 4:
def repeatl f n x = if n==0 then x
else repeatt f (n-1) (f x);

def repeat2 f n x = if n==0 then x
else { y = £ x;

in repeat2 £ (n-1) y };

The repeati function iterates the function f over its ar-
gument x n times. Under eager evaluation it rapidly expands
into a sequence of frames to compute the application (£)
at each iteration, using up to O(n) frames. If the function
f is known to be strict, then all except the first of these
frames would wait for the previous iteration to produce a
result before they can compute anything useful. In this case
we may use a barrier as shown in function repeat?2 to wait
for the current iteration to finish completely before moving
on to the next iteration, using at most two frames during the
entire computation. Note that, unlike the case of the fib
function in Example 3, no parallelism is lost by inserting
this barrier since the computation is already sequential.

3.3 Controlling Heap Storage

Barriers are also useful for scheduling the automatic {or
programmer-specified) deallocation of heap resources once
they are no longer in use. This strategy may be used to man-
age the heap without paying any extra overhead for garbage
collection, as shown in the following example. Local data
structures allocated and used during a large computation
may be released at its end.

Example 5:
def compute graph =
{ { note = make notebook ();
result = traverse graph note;

deallocate note;)
in result };

3.4 Sequentializing Side-Effects

Barriers may be used in paralle]l M-structure computations
for scheduling side-effects in the desired partial order. Un-
der eager evaluation all side-effects present within a block
are initiated in parallel. A barrier may therefore be required
to ensure proper interleaving of M-take (read-and-lock) and
M-put (write-and-unlock) operations. For instance, a bar-
rier is necessary in the following example to ensure that the
mutable array slot is taken before the new value is put back,
because there is no explicit data dependency to control the
order otherwise®.

Example 6:
def replace a i v =
{x=allil;

al'l[i] = v;
in x };

Barriers provide the ability to detect the combined ter-
mination of a group of parallel update operations without
sequentializing them completely. A typical example of this
sort is the construction of a histogram from a tree of ele-
ments.

Example 7:
def histogram t n =
{ a = { def zero i = 0;
in make.m array (1,n) zero };
- = traverse a t;

in a };

def traverse a (Leaf 1) =
{ i = hash x (bounds a);
al[i] = at[i}+1; }
| traverse a (Node 1 r) =
{ - traverse a 1;
- = traverse a r; };

The traverse function is allowed to unfold auwtomati-
cally, accumulating the frequencies in parallel into the his-
togram array a using M-structure operations. No sequen-
tialization is imposed over the accumulations, but the bar-
rier in the function histogram guarantees that all the ac-
cumulations have terminated before the histogram array is
returned. Note that the barrier ensures that all the compu-
tations above the barrier have terminated before returning
the array, although actually we are interested only in the
termination of all side-effects on the array itself.

3.5 Controlling Access to Shared External State

Barriers are also useful in managing activities that share a
common external resource or state. Shared peripheral de-
vices, I/O streams, and protected kernel data structures may
constitute some of the external state that user programs
may need to control or gain access to. Most functional lan-
guages allow only implicit control of such computation via

5In 1d, M-toke and M-put operations are represented using a
slightly modified array indexing syntax a!fi]. Indexed expressions
on the right-hand side of a binding are take operations while those
on the left-hand side are put operations.

e € Constant
Fot.z,y,z € Identifier
SE. XY, Z, € Simple Expression
E € Expression
S € Statement
PF™ € Primitive Fn. with n arguments
Constant = Integer | Float | Boolean | O | »
SE := Identifier | Constant
PF = +]—~|---|hd|t1l}Cons|---
| Alloc | I-fetch | M-take | W| &
E = SE|PF"(X1,...,X,)
| Cond (X, E1, E2) [Az - &n. F
| &p(F, X)) | Fap™(F™, X1,..., X.)
[Sap™(F™, X1,..., X»)
| Pap*(F™, n—4 X,..., X;) | Block
Block = {8 in(X),..., X.)}
srer = Si;...; 8 e
Sseq e (S;JGJ‘ —_— Sgar)
5 := Binding | Command | 5%
Binding = Z1,...,tn=F
Command = I-store(X,I,Z)|M-put(X,1,2)

Figure 3: The Syntax of Kernel Expression Language.

monads, continuations, abstract datatypes, or state trans-
formers [9, 11, 14). In Id, on the other hand, such objects
are represented explicitly using M-structures, and access to
them is controlled using locks and barriers that provide mu-
tual exclusion and explicit sequentialization as necessary.
For instance, currently there exist two 1/O libraries in Id,
sequential 1/O [16] and threaded 1/O [12], both of which
crucially rely on barriers for proper sequentialization.

4 A Kernel Language

In this section we provide a framework for discussing the
semantics of barriers. We present a small parallel language
and its rewrite rule semantics.

4.1 Language Syntax

Figure 3 shows the grammar of our kernel expression lan-
guage. The grammar ensures that every intermediate result
of a complex computation is explicitly named using an iden-
tifier. This is extremely desirable in order to be able to ex-
press and preserve sharing constraints among computations.

Aside from the usual arithmetic primitives, the strict
primitives hd and tl are used to manipulate lists. Cons
is a non-strict constructor: it returns the allocated Cons-cell
before it is completely filled. The primitive function Alloc
is used to allocate either an I-structure or an M-structure
memory block of specified size. The type-checker ensures
that this memory is used consistently. The W operator is
discussed in the next section.

There are several forms of application expressions in Fig-
ure 3. Ap is the general apply operation, Fap™ is a full appli-
cation of a known function to all its arguments, Sap” denoctes
strict application, and Pap' denotes a partial application of
a function to ¢ arguments accumulated within the closure?,

SWe will omit the arity superscripts when they are obvious,

WHNF € Weak Head-Normal Form

Signal € {L,e}

w . Expression — Signal

WHNF = Constant | Cons(X,Y) | Alloc(n)
| Azy - zn.
l Pap(F",n —I,Xl,...,X,‘)

W(c) = e

W(z) = W(E) Where z is bound to E

W(Cons(X,Y)) = s

W(Allec(E)) = W(E)

Wz, - zn B} = @

W(Pap(F",n— i, X1,..., X)) =

W(E) = 1 Otherwise

Figure 4: Definition of Weak Head-Norma) Forms (Values).

The latter three forms are generated during compiler opti-
mizations or as intermediate results during rewriting. The
language also provides nested A-expressions that may con-
tain free identifiers, and a block construct that controls lex-
ical scoping and enables precise sharing of sub-expression
values.

The kernel language allows several identifiers to be bound
at once in a multiple-value binding. The number of multiple-
values being returned from the right-hand side expression
must match the number of identifiers being bound on the
left-hand side. A group of statements separated by semi-
colons forms a parallel control region: the order of bindings
In a parallel statement group is not significant. Finally, two
parallel control regions may be sequentialized using a bar-
tier.

4.2 Weak Head-Normal Forms

Typically a non-strict program computes a weak head-normal
form as its answer. An expression is said to be in normal
form if it cannot be simplified any further, while an expres-
ston is said to be in weak head-normal form as soon as its
top-level structure becomes “stable”. Under eager evalu-
ation, an expression has to be in weak head-normal form
before it can be passed as an argument, stored into data
structures, or returned as a result from a function. Thus
weak head-normal forms provide an exact characterization
of the run-time values under eager evaluation.

The weak head-normal forms or values recognized in our
language are shown in Figure 4. Constants like integers,
floats, booleans and underlined expressions (e.g.,n — i) con-
stitute literal values. An allocated data structure such as a
Cons-cell or an Alloc memory block is also considered to
be a value even if its components are not yet filled. Note
that the size of the memory block must be known for the
allocation to take place. A-expressions are considered to be
in weak head-normal form because we do not reduce inside
the A-body unless it is fully applied. In addition, partial
applications (Pap) are also considered to be in weak head-
normal form because they also represent functions, produced
vig currying. Note that under eager evaluation the values
are either scalars or pointers to data ob Jjects residing in the
heap — unevaluated expressions (thunks) are never treated
as values. Similarly, selecting comporents from heap objects
directly produces data values instead of thunks that would
in lazy evaluation remain unevaluated until their values were

demanded.
It is not possible to test algorithmically within a func-

tional language whether or not a given expression is in weak
head-normal form without destroying the confluence prop-
erty. An expression may not be in weak head-normal form at
one point, but may become so after some evaluation. How-
ever, it is possible without destroying confluence to add a
monotonic primitive function W to the language that pro-
duces a signal value (represented by) when applied to ex-
pressions that are already in weak head-normal form. The
meaning of the W operator is precisely captured by the se-
mantic function W(E) defined over the range { L, #} as shown
in Figure 4. This function produces the signal » if the given
expression is in weak head-normal form; otherwise it pro-
duces no signal, and we say that its value is L. We also use
a primitive operator & that combines two signals to produce
a single signal.

4.3 Rewriting Semantics

Figure 5 shows the rewrite rules that apply to kernel lan-
guage terms without barriers. We make extensive use of
intermediate identifiers in order to preserve sharing of sub-
expressions. This system therefore represents a Graph Re-
writing System [3].

The semantic function W is used to define the W op-
erator (the WHNF rule) as well as to express additional
conditions under which other rewrite rules apply. For ex-
ample, the List rules (hd and t1) fire only when the Cons-
cell is available and the component being selected becomes
a value. The latter condition reflects the data-driven na-
ture of eager evaluation. In contrast, under lazy evalnation,
selecting a component from a Cons-cell would immediately
return a thunk which is subsequently evaluated to a value
only if necessary. From the point of view of value semantics,
these two evaluation strategies are equivalent, but they yield
very different dynamic resource utilization and termination
characteristics.

Note that all the Apply rules except the Sap rule are
non-strict: they fire even if the applied arguments have not
yet become a value. In the case of Sap we explicitly wait for
all the arguments before proceeding with the application. In
other cases, partial applications are created whenever a func-
tion is applied to a number of arguments less than its arity”.
Once all the arguments have been syntactically applied. the
function body is instantiated, replacing A-bound parameters
by actual arguments. The operation RBIE] simply creates a
new copy of the A-body by renaming all its bound identifiers
to new identifiers.

The rules for I-structures and M-structures implement
their respective protocols. The rules for I-structures show
that all I-fetch operations to a known location must wait
until an I-store operation succeeds in storing a value to
the same location. Two I-store operations to the same
location take the program into an inconsistent state (T).
The M-structure rules are similar, except that each M-take
operation non-deterministically matches and eliminates one
M-put operation within the same control region. Two succes-
sive M-put operations take the Program into an inconsistent
state.

In order to apply the rewriting rules shown in Figure 5
properly, program terms must be brought intc a canoni-

"When creating partial applications we assume that their previ-
ously accumulated arguments are not copied, otherwise their termi-
nation behavior may get affected, as it will become clear shortly.

WHNF Rule:

W(X) = e
WX)—»

4 Rules:
&(w, 0) — »
+(m,n) — +(m.n)

Cond Rules:
Cond True (E,, E3) — E,
Cond False (E,, E£2) — E»

List Rules:
X = Cons(Y, Z) W)=
hd(X) —7Y
X = Cons(Y, Z) W(Z)=1
t1{ X} — Z

Apply Rules:
F=)M---X, E
Ap(F, X) — Pap(F,n_1, X)

F =Pap(F',pn, X1,..., X)) n>1

AP(F,X) ——>Pap(F',n——l,Xl,...,_’(i,X)
F=Pap(F' 1, X1,.... Xi)
Ap(F, X) ~—TFap(F, X1, ..., X3, X)

F=)\X; X, E
S Ya) — (RBIEENY /X1, Yo X

Fap(F\ Y1, ..

Strict Apply Rule:
W(Xl)zi W(Xn)=.
Slp(F,X1, ‘eey Xu) e Fap(F, Xl, P ,X,-.T

I-structure Rules:
I-store(X, i, Z) WX)=e W(Z)=e
I-fetch{X,z} — Z

WiX)=e W(Z)=e W(Z')=e
I-store(X,i,27) — T

I-store(X, i, Z)

M-structure Rules:
W(X)=e WZ)=»
M-put{X,:, Z); YV = M-take(X,1) — ¥ = Z

W(X)=e W(Z)=e W(Z)=»
M-put(X, i Z); M-put(X,i,2) — T

Figure 5. Rewrite Rules for the Kernel Language.

cal form after each rewriting step using the canonicalization
rules shown in Figure 6. The canonicalization rules cover
block flattening, identifier and constant substitution, elimi-
nation of redundant bindings, and propagation of T. These
rules cannot be expressed as rewriting rules in the tradi-
tional sense. Nested blocks are flattened by merging their
sets of bindings: this cannot cause any name clashes since
we always rename all bound identifiers of a A-expression on
application. Bindings of the form z = ¥ OFf £ = ¢ cause
substitution of [y/z] or [c/z] respectively within their entire

Block Flattening Rule:

{z={wn=Eg}; {z=u
v = Ey;
Yo = EL.:
iny } on, Ym = EL;
1 = Ey; T = Fy;
Ty, = En; T, = Eg;
inz} in z }

Substitution Rules:

{m=FEi v z=sgiza=Eainz} 2 (c£0)
{z1 = Eile/z]; - 2 = Enlc/z]; in zlefz] }
{:c:=E1;---;r=y;-v-;rn=En; inz} <5 (z # y)

{ T = Elfy/:.c], 3l = En{y/x:ly in z[y/:r] }
Degenerate Cycle Rule:
{x =Ey-r =21, = En; inz}_c'u_’

{z1=Ei[0fz]; 2= 05120 = Ea[0/a]; in 2[0/2] }

Blowup Rule:
{z1=En - sz=T; en=FEninz} <5 T

Figure 6: Canonicalization Rules.

lexical scope®. Only identifiers or constants are allowed to
be substituted, in order to preserve precise sharing of sub-
expressions among terms. After the substitution all such
simple bindings are eliminated from the program term, leav-
ing it in a unique canonical form.

It is also possible to encounter degenerate bindings of
the form z = z during rewriting and substitution, because
of circular dependencies present within the program. In this
case, the semantic meaning of 7 is bottom (1}, because such
bindings represent deadlocked computation. Such bindings
are canonicalized by substituting a special constant @ for
z (W(®) = 1), retaining the binding z = z in the form
= & to distinguish this case from the properly terminating
computations. Finally, the blowup rule shows that once an
inconsistent state (T) is created the whaole program becomes
inconsistent,

5 Semantics of Barriers

We define the semantics of barriers by translating a kernel
program with barriers into another kernel program without
them, in which the termination of each control region is rep-
resented explicitly as a signal. To achieve this, we must pre-
cisely define the meaning of termination for each construct
in our kernel language and provide a way of combining it in
order to produce a joint termination signal.

5.1 What is Termination?

Let us consider the termination semantics of a simple par-
allel block. We translate it into another block as follows:

BBlocks {delimited by { }) determine the lexical scope of a binding.
Lexical scope defines the vistbility of a binding and is unrelated to
its control region which defines the scheduling of its initiation and
termination.

TE[{ I = El; = { 1,51 = TE[E1];
s§ = 5 & W(z));
Tn = En;
inz }] Zn,8n = TE[E,];
sn = 30 & W(z,);

inz,s) & --- & s}

An expression E; is translated as TE[E:] which dynam-
ically returns a value (bound to ;) along with an explicit
termination signal s; defined over the range {L,e}. We
use the weak head-normal form operator (W) to wait for x;
to become a value and combine it with the signal s; using
the signal combining operator &. All such signals within
the block are similarly combined into a single signal for the
whole block.

Since every expression node is explicitly named in the
kernel language, the signal produced in the above manner
ensures the termination of the actual computation taking
Place within the block. But what about references to free
identifiers of the block? Some of these references are used
within the actual block computation and hence are automat-
ically included in its termination signal, but others are not,
For example, free identifiers present in a non-strict data, con-
structor or the free identifiers of a conditional branch that
is not taken do not directly contribute towards the result of
the computation. Should we nonetheless explicitly include
all such references as part of the overall termination of the
block?

There are two choices before us at this point, leading to
two different versions of the termination semantics. Under
“data-driven” semantics, we account for all the syntacti-
cally free identifiers of a block as part of its computation,
and hence always include them in the block’s overall termi-
nation. Under “demand-driven” semantics, only those iden-
tifiers are included in a block's termination which are de-
manded by the actual computation taking place within the
block. Correspondingly, we obtain two different translations
for barriers, described below and in Section 7 Tespectively.

5.2 Data-Driven Barrier Translation

Figure 7 shows the rules for transforming Kernel Id language
constructs to make their termination events explicit, We
provide two sets of translation rules. TE]] translates a ker-
nel language expression E into a new composite expression
that computes both the value of the original expression E
and a termination signal. TS[] translates a kernel language
statement 5 into a parallel statement group S and a signal
identifier s that is bound to a stgnal expression representing
the termination of 5. Additjonal syntactic properties of the
given expression or the statement may also be used, such as
the free identifiers (FV) or the bound identifiers (BV) of an
expression or a statement.

In all the rules shown in Figure 7 we maintain the invari-
ant that the weak head-normal forms of all the free identi-
fiers statically present within a construct are implicitly or ex-
plicitly collected into its signal. This is reflected in the rules
for identifiers, primitive function applications, conditionals,
A-expressions, and user-defined function applications. For
strict primitives such as + this may be redundant, but it
keeps the semantics intuitive and compositional, in that the
termination of a program term (expression or statement)
depends solely on the termination of its sub-terms.

EXPRESSIONS

TE :t Expression — Expression
TE[C] c, bt
TE[z] r, W(z)

o

TE[PF™(X;,..., X))
TE[Cond (X, Ey, E;)]

where 2),...,z, = FV(E|}U FV(E;)

TE[/\:rl---:r,,.E] = Ary--za. { y.5s = TE[E]
iny,s&Wx) & - - &W(z,)},

where z;,..:,zﬂ =FV(izy - zn. E)
TE[ap(, X)] -
TE[{ 57" in (X1,..., X,.) H =
where S§'P7 5= TS[57%]

PFM(X1,.. ., Xn), WX1)& - &WX,)
{ v, 5 = Cond (X, TE{E:], TE[E:]);
iny,s & W(z) & - & W(za) }

Wiz1) & - & W(2,)

{y.5=Ap(F, X)iny, s & WF) & W(X)}
{ """ in (X,

..... n, S

STATEMENTS
TS 2 Statement — Statement x Signal Identifier

TS[z1,.... 50 = E}

{r1,...,zn,51 = TE[E];

s=s51 &EW(zi1) & - & W), s

TS|e] = (s=4e), 3
TS[S1; ... 5] = (S1;...;Shis=s1d -+ &sn), s
where S5 =TS[5] 1<i<n
TS[S7 - 57 = (s
F=2xs{ S;p" inyr,...,ym,82)
yls"'ly"\:512=sap(Fasl))1 3'2
where S:p"r, S¢ = TS[5P] 1<i<2
Yi,. .-y lm = BV(S;“"‘)
TS[I-store{Xo, X3, X2)] = (I-store(Xn, X7, X2);
s =W(Xo) &W(X1) &WX2)), s
TS[H-put(Xo,Xl,Xz)] = (H'put(Xu,Xl,Xz);

s =W(Xo) & W(X,) &W(X3)), s

Figure 7: Barrier Translation Rules based on Data-Driven Eager Evaluation.

The translation rule for function application shows that
we wait not only for the operator and the operand toc be-
come values, but also for the termination of the function ap-
plication itseif. The rule for l-expressions correspondingly
translates each function body to return a signal upon its
termination. This body signal waits for all the arguments of
the function, thereby ensuring that unused or non-strict ar-
guments are also collected before signaling the termination
of the function application.

It may seem redundant to collect the weak head-normal
form of a function argument at the application site when we
already collect it within the body of the function. Collec-
tion at the application site is necessary, however, because
any of these sites could be a partial application. In that
case the argument contributes towards building the partial
application closure rather than executing a function body.
Building a closure is a resource-consuming computation and
its termination must therefore be tracked independently.

Finally, the translation of a barrier encloses its post-
region in a A-expression which is applied to the accumulated
termination signal of its pre-region using the strict applica-
tion primitive Sap. This prevents the initiation of the com-
putation below the barrier until after the computation above
the barrier has terminated.

It is easy to see that the data-driven termination seman-
tics presented above provides precise control over both re-
source management and scheduling of side-effects, as dis-
cussed in Sectien 3. The signal generation and composition

rules shown in Figure 7 ensure that a termination signal from
a control region is not produced until all the region’s inputs
have become values and the entire computation within it,
including side-effects, has terminated. Any resources used
during the computation may therefore then be safely re-
leased. :

5.3 Syntactic Properties of Barriers

It is easy to show that the barrier translation defined in
Figure 7 satisfies the following two desirable syntactic prop-
erties:

Property 1 (Eliminating Redundant Barriers) Given
a stafement group SP*7, we have

—— Srpu.r
grery = oy =S5

Property 2 (Associativity of Barriers) Given statement
groups S7°7, ST, and 5P, we have

((anr (Slpar
Sgar) = (S;ar
587 53°7h

6 Placement of Barrier Translation within a Compiler

The barrier translation presented above is a source-to-source
transformation of a Kernel Id program. A natural question
is when should this translation be performed within the com-
piler: should we do it before or after other program trans-
formations such as A-lifting or pattern-matching? Moreover,
most of the rewrite rules (Figure 5) and the canonicalization
rules (Figure 6) may be used at compile-time as compiler op-
timizations (2]. We may even want to postpone the barrier
translation until after the optimization phase because the
translation increases the complexity of the program. Does
it matter (semantically) when this translation is performed?

6.1 Canonicalization vs. Barrier Translation

Unfortunately, the barrier translation shown in Figure 7 is
very fragile even with respect to the simple canonicalization
rules of Figure 6. Canonicalization may eliminate some free
identifiers from a control region, which seriously affects its
termination semantics as shown in the following example.

Example 8:

{{x=2a;
a=1;)
in a }

Without canonicalization this program deadlocks under
the barrier translation because the value of a is required
to discharge the barrier. However, the binding (z = a)} is
redundant and can be eliminated by canonicalization, and
this would make the above program terminate normally.

6.2 Program Transformations vs. Barrier Translation
The Role of Free ldentifiers

Compile-time rewriting and other program transformations
can either increase or decrease the set of free identifiers of a
control region, again altering its termination semantics. For
instance, consider the following program fragment.

Example 9:
def £ x = 1;
(y=1 a;

.

If the user (or the compiler) decided to inline the function
f before performing barrier translation, it would eliminate
the free identifier a from the pre-region of the barrier. The
computation below the barrier would no longer wait for a,
as it would have done if the inlining had been performed
after barrier translation.

Most other rewrite rules shown in Figure 5 would also
yield a different, termination behavior if used at compile-time
before performing barrier translation. For instance, apply-
ing Cond rules would eliminate the free identifiers of one of
the branches that would otherwise be collected into the sig-
nal of the translated conditional expression (see Figure 7).
Optimizing general applications Ap to partial applicaticns
Pap would introduce new free identifiers into a control re-
gion that would not be present if the optimization had been
performed after barrier translation.

Another program transformation that changes the set
of free identifiers of a control region is A-lifting [10]. A-
lifting converts free identifiers of a function into additional

parameters and then lifts the functions to the top-level as
combinators. All occurrences of the lifted function identifier
are replaced by partial applications of the transformed fune-
tion to its previously free identifiers. This transformation
would eliminate free identifiers from the region containing
the lifted A-expression, and introduce free identifiers into re-
gions where the lifted function identifier occurs. Again, this
would alter the termination semantics of those regions.

The Role of Bound Identifiers

The translation of a A-expression in Figure 7 shows that the
signal of the A-body collects the weak head-normal forms of
all incoming bound identifiers of the function. This is essen-
tially a resource management requirement — if an incoming
argument is not used within the body of the function then it
must be collected into its termination signal. This ensures
that no dangling argument values are left behind to be re-
ceived after the production of the termination signal has
allowed the function’s activation frame to be deallocated.

This data-driven compilation scheme creates some sub-
tle problems for transformations involving functions that do
not use some of their arguments. Consider the following
example.

Example 10:

def f x y = y; def £ x vy = y;
{ £ =1 b; { £ =£b;
(a=f 1; Intining {(a = 1;
b=a;); b=a; J);
in a } in a }

It is easy to detect that the application (£’ 1) before the
barrier is a full-arity application of the function f. If the
compiler decided to inline this function, then the resulting
code after canonicalization shown on the right would be able
to discharge the barrier immediately and the program would
terminate normally. If the compiler decided not to inline,
then the data-driven implementation of the function £ would
wait for iis first argument b at run-time before releasing the
termination signal which in turn is supposed to discharge
the barrier and allow the identifier b to become a value.
Therefore, the program would deadlock instead.

The above discrepancy arises because the data-driven im-
plementation deliberately waits for the unused bound identi-
fiers of a function even though at compile-time we eliminate
such bindings via canonicalization. On the other hand, this
problem would not arise if the compiler was careful not to
inline functions whose partial applications spanned multiple
control regions. Whether this condition severely restricts
the applicability of the inlining optimization is a topic for
further investigation.

6.3 Multipte Argument Functions vs. Barrier Translation

Most functional language implementations make a distinc-
tion between the following two function definitions for prag-
matic reasons; the function £1 on the left-hand side takes
two arguments before expanding into its body while the
function £1 on the right-hand side takes one argument and
evaluates to another function of one argument,

def £2 x =
{def gy=...;
in g };

def f1 xy = ...; vs.

However, this distinction is not semantically observable:
these functions can be used interchangeably. Unfortunately,
the termination semantics shown in Figure 7 exposes this
distinction as shown by the following example.

Example 11:

{ £ = £f1 b; { £ =f20p;
(a=f"1; (a=1f"1;
— vs. ——
b=a;); b=a;);
in a } in a }

The left-hand side uses the function £1 with two argu-
ments that is curried over two applications. £’ gets bound
to a partial application of the function £1 which behaves like
the identity function in value semantics but has a slightly
more complex behavior for termination semantics. The func-
tion application (£’ 1) above the barrier does not produce
a signal until it also receives the first argument of the func-
tion £1. This is because the barrier translation rules man-
date that functions should collect their unused arguments
into signals. But that can never happen, because the ac-
tual value for that argument b cannot be produced until the
application itself terminates. So the program deadlocks.

The right-hand side computes the identifier £* using the
function £2 which evaluates to a pure identity function that
does not contain any free identifiers within its closure. The
application (f* 1) above the barrier therefore successfully
terminates, producing the value for b which allows the bind-
ing for £* to terminate. Thus the program successfully pro-
duces a value and terminates.

6.4 Making Data-Driven Barriers more Robust

Judging by the above discussion, it seems that the simplest
way to guarantee that the source program semantics are
kept intact is to perform barrier translation before any other
program transformation is performed. This in itself is not
problematic, and can be easily done within the compiler,
although it shows that the barrier translation scheme pre-
sented in Figure 7 is not sufficiently robust. We can improve
its robustness by performing the barrier translation in the
following manner,

1. Record the set of free identifiers of every pre-region of
a barrier in the source program.

2. Perform program transformations: A-lifting, inlining,
etc.

3. Canonicalize the program eliminating all redundant
bindings.

4. Translate the barriers in a manner similar to Figure 7
using the weak head-normal forms of previously saved
free identifiers for each pre-region.

Recording the set of free identifiers of every pre-region
beforehand ensures that subsequent changes in this set due
to canonicalization or pregram transformations would have
no effect on the termination semantics of that control region.
This set would be recorded at the barrier itself by inspecting
the original source program®. These identifiers would then
be used to control the discharge of the barrier at the time
of translation irrespective of the actual set of free identifiers

®Identifier substitutions would still need to be performed on this
set of free identifiers.

10

of the pre-region, Furthermore, canonicalizing the whole
program before performing the batrier translation ensures
that redundant bindings are consistently eliminated from
everywhere within the program without interfering with the
barrier translation. Note that this scheme would correctly
handle Example 8 and Example 9 by permanently associ-
ating the free identifier a with the region above the barrier
and collecting it within its termination signal during barrier
translation.

The problem of preserving equivalence of multiple argu-
ment function implementations {Example 11} is a little more
difficult to overcome, and this shows that the data-driven
termination semantics are fundamentally at odds with de-
sirable semantic properties enjoyed by the value semantics.
In the next section we explore a different approach to this
problem.

7 Mixed Eager and Lazy Evaluation

In this section we present an alternate translation for barri-

- ers based on a demand-driven identifier dereferencing mech-

anism within the context of non-strict, eager evaluation.
This translation overcomes some of the semantic shortcom-
ings of the data-driven barrier translation presented above
and is also sufficient for resource management under an
environment-based implementation. We wiil show the trans-
lation rules and discuss their properties, comparing them
with the data-driven translation.

The concept of a control region remains unchanged under
this mixed model of evaluation. We spawn all tasks within
a control region eagerly, but each computation fetches the
values of its free (input) identifiers as needed rather than
being explicitly provided with them. Similarly, the values of
the bound (output) identifiers computed within a region are
not automatically sent to the computations that may need
them; instead they are stored in a known place from where
other computations may obtain them as needed. We now
outline a possible implementation of this idea.

In order that each spawned computation would “know™
where to get the data from if and when it needed it, every
control region would keep an environment in the form of a
table of values. Nested control regions would give rise to a
chain of environments. The value for each bound identifier
in a control region would now be stored at a fixed location
specified by the compiler within its environment table, and
all subsequent computations that need this value would fetch
it from there. It is not safe to flatten or copy the environ-
ment tables in this model because reading an identifier that
is not used in a control region can change the termination
behavior of that region. The inability to flatten environ-
ments may have serious implications for the efficiency of the
implementation.

7.1 Barrier Translation based on Mixed Evaluation

Figure 8 shows the new barrier translation rules under the
mixed execution model. We no longer collect weak head-
normal forms of the free identifiers of every sub-expression
into its signal. Nevertheless, we still need to collect the weak
head-normal forms of the bound identifiers of 2 computation
into its signal, identifying the termination of that computa-
tion. Similarly, the weak head-normal forms of the iden-
tifiers participating in side-effect operations I-store and
M-put signify the completion of those operations. Within

TE

TE[c]
TE[z]

TE[PF™(X1,..., X))

TE[Cond (X, E1, E3)]
TE[Az, - z.. E]

EXPRESSIONS

Expression — Expression

c, ®
T, e

PF™(X1,...,X.), ®
Cond (X, TE[E:], TE[E:])
Azi- - za. TE[E], e
Ap(F, X)

[T O [T

TE[Ap(F, X)]
TE[{ 57 in (X1, ..., Xn) }]
where S'P°7 5 = TS[S7%"]

{597 in (X, . ..

s Xn,s) }

STATEMENTS
TS[] Statement — Statement x Signal Identifier
TS[z1,...,2. = E] = (Z1,...,2a, 51 = TE[E];
s=s1&Wz1) & - &W(z,)), s
TS[el = (s=e), s
TS[S:;...; 5] = (S 385 =51& - &3}, s
where 5[5 =T8[%] 1<i<n
F=2s{8F"inyi,...,ym, 52 7
yla---sme’z:S&P(Fyﬂl)), 5’2
where SP*s; = TS[SP"] 1<i<?
Y, 4w = BV(SE™)

TS[I-st ore(Xo, X1, X2)]

(I-store(Xo, X1, Xa);

§ = H(Xo) & H(Xl) &: H(Xz)), 8§

TS[M-put(Xo, Xz, X2)]

{(M-put(Xq, X1, X2);

L] =H(Xo) &U(X1) &H(Xz)), L]

Figure 8: Barrier Translation Rules based on Mixed Evaluation.

expressions, identifiers are expected to be fetched on de-
mand and therefore do not need any separate termination
signal.

Another interesting difference between this translation
and that of Figure 7 is the rule for A-expressions. Note that
the rule presented in Figure 7 collects all A-bound identifiers
into its termination signal in order to capture the identifiers
that are left unused. On the other hand, the rule presented
in Figure 8 does not collect any such identifiers. This is
because unused identifiers are never fetched under mixed
evaluation. This property allows the equivalence of multiple
argument function implementations (shown in Example 11)
to be preserved. Under the new translation rule, the sig-
nal from the body of the function £1 on the left-hand side
would no longer depend on its unused bound identifier 1; so
the left-hand side would alse produce a value and terminate
properly.

7.2 Properties of Mixed Barrier Semantics

The translation shown in Figure 8 is automatically robust
with respect to compiler optimizations and program trans-
formations, since termination of a computation depends only
upon the values of identifiers that are actually required dur-
ing that computation, No artificial data dependencies may
be introduced or eliminated by program transformations.
It also satisfies the desired equivalence of multiple argu-
ment function implementations, and is therefore a semanti-
cally cleaner alternative to purely eager, data-driven barrier
translation.

As expected, the mixed evaluation model is much more
relaxed in terms of the condition governing the discharge

11

of a barrier. The termination of the pre-region of a bar-
rier now solely depends upon the termination of the actual
computation spawned within it and not on the weak head-
normal forms of unused identifiers. This may cause some
programs to terminate properly under this semantics that
would have deadlocked under data-driven termination se-
mantics, as shown below.

Example 12:

{ (def fx=1x+a;
a=1;)
in f 3}

Under data-driven termination semantics the value of a
is still required to discharge the barrier since it is a free
identifier of the pre-region; but since a is bound in the post-
region, it never gets defined and the program deadlocks. Un-
der mixed barrier semantics function definitions always ter-
minate immediately; so the barrier discharges, allowing the
overall expression to produce a value and terminate prop-
erly.

Both data-driven and mixed termination semantics pro-
vide the power to control the termination of actual com-
putations including those involving side-effects. The major
difference between them shows up while using them for re-
source management. Data-driven termination semantics au-
tomatically provide a full resource management capability,
by ensuring that even unused values have been received by
the time a termination signal is produced from a control
region. We may need to move to an environment-based im-
plementation in order to provide a similar capability under
the mixed termination semantics.

8 Conclusions and Future Work

In this paper we have presented two different termination se-
mantics for barriers in an eagerly evaluated, implicitly par-
allel. imperative language. In each case, the semantics have
been presented as a translation from a language with bar-
riers into a kernel language without barriers where termi-
nation signals have been made explicit using a weak head-
normal form operator (W) and a strict application operator
(sap).

The purely eager termination semantics were motivated
by a data-driven execution model and have been imple-
mented in the Id/pH compiler. The formalization of these
semantics has helped us in uncovering some bugs in the cur-
rent implementation. This model unfortunately lacks cer-
tain desirable semantic properties, such as the equivalence
of multiple argument function implementations; this moti-
vated us to devise alternate, mixed termination semantics
that combine eager spawning of computation along with
lazy handling of identifier references. It remains to be seen
whether this mixture is adequate for resource management
{for example, it might prove better to retain the rules of
Figure 7 for Ap and PF™ in order to enforce a stronger
view about the termination of function applications and
non-strict data constructors, respectively),

At this point we do not have enough experience to judge
whether an environment-based implementation of the mixed
evaluation approach would be as efficient as the data-driven
implementation of purely eager evaluation, It is possible
that a clean solution would require us to separate barri-
ers for resource management (such as the deallocation of
frames and heap objects) from barriers that detect the com-
pletion of side-effects (such as writing into I-structures and
M-structures). The resource management barrier semantics
must capture some aspects of a particular implementation
while the side-effects barrier semantics may be definable in
an implementation independent manner.

9 Acknowledgments

The authors would like to thank Zena Aricla, James Hicks,
Jan-Willem Maessen, and Rishiyur Nikhil for several in-
sightful discussions that immensely helped in distilling the
important issues while formalizing the semantics of barriers.

The research described in this paper was funded in part
by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract
N00014-92-1-1310.

References

(1] Zena M. Ariola and Arvind. P-TAC: A Parallei In-
termediate Language. In Proc. Functional Program-
ming Languages and Computer Architecture, Septem-
ber 1989.

Zena M. Ariola and Arvind, A Syntactic Approach
to Program Transformations. In Proc. Partial Eyal-
ualion and Semantics-Based Program Manipulation,
Pages 116-128. ACM Press, September 1991.

Zena M. Ariola and Arvind. Properties of a First-order
Functional Language with Sharing. CSG Memo 347-
1, Laboratory for Computer Science, MIT, Cambridge,

(31

12

[4

ot

(3]

(6]

[7

(8

[9)

[10]

(11]

12]

[13]

(4]

[15]

[16]

MA 02139, June 1994. To appear in Theoretical Com-
puter Science, September 1995.

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali.
I-Structures: Data Structures for Parallel Coinput-
ing. ACM Transactions on Programming Languages
and Systems, 11(4):598-632, 1989.

Paul S. Barth. Atomic Data Structures for Paralle]
Computing. PhD thesis, Laboratory for Computer Sci-
ence, MIT, Cambridge, MA 02139, March 1992. Avail-
able as Technical Report MIT/LCS/TR-532.

Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-
Structures: Extending a Parallel, Non-Strict, Func-
tional Language with State. In Proc. Functional Pro-
gramming Languages and Computer Architecture, pages
538-568. Springer-Verlag, 1991. LNCS 523.

C.A.R. Hoare. Communicating Sequential Processes.
Prentice Hall International Series in Computer Science.
Prentice Hall, Englewood Cliffs, NJ, 1985.

P. Hudak and P. Wadler (editors). Report on the
programming language Haskell, a non-strict purely
functional language (Version 1.0). Technical Report
YALEU/DCS/RR777, Department of Computer Sci-
ence, Yale University, April 1990,

Paul Hudak. Mutable Abstract Datatypes -or- How
to Have Your State and Munge It Too. Research Re-
port YALEU/DCS/RR-914, Department of Computer
Science, Yale University, New Haven, CT 06520, De-
cember 1992. Revised May 1993.

Thomas Johnsson. Lambda Lifting: Transforming Pro-
grams to Recursive Equations. In Proc. Functional Pro-
gramming Lenguages and Computer Architecture, pages
190-203. Springer-Verlag, 1985. LNCS 201.

John Launchbury and Simon L. Peyton Jones. Lazy
Functional State Threads. In Proe. Programming Lan-
guage Design and Imnplementation, pages 24-35. ACM
Press, June 1994.

Rishiyur S. Nikhil. Id Language Reference Manual Ver-
sion 90.1. Technical Report CSG Memo 284-2, Lab-
oratory for Computer Science, MIT, Cambridge, MA
02139, July 15 1991.

Rishiyur S. Nikhil, Arvind, James Hicks, Shail Aditya,
Lennart Augustsson, Jan-Willem Maessen, and Yauli
Zhou. pH Language Reference Manual, Version 1.0—
preliminary. CSG Memo 369, Laboratory for Computer
Science, MIT, Cambridge, MA 02139, January 1995.

Simon L. Peyton Jones and Philip Wadler. Imperative
Functional Programming. In Proc. Principles of Pro-
gremming Languages, pages 71-84. ACM Press, Jan-
uary 1993.

J.E. Stoy. The Semantics of Id. In A.W. Roscoe, editor,
A Classical Mind: Essays in Honour of C.A.R. Hoare,
pages 379-404. Prentice Hall, New York, 1994,

Thorsten von Eicken, David Culler, and Klaus Erik
Schauser. Berkeley Id90 I/0O proposal. Draft Memo,
University of California, Berkeley, August 1991.

