CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

pH Language Reference Manual, Version 1.0

R.S. Nikhil, Arvind, ] Hicks, S. Aditya,
L Augustsson, ] Maessen, Y Zhou

1995, January

Version 1.0

Computation Structures Group
Memo 369

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139






MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

pH Language Reference Manual, Version 1.0—preliminary

Computation Structures Group Memo 369
January 31, 1995

Rishiyur S. Nikhil®, Arvind®, James Hicks!!, Shail Aditya®,
Lennart Augustsson'’, Jan-Willem Maessen®', Yuli Zhou”

YDigital Equipment Corp, Cambridge Research Lab “*MIT Lab for Com-
puter Science, '"Motorola Cambridge Research Center '"Chalmers Univer-

sity of Technology, Goteborg /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




pH Language Reference Manual, Version 1.0 preliminary

Rishiyur S. Nikhil®, Arvind®, James Hicks!!, Shail Aditya®!,

Lennart Augustsson'?, Jan-Willem Maessen®!, Yuli Zhou®!

Revised January 31, 1995

1 Introduction

pH is a parallel language obtained by extending Haskell. This document must be read in conjunction with
the Haskell Report [2] since it describes only the extensions.

In Section 2 we present the syntax extensions proper. In Section 3 we present some examples to give a flavor
of the language. In Section 4 we present commentary and rationale.

Future versions of this document will address topics such as loop pragmas, data and work distribution, etc.

Background

Haskell appears to be achieving its original goal of becoming the standard non-strict functional programming
language. Current implementations of Haskell are based on sequential, lazy evaluation (except for the parallel
implementation at Glasgow on GRIP).

Id [4] is, and has always been, a parallel language. It is not a purely functional language, but has a non-strict
functional language at its core, and the style of programming is predominantly the same as in Haskell. Id
has a so-called “lenient” evaluation order rather than lazy evaluation, for two reasons: for more parallelism,
and to give meaning to its side-effecting constructs (T-structures, M-structures).

In August 1993, a group of people— Arvind (MIT), Lennart Augustsson (Chalmers), James Hicks (Motorola
MCRC), Simon Peyton Jones (Glasgow), Rishiyur Nikhil (DEC CRL), Joe Stoy (Oxford) and John Williams
(TBM Research)- met in Cambridge, Mass., to discuss the possibility of merging Id and Haskell into a
parallel dialect of Haskell, in order to improve the dialogue between the Id and Haskell communities, to
share infrastructure (compilers, systems, application programs), and to facilitate interesting research topics,
such as comparing lazy evaluation vs. lenient evaluation, parallel programming in a pure functional language
vs. in a language with I- and M-structures, etc.

After extensive discussions on the differences between Id and Haskell, we decided that such a merger was
feasible, and we decided to pursue it, calling this new dialect “pH”.

9°Digital Equipment Corp, Cambridge Research Lab °*MIT Lab for Computer Science, ' Motorola Cambridge Re-
search Center '°Chalmers University of Technology, Goteborg



2 Haskell Extensions for pH

The extensions here are expressed as changes to the formal syntax in Appendix B of the Haskell Report.

pH is layered (like Id):

e Functional core
e [-structure extensions

o M-structure extensions

These layers are distinguished syntactically and by type rules (like Id), so that it is easy for a compilation
system to force programs to be restricted to a desired layer (purely functional, purely functional with T-
structures, or unrestricted).

2.1 Functional core of pH: Haskell plus loop notation

The notation for the functional core of pH is identical to Haskell, with a few extensions for loops.

Haskell:

exp'? AN
let { decls [;] ¥ in exp (let expression)
if ...

case ...
fep

-

aexp —  wvar (variable)
|
apat — wvar [Q apat |

Extensions for pH:

10

erp - ..

|  while ezp do { decls [;] } finally exp (while expression)

| for pat <- exp do { decls [;] } £inally exp (for expression)
aezrp - ..

|  next wvar (loop-carried var)
apat - ..

|  next var (loop-carried var)

Semantics of loops

We explain for-loops in terms of a translation to while-loops, and we explain while-loops in terms of a
translation to a tail-recursive function definition and invocation.

Given a for-loop:



for pat <- ezxp do {
decls
}

finally ezp

VvV V V V

Let xs be a new variable. Then the for-loop is equivalent to:

let
Xs = exp
in
while (xs /= [1) do {
pat:next xs = xs

decls
}

finally ezp

VvV VV V V V V.YV

The decls list in a loop is called the “loop body”. A next var may only be bound in a top-level decl of a loop
body (in an apat). Such variables are called “next-ified”, “circulating” or “loop-carried” variables. Their
scope, like any other var bound in a top-level decl in the loop body, is the entire loop body. A next var may
also be used in an expression like a normal variable.

Given a while-loop:

> while ePred do {

> decls

> 1}

> finally eFinal

Let z1, ..., xn be the next-ified variables bound in apat’s in the top-level of decls. For each z;, let next_z;

be a corresponding new variable. Also, let loop be a new variable. Then the while-loop is equivalent to:

> let

> loop 1 ... xy = if ePred then

> let

> decls’

> in

> loop next.r; ... nexrt_zy
> else

> eFinal

> in

> loop 1 ... znN

where decls’ is 1dentical to decls except that each occurrence of next x; is replaced by next_z;, both in apat’s
and in ezp’s.

2.2 I- and M-structure extensions
2.2.1 I- and M-structure semantics
An I- or M-structure field in a data structure is an updateable field. However, unlike the “raw” reads and

writes in conventional languages, the accesses are combined with synchronization, so that they are relatively
easy to use in a parallel environment.



For both I- and M-structure fields, the field may be in one of two states: Full and Empty.

An I-field is initially in the Empty state. When assigned, it goes to the Full state. If a second assignment to
an I-field is attempted, the entire program is in error. An expression that reads an I-field simply returns the
value when it becomes Full. The use of I-structure fields does not compromise the Church-Rosser property—
programs are still guaranteed to be deterministic.

An M-field is initially in the Empty state. When assigned, it is in the Full state. An expression that reads
an M-field performs two actions atomically: it returns the value in the field when it becomes Full, and resets
it to the Empty state. Thus, amongst multiple expressions attempting to read a Full M-field, only one of
them can succeed in reading the value (it is non-deterministic as to which one succeeds). The other reads
must wait until the field is assigned again. M-fields allow one-at-a-time access to its contents. Assignments
are only allowed on Empty fields; if a second assignment to a Full M-field is attempted, the entire program
is in error. The Church-Rosser property no longer holds when M-structure fields are used.

M-fields have two additional operations that are convenient compositions of normal M-field reads and writes.
The examine operation returns the value of the field when Full, and leaves it Full. This is equivalent to a
read and a write that just writes back the value. The replace operation replaces the value in a Full field by a
new value. This is equivalent to a read followed by a write that writes back the new value. Note that these
are not conventional “raw” reads and writes— they both respect the synchronization semantics of M-fields,
and will both wait on an Empty M-field.

Referential transparency no longer holds with the use of I-structures and/or M-structures. Further, the
polymorphism of I- and M-fields is restricted in exactly the same way as “ref” types in SML (although
SML’s updateable cells do not have any synchronization semantics).

2.2.2 Single I- and M-structure cells

The following primitives are for constructing, reading from, and writing to single cells with I-structure and
M-structure semantics:?!

> -- New prelude primitives

>

> data ICell a

>

> iCell 1 a -> ICell a —- Constructor
>

> iFetch :: ICell a -> a

>

> iStore :: ICell a > a -> 0O

>

>

> data MCell a

>

> mCell troa -> MCell a —-- Constructor
>

> mFetch :: MCell a -> a

> mStore :: MCell a -> a -> ()

>

> mExamine :: MCell a -> a

> mReplace :: MCell a -> a -> O

1 Single assignable cells are reminiscent of ref cells in SML.



Empty cell construction The iCell and mCell constructors each take a single argument v and produce
an I-structure object and M-structure object, respectively, containing v.

Optionally, the cells may be constructed in an “empty” state by applying them to the special expression “_”|
described by the following syntactic extension.

Haskell:

aezp —  wvar (variable)

Extension for pH:

aexrp - ..
| _ (Empty field)

2.2.3 I- and M-structure array construction

There are two new “array comprehension” contructor functions in the prelude, for I- and M-structure arrays:

> data (Ix a) => Iarray a b

> data (Ix a) => Marray a b

>

> iarray i (Ix a) => (a,a) -> [Assoc a b] -> Iarray a b
> marray i (Ix a) => (a,a) -> [Assoc a b] -> Marray a b

An empty I- or M-structure array can be constructed simply by applying these constructors to an empty list
of index-value associations.

The semantics of the array “array comprehension” constructor function is changed for pH:

In Haskell:

e If there is more than one index-value pair for the same index, that element goes to L

e If any index-value pair has its index out of bounds, the entire array goes to L
In pH:

e If there is more than one index-value pair for the same index, the entire program goes to T

e If any index-value pair has its index out of bounds, then that assignment goes to L

2.2.4 I- and M-structure array component selection

New prelude infix operators for array component selection:

> infixl 9 !. —- I-structure fetch

> infixl 9 !° —— M-structure fetch

> infixl 9 I~ —-— M-structure examine
>

> (r.) :: Tarrayab -> a -> b

> ) :: Marrayab -> a -> b

> (") :: Marrayab -> a -> b



2.2.5

I- and M-structure array component assignment

New prelude functions for array component assignment:

> iastore : Tarray a b
> mastore :: Marray a b
> mareplace :: Marray a b

2.2.6 Syntax extensions for I-

-> a -> b
-> a -> b
-> a -> b

-> 0
-> 0O
-> 0O

and M-structure array component assignment

One frequently finds an I- or M-structure assignment as part of a “dummy” binding in a declaration:

> let
> decls
>
> _ = iastore €A eJ eV
> .
> decls
> in
> €
The following syntax extension allows us to omit the annoying “_ =" prefix.
Haskell:
decl — wvars :: [context =>] type
| valdef
Extensions for pH:
decl — wvars :: [context =>] type
| valdef
| exp for effect only

The following syntax extension goes further and makes the assignment really look like an assignment.

erp —
lval —
|

sel —
|
|

In particular,

eAl.eJ = eV
eA!"e] = eV
eA!""eJ = eV

lval sel = exp

lval sel
exrp

' exp

is equivalent to
is equivalent to
is equivalent to

iastore
mastore
mareplace

ed eJ ev
ed eJ ev
ed eJ ev

Array I-str
Array M-str store
Array M-str replace



2.3 Sequencing in decl lists

Haskell:
decls — decly ; ... ; decl, n>0
decl — wvars :: [context =>] type

| valdef
Extension for pH:

decl — wvars :: [context =>] type
| valdef
|  par { decls }
|  seqd{ decls }

seq and par are only control constructs; they do not introduce any new scope.

By default, the top-level decl lists (in let and where blocks and loop bodies) are parallel.

2.4 Layout (“off-side” rule)

The layout rule of Haskell allows one to omit braces and semicolons in a decl list. Decl lists follow the where,
let and of reservedids.

Extension for pH: The lay-out rule also applies to the decl lists that follow these new reservedids:

do (in loops)
seq (sequenced declarations)
par (parallel declarations)

3 Examples

This section shows a number of program fragments so the reader can get a flavor of the syntax extensions.

Loops
Integration of a function £ in the range x1 to x2:

let s = 0.0
x = x1
in
while (x <= x2) do
next s = s + f(x)
next x = x + delta_x
finally s

VvV VV V V V VvV

Factorial of n

> let £ =1

> in

> for j <- [1..n] do
> next £ = £ * j
> finally £



I-structure cells

“Open lists” (related to “difference lists” in Prolog):

> data olist a = ONil | OCons a (iCell (olist a))

>

> is_0Cons :: olist a -> Bool

> is_0OCons ONil = False

> is_0Cons (0OCons x y) = True

>

> grow_olist :: olist a —-> olist a -> olist a

> grow_olist (0OCons x y) o0l2 = let

> iStore y o0l2

> in

> 0l2

Tail-recursive “map”, using open lists:

> omap :: (a -> b) -> (olist a) -> (olist b)

>

> omap f ONil = ONil

> omap f (OCons x ixs) = let

> ys = 0Cons x (ICell _)

> Xs = iFetch 1ixs

> lastys = while (is_0Cons xs) do

> OCons x ixs = xs

> next xs = iFetch ixs
> next ys = grow_olist ys
> (0Cons x (iCell
> finally ys

> grow_olist lastys ONil

> in

> ys

M-structure cells

Updateable lists
> data mlist a = MNil | MCons a (mCell (mlist a))

Destructively insert an integer into a sorted list

mStore mxs (insert y xs’)
in

> insert it a —> mlist a -> mlist a
>

> insert y MNil = MCons y (mCell MNil)
> insert y (MCons x mxs) | y <= x = MCons y (MCons x mxs)
> | otherwise = let

> xs’ = mFetch mxs
>

>

>

Mcons x mxs



I-structure arrays

Given an larray A of integers, produce an larray B containing all negative numbers followed by all non-
negative numbers:

> let

> (1,u) = ibounds a

> b = iarray (1,u) []

> k1l =1

> ku =u

> for j <~ [1..u] do

> (j1, next k1, next ku) = if (a'.j < 0) then (k1l, k1+1, ku)
> else (ku, k1, ku-1)
> b!.j1 = al.j

> finally ()

> in

> b

M-structure arrays

Construct a histogram of a tree of numbers in the range 1 to 10:

> data tree = Empty | Node int tree tree

>

> hist ¢ = let

> h = marray (1,10) [ (j :=0) | j <= [1..10]]

> traverse t h -— for effect
> in

> h

>

> traverse Empty h = O

> traverse (Node j 1 r) h = let

> traverse 1 h -— for effect
> traverse r h -— for effect
> h!"j =h!"j + 1 -- atomic incr
> in

> O

Note: all three statements in the last 1let block execute in parallel.

Sequencing

In the histogram program above (M-structure arrays), there is a problem: we should not return the histogram
until the traversal is completed, else a consumer may read an intermediate value of the histogram. This can
be accomplished using sequencing.

> hist xs = let

> h = marray (1,10) [ (j :=0) | j <= [1..10]]
> seq traverse xs h

> hi =h

> in

> hi



4 Commentary

This section is a collection of comments on various aspects of pH, in no particular order of importance.

4.1 Comment: compatibility with Haskell

Will all Haskell programs parse as pH programs?

Yes, except for the following situation. Even though functional pH uses Haskell notation with no changes,
the addition of new reservedid’s means that a normal Haskell program that happened to use one of these as
an ordinary identifier/symbol would have to be modified.

New reservedid’s:

for  while do finally next

par seq

Will all Haskell programs run as pH programs?

This is mainly a termination issue, z.e., when a program terminates under both Haskell and pH, both
implementations will produce the same answer.

The termination issue is complicated, and we’d rather not get into it here. Briefly:

e For a strict implementation of pH: some Haskell programs will deadlock or not terminate.

e For a non-strict implementation of the functional core of pH with a fair scheduler: all Haskell programs
will terminate with the same answers.

e For non-strict implementations of pH without a fair scheduler: some Haskell programs will not termi-
nate.

4.2 Comment: sequencing

Why have sequencing at all? Aren’t they meaningless in a functional language?

In the functional core and the I-structure layer, sequencing is only important if you wish to control the space
complexity (for which, of course, you have to know something about the underlying implementation).

With M-structures, sequencing is sometimes necessary to control determinacy (and even absence of visible
errors).

Why sequencing in decl lists, rather than expr lists?

In Scheme, Lisp and ML, there are typically two kinds of sequencing constructs. First, there is sequencing in
expression lists: (begin el ... eN) in Scheme, (progn el ... eN) in Lisp and (el;...;eN) in SML;
each contains a list of expressions to be executed in sequence, and the value eN is returned. Second, there is
sequencing in declarations: let* in Scheme and Lisp, and semicolon-separated declarations in SML.

Both forms are useful, although we have generally found the latter to be more so, as we often want to bind
and use the results of intermediate expressions in the sequence. In a sense, our proposal unifies the two:
sequencing is done in decl lists, but a bare expression is allowed in place of a decl when we don’t wish to
bind its result to anything. However, note that unlike sequenced declarations in Scheme, Lisp and SML, our
proposal does not involve any new scope rules, i.e., scoping is entirely orthogonal (controlled only by the
initial let).

10



4.3 Comment: Parseability

The grammar, as shown in the proposals above, is almost certainly not LALR(1). However, the only place
where parsing difficulties may arise is in decl lists, where we now allow bare expressions in addition to decls.
We repeat the proposed rule here, for reference:

decl — wvars :: [context =>] type
| valdef
| exp for effect only

In Id, we have been able to handle this as follows. First, we use the following grammar instead, which
collapses the last three productions above into one:

decl — wvars :: [context =>] type
| ezp
and treats “=” initially as an ordinary infix operator (of lowest precedence). When the decl — exp rule is

w_"

reduced, the associated semantic action examines ezp to see if it has a at the toplevel, and fixes up the

parse tree accordingly.

4.4 Comment: Strictness and semantics of array constructors
The Haskell array constructor function is strict in all the indices of the array. This i1s because array has to

e Check for out-of-bounds indices, which cause the whole array to go to L

e Check for duplicate indices, which cause that component to go to L
We have changed the semantics of array in the interest of parallelism. The proposed semantics allows the
implementation to return the array before any index has been computed.

We expect very little practical difference to the programmer. For an out-of-bounds index, the programmer
will always see an error, both in Haskell and in pH. For duplicate indices, the pH programmer will always
see an error. The Haskell programmer will always see an error if that component of the array 1s demanded,
and in some implementations may see that error even if that component of the array is not demanded.

4.5 Comment: Loops

Why introduce loop notation? Isn’t tail recursion enough?

We make an analogy with list comprehensions, which do not add any fundamental power to Haskell, but are
convenient for certain common computations on lists involving maps and filters.

Similarly, loops do not add any fundamental power to Haskell/pH, but they are convenient for certain
common computations involving reductions (folds on lists, folds on arrays, and other reductions).

4.6 Comment: Polymorphism and I- and M-structures

Is the Hindley-Milner type system used by Haskell still sound, with the addition of I- and M-structures?

No. I- and M-structures introduce the problem of “ref types”, which is also seen in ML. There are a variety
of solutions in the literature, in existing ML implementations, and in the existing Id implementation, any of
which should carry over directly. sectionModules

The module system in pH is identical to the one used in Haskell.

11



5 Basic Types

Initial commentary

The existing basic types in Haskell exist essentially unchanged in pH. This section will briefly discuss the
differences which do exist, and which have not been mentioned in preceding sections on syntax. The ultimate

reference on such matters continues to be the Standard Prelude to pH, which is presented (skeletally) in
Appendix A.

Implementation decisions are not implied

Note that there are a few places where Haskell has made design decisions which might overly constrain the
implementation of the resulting functions. For example, the Haskell report gives the following definition of
the boolean and operation (&&):

> True && x = X
> False && x False

This definition implies (though it is not explicitly stated) that (&&) is strict in its first argument and non-
strict in its second. This has implications for the error behavior of programs. In this case, we cannot assume
from the above definition that the following expression has the value False, since x may never be well defined:

x && False

In general, overspecifying the behavior of such functions is to be avoided. Thus, the behavior of the code in
exceptional cases should always be suspect, and if several correct implementations will give different results
then the programmer should assume that any such implementation might be used. Thus, in the above
example, the programmer cannot assume that either of the following are False unless she knows that x will
produce a value:

x && False
False && x

Conversely, the implementor is free to choose any correct implementation of the functions given in the
Prelude (for example, a parallel and which would cause both of the above expressions to terminate).

New Basic Types

Two new (and useful) basic types have been added to the pH prelude. They express common “either/or”
values. Both types are slated to appear in Haskell 1.3, and the pH prelude will incorporate the operations
on both types which appear in the new Haskell prelude. At the moment, the provided functionality is a best
guess based on existing implementations and upon what was useful in actual code.

In PreludeCore:
> data Maybe a Nothing | Just a deriving (Eq, Ord, Text)
> data Either a b = Left a | Right b deriving (Eq, Ord, Text)

In Prelude:

> errMaybe :: String -> Maybe a -> a
> errMaybe msg Nothing = error msg

> errMaybe _  (Just r) = r

12



>

> 1lift :: (a -> b) -> (Maybe a -> Maybe b)

> 1lift _ Nothing = Nothing

> 1ift £ (Just x) = Just (f x)

>

> 1lift2 it (a -> a -> a) -> (Maybe a -> Maybe a -> Maybe a)
> 1lift2 _ Nothing r = r

> 1lift2 _ 1 Nothing = 1

> 1ift2 £ (Just 1) (Just r) = Just (£ 1 r)

>

> maybe :: b -> (a -> b) > (Maybe a -> b)

> maybe b _ Nothing = b

>

> either :: (a->c¢) > (b => ¢) -> (Either a b -> ¢)
> either £ _ (Left a) = f a

> either _ g (Right b) = £b

5.1 Lists

In the interests of efficiency, pH includes a number of functions on lists which did not exist in Haskell; in the
interests of correctness, several functions leading to infinite computations have been omitted.

Because pH is a parallel programming language, and because lists are inherently linear data structures,
a large proportion of list operations are not terribly parallel. Several functions are provided which are
intended to make it simpler to write parallel list operations by placing the construction and traversal of lists
under wraps. List comprehension syntax makes it particularly easy to generate efficient code when using
lists. Implementations should use the most efficient means available to compile code with lists, and should
eliminate them whenever possible, most notably in the case of array comprehensions.

Of the new list functions, the most confusing is reduce. It has the following signature:
> reduce i (a->a->a) >a->[al > a
reduce is in effect a directionless fold—its first argument must be an associative function, and the secod

argument must be a zero of that function. The elements of the list are combined so that the following
identities hold:

reduce £ z (a ++ b) == (reduce f z a) ‘f¢ (reduce f z b)
reduce £ z [e] == e
reduce £ z [] == z

The implementation is permitted to perform the reduction in any order (thus the requirement that the
function provided be associative) and is permitted to introduce the zero at any point in the computation, or
may ignore it entirely (thus the requirement that the zero be an actual zero of the given function). These
restrictions permit a large number of compiler optimizations. The programmer should be able to assume
that reduce is always at least as efficient as the equivalent code written using foldl or foldr.?

The remaining list functions are straightforward. The someOrder function returns a (not necessarily random)
permutation of its argument and is essentially a declaration to permit compiler optimization and to make
ordering dependencies (or the lack thereof) obvious to human readers. reducel is a version of reduce which
works on non-empty lists. unfold produces a list systematically from left to right. Definitions for all of
these functions are given in Appendix A. A detailed discussion of these functions, their importance, and the
ability of the compiler to optimize them can be found in [3].

2Note that a naive implementation may perform no optimization at all and simply define reduce to be the faster of these
operations.

13



All of the omitted functions produce infinite lists. Of these, the most frequently used are enumFrom and
enumFromBy. When porting existing Haskell code to pH, upper bounds should be given in uses of these
constructs. In reality, implementations are free to implement either of these functions on finite types, in
which case they should halt when the reach the largest (or smallest as appropriate) element of the type.
The remaining function on infinite lists is iterate. The functions repeat and cycle can be defined using
circular lists, and were thus left in for compatibility with Haskell.

5.2 Binary Datatype

The Bin datatype is not required by pH—indeed, very few Haskell compilers implement it as specified. Its
primary purpose is to enable efficient 1/O; a later section describes the current state of I/O in pH.

5.3 Numbers
The Haskell type system specifies a large numeric hierarchy. While the functionality provided is laudable, it

should be recognized that existing implementations of pH do not support all of it. However, implementations
must provide the types Int and Float.

5.4 Arrays

The semantics of arrays in pH were discussed earlier. Again it is only when errors occur that pH and Haskell
take different positions on the behavior of arrays. The guiding principle is to make as much of the array
available as is possible despite the presence of errors. This means that while undefined, multiply defined, or

out of range assignments should signal an error, the values of the remaining elements of the array ought to

be well-defined.

5.4.1 The Class Ix
A new method, sizeRange, has been added to the Ix class in pH. It has the following definition:
> sizeRange :: (a,a) -> Int

Note that the behavior of the Ix class is somewhat different in pH. In particular, the following identity does
not necessarily hold:

range (1,u) !! index (l,u) i ==1i

This permits implementations of arrays that are NOT mapped to storage in a perfectly linear fashion.
Instead, the following identities take its place:

inRange (1,u) i == index i < rangeSize (1,u)

inRange (1,u) i == 0 <= index i
rangeSize (1,u) == length (range (1,u))

5.4.2 Array Construction
The Assoc type does not exist in pH. Instead, tuple notation is used for the construction of arrays, so the

Haskell expression i := v would be written in pH as (i,v). Note that Haskell 1.3 will almost certainly use
the latter notation.

14



5.4.3 Incremental Array Updates

The introduction of I-structure and M-structure arrays include incremental update-in-place operations di-
rectly analogous to the Haskell’s incremental update operations, (\\) and accum. They are:

>  (//=) i1 (Ix a) => IArray a b > [(a,b)] -> ()

>  (//"=) 1t (Ix a) => MArray a b > [(a,b)] -> ()

> (//~"=) :: (Ix a) => MArray a b -> [(a,b)] -> O

> mAccum :: (Ix a) => (b -> ¢ -> b) -> MArray a b -> [(a,c)] -> MArray a b
5.5 Errors

Not all errors in pH are semantically equivalent to L. Indeed, things like multiply defined array elements and
multiply written I-structures are semantically equivalent to T, the opposite extreme of the value domain.
Nonetheless, an application of error must still display the provided string and should terminate the program.

6 Input/Output

I/O in pH is based upon the new monadic definition from Haskell 1.3. At the moment only a stripped-
down version of this definition exists. The implementation is based on the more general notion of a state
transformer, which is discussed in the next section.

7 State Transformers

State transformers can be used to manipulate state—in particular, I- and M-structure cells and vectors, and
external files. Programs which manipulate state using state transformers rather than raw I- or M- structures,
and which are written without par and seq constructs, can be run under Haskell if libraries are provided to
simulate the state transformer functions. This will permit state-manipulating code to be written portably.

A Changes to the Standard Prelude

This appendix lists the portions of the pH prelude which are different from the corresponding Haskell
definitions.

module Prelude(
PreludePHArray.., PreludePH. .,
errMaybe, 1lift, 1ift2, maybe,

The remaining Prelude exports have not changed.

import PreludePHArray
import PreludePH

The remaining tmports are the same, as is the code with the following addition:

15



thenMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing ‘thenMaybe‘ _ = Nothing

Just a ‘thenMaybe‘ f =f a

errMaybe :: String -> Maybe a -> a

errMaybe msg Nothing = error msg

errMaybe _ (Just r) =r

lift :: (a => b) -> Maybe a -> Maybe b

1ift _ Nothing = Nothing

lift £ (Just x) = Just (£ x)

lift2 :: (a => a -> a) -> Maybe a -> Maybe a -> Maybe a
1ift2 _ Nothing r =r

1ift2 _ 1 Nothing =1

lift2 £ (Just 1) (Just r) = Just (£ 1 r)

maybe :: b -> (a => b) => (Maybe a -> b)

maybe b _ Nothing = b

either it (a->c¢) > (b ->c¢) -> (Either a b -> ¢)
either £ _ (Left a) = fa

either _ g (Right b) = £b

A.1 Prelude PreludeCore

module PreludeCore (
Maybe(..), Either(..),
Ix(range, index, inRange, sizeRange),
Enum(enumFromTo, enumFromThenTo),

Remaining exports as before, omitting Assoc.
import PreludeArray(Array)

Do not import Assoc from PreludelArray. Remaining tmports are unchanged.

data Maybe a
data Either a b

Nothing | Just a deriving (Eq, Ord, Text)
Left a | Right b deriving (Eq, Ord, Text)

class (0Ord a) => Ix a where

range it (a,a) -> [al

index :: (a,a) -> a —> Int
inRange :: (a,a) => a -> Bool
sizeRange :: (a,a) -> Bool
sizeRange = length . range

16



class (0rd a) => Enum a where
enumFromTo i a —> a —> [a]
enumFromThenTo it a ->a ->a -> [a]

omit class Binary

A.2 Prelude Preludelist

module Preludelist where

Again much the same as before, with the following additions:

The following identities must hold for reduce; its implementation is otherwise unconstrained:

reduce £ z (a ++ b) == (reduce f z a) ‘f¢ (reduce f z b)
reduce £ z [e] == e

reduce £ z [] == z

reduce :: (a->a) >a->[a]l -> a

Note that many of the functions in the prelude can be defined using reduce rather than foldl, foldr, or
explicit recursion. For example, we can define sum as follows:

sum = reduce (+) 0

someOrder returns a permutation (perhaps fixed) of its argument.
someOrder i [a]l —> [al

unfold generates a list systematically given a function.

unfold :: (a->Bool) -> (a->(b,a)) -> a -> [b]
unfold pf v=hv
where h v | pv = [
| True case £ v of (a,b) -> a:h b

concatMap :: (a->[b]) -> [a]l -> [b]
concatMap £ 1 =
let h1i [1 =[]
hi (y:ys) =
let h2 [1 = hl ys
h2 (x:xs) = x : h2 xs
in h2 (£ y)
in hl1 1

17



A.3 Prelude PreludeArray

This portion of the prelude much the same as in Haskell; however, the semantics of some array operations
is different in pH. See the main text for more details. The Haskell report gives an implementation which
“specifies the semantics of arrays only”. Such a definition for pH will eventually appear here. Note that the
Assoc type has been replaced with 2-tuples throughout.

interface PreludeArray where

infixl 9 !
infixl 9 //

Obligatory definitions of classes Eq, 0rd, and Ix must appear in a proper interface file, but are omitted for
clarity.

data (Ix a) => Array a b

array :: (Ix a) => (a,a) -> [(a, b)] -> Array a b

listArray :: (Ix a) => (a,a) -> [b] -> Array a b

D) :: (Ix a) => Array a b ->a > b

bounds :: (Ix a) => Array a b -> (a,a)

indices :: (Ix a) => Array a b -> [a]

elems :: (Ix a) => Array a b -> [b]

assocs :: (Ix a) => Array a b -> [(a, b)]

accumArray :: (Ix a, Ega) => (b -> ¢ => b) -> b -> (a,a) -> [(a, ¢)] -> Array a b
/7 :: (Eq a, Ix a) => Array a b -> [(a, b)] -> Array a b

accum :: (Ix a, Eqa) => (b => ¢ => b) -> Array a b -> [(a, ¢)] -> Array a b
amap :: (Ix a) => (b -> ¢c) -> Array a b -> Array a ¢

ixmap :: (Ix a, Ix b) => (a,a) -> (a => b) -> Array b ¢ -> Array a ¢

instance (Ix a, Eq b) => Eq (Array a b)
instance (Ix a, Ord b) => Ord (Array a b)

instance (Ix a, Text a, Text b) => Text (Array a b)

A.4 Prelude PreludelO

This module is based on the Haskell 1.3 IO proposal[l]. Tt is thus monadic in structure. It is built on a
state transformer substrate (see the discussion of PreludeST, below). This enables operations on state and
IO operations to be freely intermixed. The implementation of IO should, of course, be hidden from view.
The extensions described here permit parallel I/O (beyond simple parallel file read /write) with some loss of
safety.

The function doST changes an arbitrary state transformer computation (whose state is constrained to type
I0State, rather than being fully polymorphic) into a computation of type I0.

doST :: ST I0State a —> I0 a

18



A.5 Prelude PreludePH

Primitive functions and types which implement I- and M- structures. These functions will not behave
correctly under Haskell.

interface PreludePH where

Again, obligatory definitions of classes Eq, 0rd, and Ix must appear in a proper interface file, but are omitted
for clarity.

Dummy class to express the fact that a type variable is imperative. The compiler knows about this class.
class Imperative a

The unboxed declaration is used in many compilers to keep a datatype from being used polymorphically
This permits ICell and MCell to be implemented at no additional space cost.

data unboxed ICell a

iCell :: (Imperative a) => a -> ICell a
iFetch :: ICell a -> a

iAssign :: ICell a -> a -> ()

data unboxed MCell a

mCell :: (Imperative a) => a -> MCell a
mFetch :: MCell a -> a
mExamine :: MCell a —> a

mStore :: MCell a -> a —> ()
mReplace :: MCell a -> a -> ()

A.6 Prelude PreludePHArray

Functions and types to implement I- and M-structure arrays. The non-updating functions should have the
same observable behavior as the equivalent functions on ordinary arrays.

These are canonical definitions for I- and M- structure arrays in terms of arrays of ICell and MCell. Places
where implementations can be more flexible are duly noted.

module PHArray (IArray(..), MArray(..),
iArray, mArray,
iBounds, mBounds,
(1.), iAStore, (//=)
(1), mAStore, (//°=)
('~"), mAReplace, (//~"=)
iToArray, mToArray
) where

import PreludeCore

import PreludeUtil

import Prelude(error, and)
import PreludePHVector

19



import PreludePH(Imperative(..))
import PreludeArray(Array(..))

infixl 9 !.
infixl 9 !”
infixl 9 !~
infixl 9 //=
infixl 9 //"=
infixl 9 //""=

MkIArray (Array a (IVar b))
MkMArray (Array a (MVar b))

data (Ix a) => IArray a b
data (Ix a) => MArray a b

iArray :: (Ix a, Imperative b) => (a,a) -> [(a, b)] -> IArray a b
iBounds :: (Ix a) => IArray a b -> (a,a)

(r)) :: (Ix a) => IArray a b > a -> b

iAStore it (Ix a) => IArray a b > a > b -> ()

(//=) :: (Ix a) => IArray a b —> [(a, B)] > (O

iToArray it (Ix a) => IArray a b -> Array a b

mArray :: (Ix a, Imperative b) => (a,a) -> [(a, b)] -> MArray a b
mBounds :: (Ix a) => MArray a b -> (a,a)

) :: (Ix a) => MArray a b > a -> b

(" :: (Ix a) => MArray a b -> a -> b

mAStore it (Ix a) => MArray a b > a > b > ()

mAReplace it (Ix a) => MArray a b > a > b > ()

(//°=) :: (Ix a) => MArray a b —> [(a, B)] > (O

(//""=) :: (Ix a) => MArray a b —> [(a, B)] > (O

mAccum i (Ix a) => (b -> ¢ => b) -> MArray a b -> [(a,c)] -> MArray a b
mToArray it (Ix a) => MArray a b -> Array a b

TArray functions:
iArray b ivs = MkIArray a
where a = array b [(i,iCell _) | i <- range b]
_=a //= ivs
iBounds (MkIArray a) = bounds a
(MkIArray a)!.i = iFetch (a!i)
iAStore (MkIArray a) i x = iStore (al!i) x
(MkIArray a) //= ivs =
-- Do vector writes into the appropriate places.
for (i,s) <- ivs do
_ = iAStore a i x -- store the values
finally ()
This version will not have the constructed array shadow the value of the IArray. The function will deadlock if

any of the cells of the IArray remain empty. It is perfectly legal to allow this function to terminate regardless
of the state of the TArray.

iToArray (MkIArray a) = amap iFetch a

20



MArray operations:

mArray b ivs = MkMArray a
where a = array b [(i,mCell _) | i <- range b]
a //°= ivs

mBounds (MkMArray a) = bounds a

(MkMArray a)!"i = mFetch (a'!i)

(MkMArray a)!""i = mExamine (a'i)

mAStore (MkMArray a) i x = mStore (al!i) x
mAReplace (MkMArray a) i x = mReplace (a!i) x

Note that the following will probably need to be followed by a barrier whenever it is used!! Tt behaves like
mA Replace—so the function can return a value immediately, before all the replacements have taken place.

(MkMArray a) //°"= ivs =
-- Do vector writes into the appropriate places.
for (i,s) <- ivs do
_ = mAReplace a i x -— store the values
finally ()

Note that mAccum actually returns a value of type MArray. It should be the same value as was passed in,
but must not be made available until all fetches have taken place. Thus, uses of the result will be properly
synchronized by simple data dependency

mAccum f inp@(MkMArray a) ivs =

let
-- Do updates into appropriate places.
flag = ()
flag’ = for (i,s) <- ivs do
seq val = mAFetch v i
par _ = mAStore v i val’
next flag = flag
val’ = f val s
finally flag
seq _ = flag’
res = inp
in res

This particular implementation of mToArray produces an array whose value 1s fixed as the value of the
mArray as the array is being constructed. Actual implementations are encouraged to have the value of the
array shadow the current value of the mArray if that is possible. In any case, this function screws referential
transparency no matter how you slice it. M Arrays just aren’t refer- entially transparent to begin with. Note
also that this implementation can deadlock if any element of the MArray is unfilled.

mToArray (MkMArray a) = amap iExamine a

21



A.7 State Transformers
State transformers can be used in the implementation of I/O. In addition, they can be used to encapsulate

any state-manipulating function—this means that programs manipulating state using only the functions in
PreludeST and PreludeMutable can be run in both Haskell and pH.

interface PreludeST where
infixr 1 >#>, >#., <>=

data ST s a

ST s a is a State Transformer computation returning a result of type a. The type variable s is used to
represent the state being manipulated.

gate is similar to the strict construct in many languages. It evaluates its second argument to weak head
normal form, then returns its first argument.

gate :: a ->b > a
Monadic binding, non-strict and strict in the state.

(<>=) :: STab->(b->STac)—>STac
(>#>) :: STab->(b ->STac) >STac

Sequencing, non-strict (actually runs computations in parallel) and strict in the state.

(<l|>) :: STab->STac->STac
(>#.) :: STab->STac->STac

Encapsulating state manipulations. Note that in order to gaurantee safety, runST must actually possess the
type Va.(¥b.ST a b)— >b.

runST :: STab->b
_unsafePerformST :: STa b -> b

Fixed point of the value portion of the state.

fixST :: (a -> ST b a) -> ST b a

Arbitrary parallel state manipulation. Results are combined using the provided function.
joining :: (a -> b ->¢) > STda ->STdb ->STdc

Sequence a large number of computations.

seqST :: [ST a ()] -> ST a ()

The functions shown here produce state transformers which can manipulate mutable objects, either strictly
or non-strictly.

22



interface PreludeMutable where

import PreludeST

The type MutVar describes a memory location which always contains a meaningful value. Note that using
writeVar in parallel with itself introduces non-strictness into the program, and either value written may be
available to later computations.

data MutVar s a

newVar :: (Imperative s, Imperative a) => a -> ST s (MutVar s a)
readVar :: MutVar s a -> ST s a
writeVar :: MutVar s a -> a -=> ST s ()

The type MutVector describes a vector of MutVars. The function _unsafeFreezeMutVector permits MutVector
to be used to implement arrays.

data MutVector s a = MutVector (MVector a)
data Vector a = Vec (MVector a)

newlMutVector :: (Imperative s) => Int -> a -> ST s (MutVector s a)
readMutVector :: MutVector s a -> Int -> ST s a

writeMutVector :: MutVector s a -> Int -> a -> ST s ()
_unsafeFreezeMutVector :: MutVector s a -> ST s (MVector a)

readVector :: Vector a -> Int -> a

I-structure variables.

data IVar s a = IVar (ICell a) {-# STRICT #-}

newlVar :: ST s (IVar s a)
readIVar :: IVar s a -=> ST s a
writeIVar :: IVar s a -> a -> ST s ()

M-structure variables.

data MVar s a = MVar (MCell a) {-# STRICT #-}

newMVar :: ST s (MVar s a)
takeMVar :: MVar s a -> ST s a
putMVar :: MVar s a -=> a => ST s ()
examineMVar :: MVar s a -> ST s a
replaceMVar :: MVar s a -> a -> ST s ()
References

[1] A. Gordon, K. Hammond, A. Gill, I. Poole, and J. Mattson. The Definition of Monadic IO for Haskell
1.3. Available as http://www.dcs.gla.ac.uk/ kh/Haskelll.3/I0.html.

23



[2] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzman, K. Hammond,
J. Hughes, T. Johnsson, R. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report on the programming
language haskell, a non-strict, purely functional language, version 1.2. ACM SIGPLAN Notices, 27(5),

May 1992.

[3] J.W. Maessen. Simplifying Parallel List Traversal Technical Report CSG Memo 370, MIT Laboratory
for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA, January 30, 1995.

[4] R.S. Nikhil. Id (Version 90.1) Reference Manual. Technical Report CSG Memo 284-2, MIT Laboratory
for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA, July 15 1991.

24



