CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Simplifying Parallel List Traversal
Jan-Willem Maessen

1995, January

Computation Structures Group
Memo 370

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

MASSACHUSETTS

/

Simplifying Parallel List Traversal

Computation Structures Group Memo 370
January 18, 1995

Jan-Willem Maessen

Submitted to FPCA ’95

This research was supported in part by an NSF Graduate Fellowship. Funding for
the Laboratory for Computer Science is provided in part by the Advanced Research
Projects Agency of the Department of Defense under the Office of Naval Research
contract N00014-92-J-1310.

\

/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Simplifying Parallel List Traversal

Jan-Willem Maessen™

Abstract

Computations described using Bird’s constructive algebra
of lists are nicely amenable to parallel implementation. In-
deed, by using higher-order functions, ordered list traversals
such as foldl and foldr can be expressed as unordered re-
ductions. Based on this observation, a set of optimizations
have been developed for list traversals in the parallel Haskell
(pH) compiler[12]. These optimizations are inspired by, and
partially subsume, earlier work on the optimization of se-
quential list traversal.

1 Introduction

Lists are a basic computational “glue” in many functional
languages. They are easily expressed and understood by
programmers, and offer a compact notation for representing
collections of data. The functional language Haskell[7] is no
exception to this rule, and in fact encourages or even requires
the use of lists to express certain sorts of computation.
Functional languages also encourage a compositional cod-
ing style. This causes lists to be used extensively as interme-
diate data structures. For example (all code is in Haskell[7]):

any p = or .
or

map p
reduce (||) False

Here the function any takes a list, maps p across it to pro-
duce a list of booleans, and then consumes that list by calling
the function or.

A simple set of transformations are needed which will
combine the generation, traversal, and consumption of a list.
One simple and compact transformation which does the job
is foldr/build optimization[5]. However, the transforma-
tion centers around the foldr function, which forces results
to be combined in a particular order. In parallel Haskell,
this is a serious problem. In particular, it rules out some
important optimizations of the following sort:

sum (a ++ b) = sum a + sum b

In a parallel language, the above rewriting will permit the
expressions sum a and sum b to be computed in parallel.

* Computations Structures Group, MIT Laboratory for Computer
Science (email: jmaessen@mit.edu). This research was supported in
part by an NSF Graduate Fellowship. Funding for the Laboratory
for Computer Science is provided in part by the Advanced Research
Projects Agency of the Department of Defense under the Office of
Naval Research contract N00014-92-J-1310.

This paper presents two closely related results. First, a
set of local transformations are given which will eliminate
intermediate lists. These transformations capture ordering
constraints on list traversals by using higher order functions,
and do not commit to any particular ordering if none is spec-
ified. Second, a set of heuristics are given for transforming
the optimized computations into loops. These heuristics are
designed to detect and exploit ordering constraints captured
by the optimized list traversals. In order to do so, a method
for generating lists systematically is introduced into the lan-
guage.

The optimizations have a number of useful features:

e They embody well-known techniques and theorems from
the field of constructive programming.

e They can be used to describe computations on arbi-
trary data types which are homomorphic to lists or
bags.

e Many of the standard list processing functions can be
described and optimised within this framework. In
particular, list comprehensions are open to optimiza-
tion if they are desugared using the naive scheme shown
in Figure 1[17].

2 The Bird-Meertens Formalism—highlights

The goal of the Bird-Meertens formalism is to provide an
algebra with which efficient algorithms can be derived from
simple specifications[10]. The goals of such an endeavor are
quite broad—roughly speaking, they involve proving com-
plex theorems about this new algebra. The goal of this com-
piler optimization is much more modest—to consistently im-
prove performance using a set of simple constructive trans-
formations.

2.1 Traversal

In functional languages, there are two commonly-used func-
tions which traverse lists—foldl and foldr. They have the
following mathematical definitions:

foldr &z [z1,22,...,22] = Z1® (228 (- (zn B 2)))
foldl @Z[$17$27...7$n] = (((2@_@1)@1‘2)@)@(5“

The parenthesization in the above definitions shows that
foldr traverses a list “right to left”, while foldl traverses
the list “left to right.” These functions correspond respec-
tively to recursive or iterative list traversals.

TEMLE 1 Q 1] = TFIIE | Q1]
TFIIE | 1] = [TE[E]]
TFILE| B, Q1] = if TE[B] then TF[LE | Q 1] else [1

TFILE | P <- L, Q1] = concat (map £ TE[L]
wheref P = TF[LE | Q 1]

£f_ =1

Figure 1: Desugaring rules for lists using map and concat

The problem with these functions is their inherent “hand-
edness”. The fold operations impose a particular ordering on
the flow of data in the computations they represent. Folded
computations must wait for data to reach them along the
“spine” of the list. This problem is most evident when the
input can be broken up into pieces, say a and b:

foldr f z (a ++ b) foldr £ (foldr f z b) a
foldl f z (a ++ b) foldl £ (foldl f z a) b

This ordering, while sometimes necessary, is often superflu-
ous. For example, if we define the sum of a list using foldl
or foldr, we will be unable to show that sum (a ++ b) is
equivalent to sum a + sum b.

What is needed is an operation which describes the traver-
sal of lists symmetrically. Bird calls this operation reduction
[1, 2]. Tt has the following definition:

reduce (®) z [z1,22,..., 2,1 = 21D 22D ---Tn
reduce (D) z [] =z

The obvious difference between this definition and the defi-
nitions of foldl or foldr is the absence of parentheses, and
the fact that z is used explicitly only to define the value of
reduction on the empty list. For reduce to be safe, ® and
z must satisfy the following identities (for any value of «, b,
or ¢ of the appropriate type):

ad(bBc)y=(adb)de

abz=zPha=a

@ associative
z identity of @

The above conditions mean that @ satisfies the requirements
for the binary operation of a monoid with an identity. The
conditions also lead to a more rigorous definition of reduce:

reduce (P) z a &
reduce (D) z b

e

z

reduce (®) z (a ++ b) =

reduce (B) z [e]
reduce (®) z [I

I

This definition uses the constructive view of lists: Every list
is either empty ([]), contains a single element e ([e]), or
can be built by appending two lists, a and b ((a ++ b)).

The advantage of reduce is that it avoids overspecifica-
tion. In particular, if we are attempting to develop a parallel
program, we would like to write algorithms in such a way
that there are no spurious dependencies forcing our algo-
rithm to be sequential. We write:

sum = reduce (+) 0
and quickly discover from the definition of reduce that:

sum (a ++ b) = reduce (+) 0 (a ++ b)
= reduce (+) 0 a + reduce (+) 0 b
= sum a + sum b

For this reason, constructive approaches have been viewed
by some as the natural successor to data-parallel program-
ming[15].

2.2 Homomorphisms and Monoids

Unfortunately, using only reduce it is impossible to express
the following idea:

length (a ++ b) = (length a) + (length b)

The problem is obvious when the types of the functions are
examined:

(a->a->a) ->a->1[al ->a

[al -> Int

reduce ::
length ::

There needs to be some way of transforming individual el-
ements of the list into objects of the correct type, which
can then be combined using reduce. The operation which
accomplishes this is map:

map f (a ++ b) =map f a ++ map £ b
map £ [el [f e]
map £ [] =0

Thus length can be expressed in terms of map and reduce as
follows (here const is the constant combinator which returns
the first of its two arguments):

length (a ++ b) = sum . map (const 1)

This simply separates the definition of 1ength into two pieces—
a piece which replaces each list element by 1 (a map) and a
sum (reduction) of the resulting list.

Bird [2] notes that map and reduce can be used in this
way to express the homomorphism from the monoid of lists
over a, ([a],++,[1,(:[1)), to an arbitrary monoid (3, &, idg, ©):

h s =reduce @ tdg (map 1)

In effect, every append operation (++) is replaced by &,
every empty list [] by idg, and every unit operation (:[])
by 1.

This unconditional replacement gives rise to the promo-
tion rules for lists described by Bird [2]. These rules push
calls to map and reduce inwards through concat:

map g (concat L) = concat (map (map g) L)
reduce @ z (concat I.) = reduce & z
(map (reduce & z) L)

2.3 Higher-order Homomorphism

Having defined homomorphism in terms of map and reduce,
the typical approach (when using constructive techniques
to derive an algorithm) is to immediately translate reduc-
tions into folds using either of the following (perfectly legal)
definitions:

reduce f z foldl f =z
reduce f z = foldr f z

This defeats the purpose of introducing reduce into a par-
allel language, however. Instead, it would be desirable if
all three methods of list traversal could be fit into a single
framework based on reduction.

The trick is to use higher-order functions to separate the
behavior of foldl and foldr into pieces. There are three
basic steps:

e Package up the computation which will be performed
on a given list element when data arrives along the
spine of the traversal. This will transform each element
of the list into a function.

e Use a higher-order function to “wire together” the
functions along the spine.

e Call the resulting function with the initial value of the
traversal.

The first two steps correspond to mapping and reduction
respectively. The third step actually performs the compu-
tation which has conceptually been set up by the first two
steps. The resulting definitions of foldl and foldr look like
this (the operator (.) is function composition, and flip
reverses the order of the first two arguments of the given
function):

foldr £ i xs = reduce (.) id
(map f xs)
i

foldl g j xs = reduce (flip (.)) id
(map (flip g) xs)
J

It should come as no surprise that id (the identity function)
is the identity of both monoids. It is, of course, the identity
of function composition, but more fundamentally we expect
it to represent the idea that “if there is no list element, no
computation should be performed.”

The structure of the above definitions for foldl and
foldr suggests that a similar formulation for reduction might
exist. And indeed it does:

reduce @ z xs = reduce \1rt -> (1 z) & (r z))
id
(map const xs)
z

This definition scatters the value of z across the reduction,
where it is generally simply dropped. Only when an empty
list is encountered is this extra argument actually put to
use. Care must be taken, however, since this means that
the higher-order function now being reduced is only correct
when its third argument, t, is z.

The optimizations will therefore assume that all list con-
sumption has the following canonical form:

(reduce a id (map u 1)) ¢

Here a is a function of at least three arguments, u a func-
tion of at least two, and ¢ represents either the initial value
of a fold or the identity of a reduction. For example, for
foldr f z a =(.), u =f, and t =z. This allows the opti-
mizer to represent list traversal uniformly and compactly.

2.4 Ordering Rules and Bags

The map operation is unaffected by the ordering of its in-
put. However, a reduction does carry some weak ordering
information. This is because the operation passed to reduce
may not be commutative. The most obvious example so far
is concat. If we write concat [[1,2],[3],[4,5]1], we can-
not tell which two lists are appended together first; however,
we do know that our answer will be [1,2,3,4,5] and not,
say, [3,1,2,4,5] or [4,5,3,1,2]. The order independence
of map and the order dependence of reduce are used to derive
the following rules:

map f (reverse L) = reverse (map f L)
reduce @ z (reverse L) = reduce (flip &) z L

Often, an operation being reduced is commutative—or
we as programmers may be using lists as bags, meaning that
we specifically don’t care about the ordering of elements.
For these instances, there is an order-independent function
called someOrder. This function returns a permutation of
the list provided to it. In general, it could be defined as
the identity function. When someOrder is encountered by
the optimizer, assumptions about ordering constraints on a
canonical traversal are dropped; the optimizer then tries to
choose the best possible traversal direction for each sublist of
the list being traversed. For example, assume the list [1..5]
can be computed most efficiently forwards. The optimiza-
tions will reorder the list ([1..5] ++ reverse [1..5]) if it
is passed to someOrder. Thus, a computation which would
ordinary yield the list [1,2,3,4,5,5,4,3,2,1] after opti-
mization will instead yield the list [1,2,3,4,5,1,2,3,4,5].

2.5 Generating Lists

To entirely eliminate lists, and not simply optimize their
traversal, the generation of lists must be described as sys-
tematically as the consumption. List comprehensions are a
partial solution, since they describe the generation of new
lists in terms of traversals over existing lists. Nevertheless,
there are many cases where lists are generated without ref-
erence to other lists—for example, Haskell contains special
syntax for arithmetic series expressed as lists: [k1,kz2..kn].
In addition, because lists are a full-fledged data structure
in the language a partially-constructed list (an “accumula-
tive result variable”[14]) can be traversed by the computa-
tions which is constructing the list. Doing so will preclude
eliminating the list, since it must be built once so that the
repeated traversals will behave as they were written.

Instead, functions can be defined which generate lists
systematically. The list anamorphism [11] generates lists one
element at a time, using a predicate to terminate generation,
so that finite lists can be created systematically. This list
anamorphism is visible to the programmer as the unfold
function, which is defined as follows:

unfold p f v=hv
where hv | p v = [
| otherwise = a:h b
where (a,b) = f v

The chief virtue of this function is that its structure is reg-
ular enough to permit the use of heuristics which will gen-
erate different code depending on how the resulting list is
consumed.

LE[LEY, Ea, ... EY]]
[E[[E1++E2]]

LE[reduce f ¢t L]

LE[foldr f t L]
LE[foldl f t L]

LF[LE:, Ea, ... E,]]
L’]—"[[E1++E2]]

LFII]

CFA:L]

LF[map f L]
LF[concat L]
LF[reverse L]
LF[someOrder L]

t=1¢

QO Q9 Qo aaQ
g e g gaggaa

= M[[[El, Esy, ... En]]] Qlist Ulist blist
= LF[E++EL] avise Utise tiise

etc. for other list expressions

=LE]letz = ¢

in LF[L] (M rt f(lz)(rz)) const t]
= LE[LFIL] () ft]
= LE[LFIL] (£1lip (.)) (£flip f)]

t=((uE) ‘a“ (u BEz) ‘a“... (wE,)t
t = (LF[Er] au ‘a‘ LF[E]auw)t

t=(uA ‘a* LF[L]auw ¢
t=LF[Lla(u. f)¢t »
t=LF[L]a (M. LF[l]au)t
t = LF[L] (swapa) ut

t = LF[L] (bothways a) u t

Figure 2: map/reduce optimization rules

3 map/reduce optimization

Having seen that traversals can be converted to canonical
form, and that maps and reductions can eliminate the in-
termediate lists in map and concat, it simply remains to
combine everything to obtain a simple set of optimizations.
The optimization rules, given in Figure 2, are referred to as
the map/reduce rules, since the last three arguments to £F
represent a canonical reduction being performed using map
and reduce on the expression in the double brackets. The
bothways operation represents a marker function which is
applied to the value of a to express the fact that a is free
of ordering constraints. This fact is exploited in rules which
generate code to actually perform the reduction (described
in the next section).

This structure also permits the elimination of compile-
time redexes which would have been present if optimization
simply used the promotion rules directly. In particular, all
calls to a are performed at compile time—a safe bet, since
a has a regular structure. There is one danger in this: it is
possible to duplicate ¢. Note, however, that this can only
happen when a is created by a reduction—and ¢ is given a
concrete name in this case.

In addition, the rules are carefully structured so that
they deal gracefully with nesting—that is, inner subexpres-
sions are not optimized until reductions have been elimi-
nated in the enclosing expression. This permits map/reduce
optimization to be performed in one pass; however, func-
tional arguments (all labeled f in their respective desugaring
rules) may be re-optimized repeatedly if they are applied re-
peatedly. Right now a fairly simple heuristic is used to con-
trol this behavior: if the function is bound to a name and
then used in a traversal it will be optimized once, separately,
but will not benefit from further map/reduce optimization
if it happens to return a nested list. If the function is speci-
fied explicitly using a lambda, on the other hand, it will be
duplicated (and inlined) ad nauseam.

Note that the rules for optimization only explicitly spec-
ify re-traversal in three cases—for the three list consumers
foldl, foldr and reduce. In the remaining cases, list syntax
is actually going to be generated. This syntax would then
be re-optimized unless a second set of names is introduced

for already-optimized list operations. However, it is possible
to avoid re-traversing these operations entirely by carefully
traversing inner code as the result is produced. This leads
to the following definition for aiis:, uiis: and i;q::

aiise = ()
uiise = (Aet. LE]e]:t)
tiise = [

No formal termination proof for this optimization structure
has yet been undertaken; informally, ££ always either en-
counters no list and proceeds deeper, encounters a list which
must actually be constructed and proceeds deeper on each
element of that list, or encounters a list traversal and elimi-
nates it, re-traversing with one less level of list nesting (since
Haskell is strongly typed and types are finite, we will not cut
our own throat in this instance).

4 Code for Generation

The extensive use of higher-order functions in canoni-
calized list traversals immediately begs the question of effi-
ciency. Fortunately, the reductions performed by the above
rules alleviate most of these concerns. Reasonable code can
thus be generated with the following rules:

LF[unfold P F V] a u t =
let h v acc | LE[P] = acc
| otherwise = (a (ue) (h v’)) acc

where (e,v’) = LE[F] v

in h LE[V] ¢
Otherwise
LF[E] a u t =
let h [] acc = acc
h (e:es) acc = (a (ue) (h es)) acc
in h LE[E] ¢

These definitions were obtained by recognizing that list traver-
sal must, as always, take place sequentially along the spine
of the provided list, and that unfold similarly must wait for
data to be propagated from one iteration to the next. The
following sequential traversal is then used:

(\1st -> foldr (a.u) id 1st t)

LF[unfold P F V] aut=1let h v acc | LE[P] = acc

| otherwise = LD[h v’][acc] a (u e)
where (e,v’) = LE[F] v

in h LE[V] ¢

omitting £ when u # uy;q¢

LF[E] a uiist t = LE[E] ++ ¢
Otherwise:
LFE] aut=

let h []
h (e:es) acc

acc = acc

LD[h es][acc] a (u e)

in h LE[E] ¢

When a is from a reduction or is bothways:

=bothways (.), v strict

strict in second argument

=bothways a’, a strict in first argument

LD[R][A] a v = R (vA) ‘
LD[R][A] a v = R (a(Az. A)v A)
LD[R][A] a v = R (av(Az. A) A)
If none of the above apply:

LD[R][A] av =av (R) A

Figure 3: Rules for efficiently traversing an existing list or unfold

By expanding the definition of foldr above, the following
code is obtained for the lambda body:

let h [] = id
h (e:es) = (a (ue) (h es))
in h 1st ¢

The important observation which leads us to the code at the
beginning of the section is that both disjuncts in the defi-
nition of h will return a function. In fact, because a has a
fixed definition, it is open to n-abstraction—that is, no com-
putation beyond pattern matching will be necessary at run
time to obtain the function which is returned by h. This n-
abstraction step yields the expansion given at the beginning
of the section. The translation for unfold follows by ob-
serving the structural similarity of traversal to generation,
or analogously by observing that a catamorphism (foldr)
can be combined with an anamorphism (unfold)[11].

4.1 Exploiting the regular structure of a

The fact that the structure of a is known permits a number
of important heuristics to be derived which will produce
better code than the naive translation given above. Note
that the structure of the traversal function h is mostly fixed
in the expansion at the beginning of the previous section; the
only parts which vary are the value of ¢ (which is outside h
itself) and the value of the second clause of h’s definition.
There are two basic forms which this second clause can take
(where f and g are arbitrary functions):

f (h xs acc)
h xs (g acc)

proper recursive
tterative

If there is a choice in the matter, the decision must be based
on the strictness of expression g. If g is strict, then the iter-
ative form should be chosen; this will permit the generation
of aloop which executes in unit space in the final code for h.
If g is not strict, however, the proper recursive form should
be used. In this way, h as a whole can return a value before
the recursive call has terminated, and in a lazy language can
avoid the recursive call entirely. The rules given in Figure 3

will generate the iterative form whenever possible. These
are (modulo some tweaking to eliminate useless arguments)
the rules which are actually used in the pH compiler.

Note that the optimization rule for concat given ear-
lier (Figure 2) specifies that the arguments to u are used
to perform a recursive optimization. Given this fact, how
can the strictness properties of such a function be deter-
mined? Note that the second argument to u will in this
case be passed straight to the recursive optimization as the
t parameter of that optimization. The ¢ parameter to the op-
timization is never itself optimized (unless the code is later
re-optimized from the ground up by ££). As a result, the
recursive optimization can be performed with some dummy
second parameter d. We can then evaluate the strictness of
the resulting (concrete!) code with respect to d. Any fur-
ther call to v in £D can then simply bind its argument to d
and incorporate the already-generated code.

Note also that lists which already exist on the heap are
not explicitly re-created on the heap, but are instead passed
to the standard append operation (++). When ¢ =[], this
rewriting can be optimized to just LE[E], meaning that
F is not copied. In particular, this optimization means
that the expression a ++ b optimizes to a ++ b rather than
a++ (b ++ [1).

5 Example

Now that the description of the optimization rules is com-
plete, an example is certainly in order. The following code
(to sum the elements of a list of lists) generates parallel code
when optimized.
llsum = sum . concat

Inlining sum and composition, the following definition is ob-
tained:

llsum xss = reduce (+) 0 (someOrder (concat xss))

Useful optimization begins when the reduction is encoun-
tered (since 0 is a constant it is inlined on the fly for brevity):

1llsum xss = LE[LF[someOrder (concat xss)]
(Mrt.(10) + (r0)) const 0]

Now optimization continues through the call to someOrder:

1llsum xss = LE[LF[concat xss]
(bothways (M r¢.(10) + (r0)))
const 0]

And on to the concat:

1llsum xss = LE[LF[xss]
(Ae. LF[e]
(bothways ...)
const 0)
(bothways (M r¢.(10) + (r0)))
const 0]
Now in order to generate the loop over xss, the innermost
optimization needs to be performed eagerly so that its strict-

ness can be determined. To do so, use the dummy value d
for t; the symbol e is provided by the translation:

LF[e] (bothways (A rt. (10) + (r0))) const 0 d

Now, since addition is strict in both arguments, this inner
traversal can be performed iteratively as follows:

let h [] acc = acc
h (e:es) acc = h es (acc + e)
in hed

Since h is strict in acc, the original function was strict in
its last argument. The following code for llsum therefore
results:

llsum xs8s =

LE[h’ xss 0
where h’ [] acc’ = acc’
h’ (x:xs) acc’ = h’ xs (acc’ + h x 0)
where h [] acc = acc

h (e:es) acc = h es (acc +)]

No further optimization is possible on the body, so the call
to £E will simply disappear.

The important line in this definition is the second dis-
junct of h’. In a system without a notion of reduction, the
following code will result for that line:

h’ (x:xs) acc’ = h’ xs (h x acc’)

In the map/reduce system, the call h x 0 can proceed before
acc’ is available. Thus, by executing the outer loop h’
eagerly, the sublists can be computed independently; only
the computation of the final loop result need wait for the
completion of the inner loops.

5.1 A note on efficiency

The optimization rules given here certainly do not produce
the best possible code. In particular, consider the following
example:

sort xs = reduce merge [] (map (:[]) xs)

This appears to implement mergesort—individual, sorted
sublists are merged together two by two to yield the final
sorted result. Note, however, that the above produces the
following code after optimization:

sort xs = h xs []
where h [] acc = acc
h (e:es) acc = h es (merge acc [e])

Inlining sort at the points where it is used is likely to im-
prove matters somewhat (by merging sorted sublists in one
go), but the fact remains that the underlying algorithm is
simple insertion sort. This turns out to be a fundamen-
tal limitation of the traversal rules. In general, to optimize
a reduction something must be known about the behavior
of the function being reduced. It is thus extremely diffi-
cult to come up with rules analogous to those in Figure 3
which will produce good code both for straight-through and
divide-and-conquer algorithms without recourse to some ad-
ditional annotations. It should be possible, however, to add
new functions representing, say, divide-and-conquer reduc-
tion.

More fundamentally, the optimizations cannot take a bad
algorithm and turn it into a good algorithm. For example,
asymptotic time behavior ought to be much the same as
it is when reduction is implemented using a fold. This also
means that optimization will not make an inherently parallel
algorithm sequential.

6 Correctness and Referential Transparency

One important problem has been glossed over in the dis-
cussion so far—the correctness of the reduce operator it-
self. FEarly on it was noted that the first two arguments
to reduce must be an associative operator and its identity.
The compiler, however, has no particular notion of an asso-
ciative operator. This means that it is perfectly permissible
to write the following two expressions (which produce dif-
ferent results even though their arguments are identical in
a semantic sense):

reduce (=) 0 [1..10]
reduce (=) 0 ([1..5]++[6..10])

Because of map/reduce optimization, reduction is very sen-
sitive to the way in which its arguments are computed. This
sensitivity disappears when reduce is used properly, but can
potentially cause hard-to-spot problems in incorrect code.

The someOrder operation suffers the same referential opac-
ity as as reduce. One way to reason about the ordering of
the argument to someOrder is to assume it is a function of
some (unknown) underlying state. Such reasoning is not
particularly useful, however, since that state can only be
manifested (through calls to someOrder) and not manipu-
lated.

The pH compiler takes the position that reduce and
someOrder are not really functions at all-—an eminently rea-
sonable assertion, since the optimization rules treat them
quite differently from fully-fledged functions. Instead, the
programmer treats them as special syntax which happens
to resemble function call. From the standpoint of the rest of
the compiler, however, reduce and someOrder can be treated
just like ordinary functions.

7 Applications

The map/reduce mechanism is used to implement a num-
ber of additional features in the pH language. This section
briefly examines three such features: for loops, array com-
prehensions, and open lists. All three were implemented

as distinct mechanisms in the Id language compiler[13, 20].
One of the chief motivating factors behind the introduction
of the map/reduce mechanism was to handle these three fea-
tures in a single uniform manner without sacrificing the effi-
ciency of the original Id language translations. In doing so,
much has been learned about the behavior of reduction in
the presence of higher-order functions and state.

7.1 for Loops

The pH compiler contains several syntactic extensions to
Haskell. One of these is the for loop. It is expressed as
in 1d[13], as a series of bindings which includes free refer-
ences to a set of k circulating variablesci, ca, . .. ¢y and which
binds a corresponding set of nestified variables, n1,n2, ... ng.
A for loop over the list xs is thus written:

1

let
initial bindings for c1,ca,...ck
in
for x <- xs do
bindings, including ones for ni,na,...ng
finally f ci,c2,...ck

For example, to find the arithmetic mean of a list of num-
bers, the following function can be used:

mean Xxs =
let sum = 0
len = 0

in for x <- xs do
next sum = sum + x
next len = len + 1
in sum / len

A continuation-passing expansion for loops can be defined
using foldr:

let
inetial bindings for c1,ca,...ck
in
foldr (\x cont ci c2
let
bindings, including n1,n2,...ng
in cont ni ns ...ng)

L..CE =2

f
Xs
C1 C2 ...Cg

This leads to a more concise desugared definition for mean:

mean xs =
let sum = 0
len = 0

in foldr (\x cont sum len ->
let next sum = sum + x
next len = len + 1
in cont (next sum) (next len))
(\sum len -> sum / len)
x8 sum len

By using inlining and n-abstracting all arguments which cor-
respond to circulating variables, completely iterative code is
generated. Since the functions being folded require at least
the k arguments representing the circulating variables before

I Note that in 1d, n; is written as next ¢;. This renders the rules
virtually unreadable; thus the choice of notation here.

performing any computation, such an n-abstraction step is
justified. This results in the following optimized code for
mean:

mean xs =
let sum = 0
len = 0

in h xs sum len

where h [] sum len = sum / len
h (x:es) sum len =
let next sum = sum + x
next len = len + 1
in h es (next sum) (next len))

In general, map/reduce optimization combined with con-
stant argument removal and n-reduction are powerful enough
to handle a large class of traversals involving higher-order
functions—which in turn permit an even larger class of list
traversals to be captured efficiently in the language. This
three-optimization chain is important enough in the pH com-
piler that the optimizations have been combined with map/
reduce optimization into a single pass.

7.2 Array comprehensions

One of the chief complaints about Haskell from the Id com-
munity is that Haskell’s array system is bulky—in particu-
lar, a number of array operations require a list of index/value
pairs as an argument. For example, this expression creates
a grade-school multiplication table for pairs of integers be-
tween 0 and 10:

table = array b [(i, a*b) | i@(a,b) <- range b]
where b = ((0,0),(10,10))

In pH, this mechanism supplants Id’s specialized array com-
prehensions and accumulators. Id array comprehensions
make use of I-structures (which must be explicitly written to
at most once) to construct an array in parallel with its use
[20]. By defining a list traversal which uses these same tech-
niques, the full performance of Id array comprehensions can
be realized. Thus, pH need not trade syntactic compactness
and elegance for performance.

The approach used is based on monadic state transform-
ers [8]. However, because an I-structure model is being used,
the results of a write operation will be visible throughout
the program. This requires that the notion of a state trans-
former be modified somewhat, but permits write operations
to occur simultaneously in several parts of the program with-
out loss of safety. The type IAT a b is used to encapsulate
the necessary state transformations—a value of this type
will partially fill an array indexed by type a with elements
of type b. The following functions are used for the definition
of array comprehensions?:

makeIAT (a,a) -> IAT a b -> Array a b
storeIAT :: a -> b -> IAT a b

parIAT :: JAT a b -> IAT ab ->IAT a b
noIAT : IAT a b

These give rise to the following definition for the function
array (very similar to the one in [5]):

2Ignoring the orthogonal problem of linearizing array indices,
which is treated explicitly in Haskell.

array bounds ivs = makeIAT bounds stores
where
stores = reduce parIAT noIAT
(map (uncurry storeIAT) ivs)

The call to makeIAT creates an array with the requested
bounds and performs the necessary stores into it. These
stores are specified by the storeIAT operation (uncurry per-
mits it to be used on the index/value pairs ivs). The parIAT
operation states that any pair of transformations may occur
safely in parallel, and the reduction thus states that all the
stores may happen simultaneously. The identity transfor-
mation is noIAT, or “do nothing”.

Readers familiar with the implementation of state trans-
formers will recognize that they require the use of higher-
order functions; these higher-order functions make state avail-
able to component computations. The same techniques of
constant argument elimination and n-abstraction which are
used for for loops are used to eliminate extra functions and
generate efficient code for arrays.

7.3 Open Lists

List comprehensions in Id make use of open lists to paral-
lelize list contruction. Open lists are represented internally
by data structures which are isomorphic to lists, except that
their tails are initially empty and can later be filled in using
I-structure operations. This permits lists to be constructed
eagerly starting from the head and working towards the tail.
It also permits sublists to be computed independently and
appended in unit time. This eliminates the chief bottleneck
in parallel list creation—that sublists must wait for the re-
sult to their right to be computed (or, if one is thinking
lazily, computation of each sublist must wait for the com-
pletion of the sublist to its left). More information on the
open list technique has appeared elsewhere[6].

Parallel state transformers can once again be used to im-
plement open lists in pH. Here the state transformation is
encapsulated in the type OL a, which represents a compu-
tation operating on open lists with element type a. The
following operations are defined:

makeOL :: OL a -> [al

unitOL ::a->0L a

appendOL :: OL a -> OL a -> OL a
emptyOL :: OL a

cons0OL ::a->0La->0La
snocOL :: 0L a->a->0La

In principle, an open list computation can thus be written
as follows:

1st = makeOL (reduce appendOL emptyOL
(map unitOL (list computation)))

There are a number of complications to this apparently sim-
ple scheme. First, the use of open lists is implicit in the Id
compiler for efficiency reasons. A partial solution to this
problem is to re-cast map/reduce optimization in terms of
the open list operations, as follows:

aiist = appendOL
uise = (Ae.unitOL LE[e])
ti;st+ = emptyOL

This means that uses of the £F optimization rule in the rules
for ££€ must now introduce a call to makeOL. For efficiency
reasons aj;s: also needs to be written to incorporate the fol-
lowing peephole optimizations (where the right hand forms
allocate half as much storage as the forms on the left):

appendOL (unitOL x) ol = consOL x ol
appendOL ol (unitOL x) = snocOL ol x

The final, and most difficult, problem with open lists is the
frequency of copying. In the traversal rules, the following
rewriting was given for a list which already exists on the
heap:

LFIE] a wise t = LE[E] ++ ¢

This permitted a copy operation to be omitted when ¢t =[].
Unfortunately, preexisting lists and open lists have entirely
different types! Consequently, more trickery is necessary to
efficiently compile open list computations. At the time of
writing there is no clear, consistent solution to this prob-
lem beyond limiting (in an ad hoc manner) the situations in
which open lists are introduced by the compiler. The solu-
tion doubtless requires a deeper understanding of the state
transformations underlying the open list mechanism.

7.4 Lifting

There are many associative operations which might be use-
fully used for list optimization, but which do not posess an
identity. For these functions there is an operation called
reducel. Using the type called Maybe, these operations are
explicitly lifted and an ordinary reduction is performed as
follows:

data Maybe a = Nothing | Just a

reducel :: (a -> a -> a) -> [a] -> a
reducel f = unLift . reduce (lift f) Nothing
where unLift (Just x) = x
lift f Nothing y =y
lift f x Nothing = x
lift £ (Just x) (Just y) = f x y

A similar technique can be used to define foldl1and foldri.
All of these definitions avoid explicitly destructuring the list
being traversed, but introduce additional data structures.
However, it is often easy to tell at compile time that the list
being traversed is non-empty. Standard optimization tech-
niques such as peeling the initial loop iteration and eliminat-
ing circulating data structures whose form is known can of-
ten produce excellent code for traversals of non-empty lists.
However, performance is still poor when the list being tra-
versed 1is, for example, a list of possibly-empty lists flattened
using concat.

8 Limitations

The optimizations described so far eliminate lists which are
consumed as soon as they are produced. While this en-
compasses a useful class of list operations and permits data
structures (including, as we have seen, arrays and open lists)
to be expressed in terms of list comprehensions, there are
a number of common patterns of usage which cannot be
optimized at the moment.

8.1 Producing a list from a list

During the presentation of the optimization rules, only two
functions—map and concat—have been used which given a
list will produce a list as a result. These suffice to capture
a large range of list processing functions (those which can
be expressed entirely using list comprehensions). There are
important functions which cannot be expressed in this man-
ner, however. One significant example is the function init,
which returns all of its argument except for the last element.
It can be written in two different ways:

init xs = unfold (emptytail xs)
(\(x:xs) -> (x,xs)) xs
where emptytail [_] = True
emptytail (_:_) False
init xs =
fst . reducel (\(bl1,11) (b12,12)->
(b11++11:b12, 12)) xs

One workaround is to abstract such operations with respect
to the unit, append, and empty list elements. This would re-
quire the introduction of an operator analogous to build[5],
and consequent modifications to the type system. In addi-
tion, uses of a build-like operator cannot benefit from the
loop-generation optimizations of Figure 3.

8.2 Multiple traversals

Multiple traversals over the same argument list can in prin-
ciple be combined into a single traversal. Other approaches
to list optimization[5] can perform this optimization. There
are several difficulties. Two are evident from the following
snippet of code:

let total = reduce (+) 0 xs
in foldl (f total) i xs

First, while the list xs is consumed twice, there is a poten-
tial data dependency between the two traversals. If such
a dependency exists, it will be more space-efficient to con-
struct xs in the heap and traverse it twice than to merge
the traversals so that the result of the first iteration de-
pends non-strictly on the result of the final iteration. Sec-
ond, the list xs is traversed in two different ways—using
reduce and foldl. If the two traversals can be merged
safely, it is not clear that they can be merged efficiently.
This problem becomes acute when one of the traversals be-
ing combined makes use of higher-order functions (as with
for loops, open lists, or array comprehensions). By commit-
ting to a sequential list traversal, previous approaches have
avoided this problem entirely.

8.3 The zip problem

Equally difficult is producing a result by traversing two lists
simultaneously. This is expressed using the function zip,
which pairs corresponding elements of its two list arguments
to yield a single result. Previous solutions to this problem
[5] define either a “left-handed” or “right-handed” view of
zip—that is, just one of the two arguments is systematically
consumed to produce the result.

The zip problem may well be solvable in the map/reduce
framework by inverting the direction of optimization—in
other words, proceed from the generation or use of a list
outwards, combining map and build, until the resulting list

is consumed by reduction, folding, or zip. When both ar-
guments to zip have thus been optimized, combine them
(combining calls to unfold should not be difficult). Such an
approach would be very difficult to integrate with any solu-
tion to the previous (multiple traversal) problem, however.
In addition, it is unclear how concat should be handled in
this framework. Nonetheless, this technique merits further
attention.

9 Related Work

The work on which this paper is based first began as an
effort to integrate list optimization with list comprehen-
sion desugaring. This effort is described in the author’s
M. Eng. thesis[9]. Its eventual separation into a separate
compiler pass was due to engineering problems (the code
inliner worked only on desugared code). Nonetheless, it has
provided an opportunity to clean up the transformations
substantially and to better understand their behavior. This
has resulted in a number of improvements, the most obvious
being the the positioning of inner optimizations.

The transformations described in this thesis are (as noted
previously) based heavily on Gill, Launchbury, and Peyton-
Jones’s “Short Cut to Deforestation” [5]. That work fo-
cuses heavily on the interaction of the foldr and build op-
erations, just as this work centers around the use of map,
reduce, and unfold. Both share the view that lists play a
pivotal role in functional programs, and that it is therefore
worth spending time and effort on optimizations specifically
geared towards them. This work in turn has its roots in
work on deforestation[18, 16, 4].

A number of works on constructive programming proved
indispensible in fleshing out the theory behind map and reduce,
and in providing inspiration for the unification of reduc-
tion and folding. Chief among these are Meertens’ seminal
paper[10] and Bird’s lecture notes on constructive program-
ming, which heavily emphasize the use of the list monoid to
express computation[1, 2]. The text by Bird and Wadler[3]
provides a more pragmatic view of the constructive style. An
amusingly-titled paper by Meijer, Fokkinga, and Paterson[11]
explores general relationships between algebraic types and
the recursive functions used to traverse them; the exam-
ples for lists are excellent, and the paper presents structures
for traversal which are not covered elsewhere, in particular
anamorphisms (such as unfold) and paramorphisms (the
list paramorphism can capture patterns of traversal simi-
lar to map, but where the resulting list will also depend on
information carried between iterations). As noted earlier,
[15] compares the expressive power of the Bird-Meertens for-
malism favorably to other models of parallel computation,
suggesting that it is a fitting generalization of data parallel
techniques.

In spirit, using higher-order functions to “plumb together”
related computations has become an important part of ev-
ery functional programmer’s bag of tools. Such techniques
permit details of state and ordering to be reasoned about;
this observations is at the heart of monadic programming
techniques[19]. One subgoal of the current work is to form
a functional view of imperative concepts from dataflow lan-
guages, such as I- and M- structures[13], by adapting state
transformers[8] to new patterns of usage.

The original motivation for the work presented here was
to transparently encapsulate the behavior of the list and
array comprehensions from Id[13], which were designed and

implemented over the course of several years by a large group
of people (including Aditya, Nikhil, and Arvind) and are
described in documentation put together by Zhou[20]. The
paper by Heytens and Nikhil[6] provided a springboard in
its discussion of open lists and comprehensions in a parallel
environment. The programming techniques described in this
thesis are an integral part of pH, and are described in the
language report[12].

Acknowledgements

This work, and the entire pH effort in general, would never
have been possible without the generous cooperation of Len-
nart Augustsson, whose hbecc compiler supports the syntac-
tic extensions of pH. Additional thanks must be given to
Arvind, who originally prompted this work at the begin-
ning of the pH effort, and who has kept things heading in
the right direction. Finally, this work has benefited greatly
from comments and conversations with many people both at
MIT and elsewhere, whose ideas have suggested numerous
improvements and clarifications in the work leading to this

paper.

References

[1] Richard Bird. An introduction to the theory of lists. In
Logic of Programming and Calculi of Discrete Design,
pages 5—42. Springer-Verlag, 1987.

Richard Bird. Lectures on constructive functional pro-
gramming. In Constructive Methods in Computing Sci-
ence, pages 151-216. Springer-Verlag, 1989.

Richard Bird and Philip Wadler. Introduction to Func-
tional Programming. Prentice Hall, 1988.

Wei-Ngan Chin. Safe fusion of functional expressions.
In Proc. of the ACM Symposium on LISP and Func-
tional Programming, pages 11-20, 1992.

Andrew Gill, John Launchbury, and Simon L Pey-
ton Jones. A short cut to deforestation. In Proceedings
of the 6th ACM Conference on Functional Programming
Languages and Computer Architecture, pages 223-232,
1993.

Hichael L. Heytens and Rishiyur S Nikhil. List com-
prehensions in AGNA, a parallel persistent object sys-
tem. In Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Ar-
chitecture, 1991.

Paul Hudak, Simon L. Peyton Jones, and Philip Wadler,
eds., et. al. Report on the functional programming lan-
guage Haskell, version 1.2. SIGPLAN Notices, 27, 1992.

John Launchbury and Simon L Peyton Jones. Lazy
functional state threads. In Proceedings of the ACM
Conference on Programming Language Design and Im-
plementation, pages 24-35. ACM SIGPLAN Notices,
1994.

Jan-Willem Maessen. Eliminating intermediate lists in
ph using local transformations. Master’s thesis, MIT,
May 1994.

10

[10] Lambert Meertens. Algorithmics: Towards program-
ming as a mathematical activity. In Mathematics and
Computer Science: Proceedings of the CWI Sympo-
stum, Nov. 1983, pages 289-334. Springer-Verlag, 1986.

[11] Erik Meijer, Maarten Fokkinga, and Ross Paterson.

Functional programming with bananas, lenses, en-

velopes, and barbed wire. In Proceedings of the 5th

ACM Conference on Functional Programming Lan-

guages and Computer Architecture, pages 124-144,

1991.

[12] Rishiyur S Nikhil, Arvind, and James Hicks, et. al. ph

language proposal (preliminary). Working document

describing pH extensions to Haskell.

[13] R.S. Nikhil. Id language reference manual, version 90.1.

Technical Report 284-2, MIT Computation Structures

Group Memo, July 1990.

Tim Sheard and Leonidas Fegaras. A fold for all sea-
sons. In Proceedings of the 6th ACM Conference on
Functional Programming Languages and Computer Ar-
chitecture, pages 233-242, 1993.

[14]

[15] D B Skillicorn. Models for practical parallel computa-
tion. International Journal of Parallel Programming,
20(2), 1991.

[16] Philip Wadler. Listlessness is better than laziness: Lazy
evaluation and garbage collection at compile-time. In
Proc. of the ACM Symposium on LISP and Functional
Programming, pages 45-52, 1984.

[17] Philip Wadler. Chapter 7: List comprehensions. In
Simon L Peyton Jones, editor, The Implementation
of Functional Programming Languages. Prentice Hall,
1987.

[18] Philip Wadler. Deforestation: Transforming programs
to eliminate trees. Theoretical Computer Science,
73:231-248, 1991.

[19] Philip Wadler. The essence of functional programming.
In Proceedings of the ACM Symposium on Principles of
Programming Languages, pages 1-14, 1992.

[20] Yuli Zhou, ed. List and array comprehension desugar-
ing. Chapter in Id-in-id compiler documentation.

