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Abstract

Nondeterminacy arises when the outcome of a computation
may be different for different runs with the same input. Gen-
erally, nondeterminacy is undesirable because its presence
makes correctness of computations difficult to verify, and
bugs difficult to track down. Yet nondeterminate computa-
tion is useful in some programs such as those for transaction
processing.

Functional programming is uniquely capable of achiev-
ing highly parallel program execution without allowing the
possibility of nondeterminate results. In this paper, we dis-
cuss how functional programming models may be augmented
to support nondeterminate computation. We begin with a
brief review of past concepts and proposals for expressing
nondeterminate computation. Given the hypothesis that
functional programming is the best programming model for
expressing determinate computation, we introduce a basic
functional programming model and its implementation by
means of an abstract computer system. We show how this
abstract computation model may be augmented to incorpo-
rate support for nondeterminate computations by the simple
addition of a swap memory operation. The remainder of the
paper illustrates application of this base to a transaction
processing example, and compares this approach with solu-
tions using M-structures, as incorporated into the Ph lan-
guage, and with solutions for a conventional shared-memory
programming environment.

1 Introduction

Nondeterminacy arises when the outcome of a computation
may be different for different runs with the same input. A
good example is transaction processing, where the order in
which commands take effect on a database depends on the
timing of asynchronous events within the computer system.

Generally, nondeterminacy is undesirable because its pres-
ence makes correctness of computations difficult to verify,
and bugs difficult to track down. Yet nondeterminate com-
putation is useful in some programs such as those for trans-
action processing. Furthermore, in some kinds of comput-
ing, such as heuristic search problems, use of nondetermi-
nacy can lead to more efficient problem solving with parallel
computers.

We believe computer systems should be designed so that
programmers can implement computations that do not re-
quire nondeterminacy in a language or style that precludes
nondeterminate effects. The popular practical programming
languages do not offer such a guarantee when extended for
the writing of parallel programs. This is because explicit
process synchronization commands are used which intro-
duce the possibility of nondeterminate behavior, even when
it may not be desired.! Important questions include how
nondeterminate computations should be expressed in high-
level languages, and what program execution model should
guide the design of computer systems intended to support
such computations.

Functional programming is uniquely capable of achieving
highly parallel program execution without allowing the pos-
sibility of nondeterminate results. In this paper, we discuss
how a functional programming model may be augmented
to support nondeterminate computation. We begin with a
brief review of past concepts and proposals for expressing
nondeterminate computation. Given the hypothesis that
functional programming is the best programming model for
expressing determinate computation, we introduce a basic
functional programming model and its implementation by
means of an abstract computer system. We show how this
abstract computation model may be augmented to incorpo-
rate support for nondeterminate computations by the simple
addition of an swap memory operation. The remainder of
the paper illustrates application of this base to a transaction
processing example. We use the insert and search operations
for integer sets to show how transactions, including multiple

1Imperative languages such as Fortran 90 that include support for
the data parallel programming model provide the ability to write a
limited class of parallel programs with a guarantee (by the compiler)
of determinate results.



updates, may be permitted to overlap in time with a guar-
antee of correct results, and yet be written in the functional
style. We compare our proposal with solutions using M-
structures, as incorporated into the Ph language, and with
solutions for a conventional shared-memory programming
environment.

2 Background

The study of nondeterminate computation goes back many
years. Here we review some of the work that has led to
the proposals discussed below, but first we define nondeter-
minacy and explain our use of the terms determinate and
determinacy.

2.1 Determinate and Nondeterminate Computation

In this paper, and in our past work on this topic, we use
the terms nondeterminate and nondeterminacy rather than
nondeterministic and nondeterminism. This is because there
is an important distinction to be made. Determinacy is a
property of the observable behavior of a system or module,
whereas deterministic is generally used to describe the inter-
nal mechanism of a system (a state machine, for example).
Usually, a system is called deterministic if it is characterized
by a state-transition system in which each state has a unique
successor state for each possible input event. Otherwise the
system is nondeterministic. Determinacy is a property of
systems that have asynchronous behavior and are, therefore,
generally nondeterministic. Such a system 1is, nevertheless,
determinate if and only if the following condition is satisfied
(We suppose the system has several input ports at which to-
kens carrying values are absorbed, and several output ports
at which tokens are emitted):

For any set of token sequences presented at the
input ports, every run of the system will ulti-
mately emit the identical sequences of output to-
kens.

In finite state machine theory, deterministic and nondeter-
ministic classes of machines are equivalent in the sense that
given a machine, one can construct a machine of the oppo-
site type that has the same input/output behavior. This is
not the case for determinate and nondeterminate program
modules, even if they are finite state.

2.2 Cooperating Sequential Processes

It has long been known how to construct concurrent pro-
grams that are nevertheless determinate. In [Van Horn 66]
it was shown how several processes may jointly perform
“asynchronously reproducible” computation by passing ac-
cess capabilities for data cells according to a simple protocol.
In 1970 Patil showed that finite interconnections of modules
that pass message packets to one another and follow sim-
ple rules of behavior may be guaranteed to be determinate.
Kahn showed the same property for recursive constructions
over a basis of simple functional modules [Kahn 77]. These
ideas were applied in the Philips RC4000 experimental op-
erating system. Karp and Miller studied determinacy in a
simple graph model of computation in [Karp 66], which is
the earliest known publication on “determinacy”. The de-
terminacy of a general class of dataflow program graphs was
established in [Rodriguez 67].

In [Dijkstra 68] the well-known P and V commands for
process synchronization using semaphores were introduced
as a device that allows more careful reasoning about the be-
havior of programs executed by concurrent processes. One
important program structure concept introduced by Dijk-
stra is the critical section, a portion of a sequential program
that must be executed by only one process at a time. He
showed how the mutual exclusion requirement of critical sec-
tions can be implemented using the semaphore commands.

2.3 Transaction Handling

In the construction of static dataflow graphs [Dennis 72], it
was recognized that the conditional construction required
a merge actor to allow value-carrying tokens from either
arm to pass to the output arc. To avoid hazards arising
from the possibility that new data might overtake earlier
tokens, it was necessary that operation of the merge actor
be controlled by the decider of the conditional. This control
feature changed the behavior of the merge actor from nonde-
terminate to determinate. It was discovered that many in-
teresting nondeterminate systems (programs) could be con-
structed using the nondeterminate merge actor, suggesting
that the nondeterminate merge might be a universal build-
ing block for nondeterminate programs. In [Dennis 76] one
of the authors showed how a simple transaction processing
example could be implemented using nondeterminate merge
actors to funnel transaction requests from several sources to
a common (functional) processing module, and tagging re-
quests so the responses can be distributed to corresponding
requesters. An open question was how a transaction server
should be programmed such that arbitrarily many sources
of requests could be served.

2.4 Monitors, Guardians, and Managers

Deriving form Dijkstra’s concept of critical section, Hoare
and Brinch Hansen evolved a programming construct called
a monitor [Hoare 74, Brinch Hansen 93], intended to be a
general scheme for encapsulating critical sections that pro-
vide mutual exclusion of access to shared data. Since the
monitor was designed for a “cooperating sequential process-
ing” environment, finding a desirable semantics for an en-
capsulation construct is made difficult by the well-known
defects of imperative style—side effects and data races. Two
proposals framed for the functional programming environ-
ment have been offered. In [Arvind 84] a manager construct
is described that provides the same sort of encapsulation of
program units for shared data in a functional programming
environment. More recently M-structures, an extension of
[-structures, have been studied as a possible universal basis
for writing nondeterminate programs [Barth 92], and fea-
tures in support of M-structure have been included in the
(quasi-) functional programming language Ph. The discus-
sion in this paper of using the SWAP memory operation as
a universal basis for nondeterminate programs grew out of
unpublished work completed in 1981 [Dennis 81]. The trans-
action processing example in this paper shows how SWAP can
be used to implement a manager-like construct that permits
concurrent execution of transactions while retaining the ad-
vantages of the functional style in programming the trans-
action operations.



data Set =
EMPTY |
NONEMPTY Int Set

Insert :: Set -> Int -> Set

Insert set n =
case set of
EMPTY -> NONEMPTY n (EMPTY)
NONEMPTY m rest ->
if m > n then
NONEMPTY n set
else
NONEMPTY m (Insert n rest)

Figure 1: The Insert function written in Haskell.

3 Dataflow Signal Graphs

We illustrate dataflow signal graphs using an example. Fig-
ure 1 shows a function expressed in Haskell [Hudak 91] that
inserts an integer into an ordered list. Figure 2 shows the
Insert function represented as a dataflow program signal
graph. Each actor (denoted by a box) specifies an action
that occurs after all predecessor boxes (or the start node)
have completed their actions. A directed arc (u,v) between
two actors u and v in the graph denotes that when u fin-
ishes its action, a signal is to be sent to node v to signal its
completion. Therefore, these arcs are called signal arcs.

An action is an operation that reads values of input vari-
ables, performs computation, and possibly assigns results to
an output variable. Some boxes, drawn as oblongs, per-
form tests on input variables and signal successor boxes de-
pending on outcomes of the tests. Application of a func-
tion causes: new instances of the function’s variables to be
created and initialized with the undefined value; argument
values to be made available to the new activation; and the
start node of the called function graph to be enabled. When
the application terminates, the result value is assigned to a
specified variable of the caller. Each variable must be as-
signed a unique and unambiguous value (or not be assigned
or referenced) in any instantiation of the program graph. So
that this is true, all data dependences between variables in
a program graph must be represented by the partial order
defined by the signal arcs of the graph.

Incremental arrays are implemented using [-structure op-
erations [Arvind 89]. The CREATE n operation creates (as
a heap node) an array of n elements indexed by integers
0,...,n—11in which each element has the value UNDEF, mean-
ing undefined. The CREATE operation yields a pointer to the
heap node that may be held by a variable, stored as an ar-
ray element, and used to store and access elements of the
array. An action A[i]:v defines element i of array A to have
the value v. Any reference A[i] to an array element com-
pletes (yielding the element value) only when the element
has become defined.

Such Haskell programs and the dataflow signal graphs
derived from them are determinate—the result of any func-
tion evaluation is independent of the order in which en-
abled nodes of the graphs are chosen for execution. In the
next section we describe an abstract computer system capa-
ble of performing computations specified by dataflow signal
graphs. Then we show how the system may be augmented
and programmed to implement nondeterminate transaction

processing computations.

4 The Abstract Machine Model

A shared-memory multiprocessor consists of a collection of
processors and a distributed memory system organized so
that each processor may access any object held in the mem-
ory. We view this general architecture according to the ab-
stract computer system model shown in Figure 3. In this
model, the processors interact with the memory system by
presenting commands, and the memory responds by stor-
ing information or returning responses containing values of
stored data. The Interprocessor Network supports function
application as discussed below. In this section we describe
an architecture-independent memory model matched to our
dataflow program execution model.

Inter processor Network

p o 0o 0 P Processors
4 Commands N
d Responses
- == Interface
| { |
Command Pool
. Memory
Action Control I System

TheMemory Map

Figure 3: Abstract computer system with memory system
model.

4.1 The Processors

Before discussing characteristics of the memory system, let
us consider the nature of the processors. For simplicity we
assume that any one function activation is performed en-
tirely on one processor; that is, the instruction instances
corresponding to one instantiation of a dataflow signal graph
are all executed by the same processor. This choice has been
made in most, if not all, of the experimental multiprocessors
based on dataflow principles.

Given this choice, it makes sense to allocate memory for
the data frames of function activations in the processors
executing them. Then all references to variables held in
data frames will be local memory references, and may be
performed independently of the distributed memory system.

Function application is initiated by an APPLY instruction
that starts the following sequence of events:

1. A processor is chosen for executing the new function
activation.
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Figure 2: Dataflow program graph for the Insert function.

. A memory segment is allocated at the chosen processor
for the data frame of the new activation, and each cell
of the data frame is set to UNDEF.

A return continuation consisting of the data frame ad-
dress and the list of successors of the APPLY instruction
is stored in the data frame of the new activation.

The function argument value is placed in the argu-
ment location of the data frame, and the start node is
enabled for execution.

When a return node of the function is executed, the
result value of the function is delivered according to
the successor list.

If a function has more than one argument or result value,
the argument or result values are made components of a
(heterogeneous) incremental array. This choice provides le-
nient evaluation semantics. We assume that function ini-
tiation and termination are performed using messages sent
over the Interprocessor Network.

4.2 The Memory System

We wish to specify a memory system suitable for support-
ing the nested function program execution model introduced
above. We insist that correct operation of the system as
a whole not depend on immediate responses to processors
from the memory system. To enforce this requirement, the
memory system model in Figure 3 includes a buffer (the
Command Pool) for commands that have been presented by
processors, but have not yet been acted on by the memory

system. The memory system acts upon commands chosen
arbitrarily (subject to fairness) from the Command Pool.
Thus any criterion of correct behavior must recognize that
commands may be arbitrarily delayed. (This is essentially
the network delay assumption for scalable multiprocessors.)

The basic memory operations are READ and WRITE. For
the purpose of supporting execution of dataflow graphs, it
is helpful to view the memory system as a collection of loca-
tions where values may be placed by one computing entity
for use by other entities that act concurrently. The WRITE
command is used to place values in memory locations and
the READ command is used to retrieve them. Now, even if one
could guarantee that each READ is presented to the memory
system only after presentation of the corresponding WRITE,
it would be impossible to ensure that the memory system
acts on the WRITE before acting on the READ. This is because
either command may remain in the Command Pool arbi-
trarily long before being selected for action. For this reason
we specify the memory system so that a pair of READ and
WRITE operations on the same memory location has the same
effect regardless of which operation is acted upon first. This
requires that they be “synchronizing” shared-memory oper-
ations, which is just what is needed to support I-structure
operations.

Here we give a specification in the Haskell language of
the Action Control module of the memory system. The
command messages sent to the memory have the following
formats:

data Request
READ Address Node Continuation
WRITE Value Address



In these formats the data type Address is the set of (global)
memory locations, Value is the set of possible contents of
memory locations, Node is the set of processor identifiers,
and an entity of type Continuation contains information
that identifies a specific activity to be continued by the re-
questing processor upon completion of the command. For
our program model a continuation would consist of the ad-
dress of a data frame and the offset of the instruction to be
activated within the program segment of the function. (The
address of the program segment could be included in the
continuation, but it is usually preferable to retrieve it from
the data frame.)

Messages sent by the memory system to processors in
response to READ commands have the format:

data Message =

(MESSAGE Node Response)
data Response =

REPLY Value Continuation

The state of the memory system consists of a pool of
Request messages that have been presented by processors
to the memory system, but have not been acted upon, and
a mapping from addresses to memory items:

data MemoryState :: ([Request], MemoryMap)
data MemoryMap :: Int -> MemoryItem

Items are of the following kinds:

data MemoryItem =
(UNDEF) I
(DEFINED Value) |
(QUEUE [Entryl)

data Entry =
(ENTRY Node Continuation Entry) |
(EMPTY)

The memory system acts on request messages according
to the rules given in Figure 4. A READ request contains the
address of the location to be read, the processor identifier,
and a continuation that specifies the instruction instance
that should receive the value read. If the state of the location
is DEFINED, the value is sent in a response to the processor.
If the state is undefined (UNDEF), the READ request has to be
the first read access to the location. In this case it creates a
queue with the node and continuationin its first entry. If
the state of the location contains a queue, it just adds a new
entry to the queue. A WRITE request contains a value and
the address of the location where the value is to be written.
If the state of the location is undefined (UNDEF), it writes
the value into the location and changes the state to defined
(DEFINED). If the state is a queue, it writes the value into
the location and sends a response message for each entry in
the queue. If the state is found to be defined (DEFINED), it
signals an error.

5 The Swap Operation

We have found that an operation that atomically writes a
new value into a location and returns the previous value held
by the location can be used to implement typical instances
of nondeterminate action in computations. We have named
this operation SWAP and the location it references is called
a guard. The SWAP operation is requested by the following
message to the memory system

MemoryAction :: Request -> MemoryMap ->
([Message], MemoryMap)
MemoryAction (READ address node continuation) map =
let item = map address
in case item of
(UNDEF) -> let
q = (ENTRY node continuation (EMPTY))
map’ = MapUpdate map address (QUEUE q)
in ([1, map?’)
(QUEUE q) -> let
q’ = AddToQueue node continuation q
map’ = MapUpdate map address (QUEUE q’)
in ([], map’)
(DEFINED value) ->
(SendReply value node continuation map)
MemoryAction (WRITE value address) map =
let item = map address
in case item of
(UNDEF) -> let
map’ =
MapUpdate map address (DEFINED value)
in ([1, map’)
(QUEUE queue) ->let
msgs = MakeResponses queue node value
map’ =
MapUpdate map address (DEFINED value)
in (msgs, map’)
(DEFINED value) -> ERROR

SendReply value node continuation map = let
content = (REPLY value continuation)
msg = (MESSAGE node content)
in ([msgl, map)
MakeResponses queue node value =
case queue of
n->10a
[(ENTRY node continuation):queue’] -> let
content = (REPLY value continuation)
msg = (MESSAGE node content)
in [msg:(MakeResponses queue’ node value)

Figure 4: The memory transition rules for the abstract com-
puter system. In Haskell the prime character (’) is valid in
identifiers and primed identifiers are often used to denote
the modified value of an object. Note that map denotes a
function that maps locations into items, so map location
evaluates to the memory item of interest. The function
MapUpdate yields a new mapping in which the specified lo-
cation contains the specified item. Code for the auxiliary
functions SendReply and MakeResponses is included.

(SWAP value address processor continuation)

and is answered by the same format of reply as for the READ
operation. The effect of the SWAP operation is specified by
the addition to the memory state-transition function given
in Figure 5.

The effect of executing the SWAP operation is to substi-
tute a new value at the specified location and return the old
value to the requesting processor. Note that, when no con-
fusion may occur, we may omit the “processor” and “contin-
uation” fields in specifying the swap operation in a textual
program. The default is the processor requesting the swap
and the continuation consisting of the data frame of the cur-
rent activation and the instruction index of the immediately
following action in the program text.



(SWAP value address node continuation) ->
let item = map [address]
in case item of
(UNDEF) | (QUEUE _) -> ERROR
(DEFINED old_value -> let
map’ =
MapUpdate map address (DEFINED value)
in SendReply old_value node continuation map’

Figure 5: Memory transition rule for the SWAP operation.

state state
> Critical >

input Section output

— —

Figure 6: A critical section modelled as a state-modifying
function.

A location accessed by a SWAP operation is called a guard
for the way it may be used to implement a critical section as
discussed below. In general, a guard is associated with and
controls access to some resource. The address of a guard
may be freely passed to any processes that needs to access
the resource associated with the guard.

In our abstract computer system implementation we as-
sume that any memory location used by a SWAP operation
is never accessed using any other operation (that is, READ
or WRITE). A request message for a SWAP operation is sent
directly to the home memory unit for the specified location.
No entry in cache memory is ever made for a guard location.
A SWAP is a long latency operation, so its invocation from a
thread specifies a continuation, and the processor terminates
thread execution.

6 Critical Sections in Functional Programming

In conventional programming environments, a critical sec-
tion is a portion of a program that must be entered by only
one process at a time because each activation of it performs
an update of shared data. Considering that we are inter-
ested in critical sections within the context of functional
programs, we model a critical section as function that takes
a value of type State and a value of type Input and yields
a new state and a value of type Output

function CritSect :: State -> Input ->

[State, Output]

as shown in Figure 6.

Two or more processes may wish to invoke the critical
section at arbitrary points in the progress of their respective
computations. The desired effect is illustrated in Figure 7.
Note that the order in which instantiations of the critical
section are placed in the composition of critical section func-
tions is nondeterminate.

It is necessary that the critical section pass through in-
formation that will allow each output value to be directed
to the correct process so it may continue its activity. We
accomplish this by letting each input value be a record

l input l input l input

S-0 Critical S-1 Critical

s2 Critical 53

Section Section Section

l output l output l output

Figure 7: The effect of interleaved invocations of a critical
section.

data Input (INPUT Value Continuation)

where a value of type Continuation represents the point
from which activity by the invoking process should be con-
tinued with the output value from the critical section. Sim-
ilarly, each output value is a record

data Output :: (OUTPUT Value Continuation)

and we require that any critical section function preserve
the continuation from input to output.

We wish to be able to invoke the critical section code
from any point in a main program by writing something like

output = Transact input crit_sect_funct

at each point where a transaction may be needed. This
would mean that a position in the cascade composition of
applications of the function should be reserved for the input
and the corresponding output value returned. This form
cannot work because, for one thing, the initial value of the
state has not been specified. In addition, our program might
require more than one series of transactions, each defining its
own private sequence of state values, but each series using
the same critical section function. What is needed is an
entity that uniquely represents the particular sequence of
state values of interest and associates some critical section
function with the series. We call this entity a guardian.

We will define two generic functions for creating and uti-
lizing guardians. The first is MakeGuardian which returns
a guardian when given an initial state value and the criti-
cal section function as arguments. The second, Transact, is
not really a function because, as we will show, it does the
dirty work of nondeterminately inserting an instance of the
critical section function into the cascade composition. Thus
a main program for performing a series of transaction using
CritSect as the critical section function may be written as
follows:

Main = let
guardian = MakeGuardian init-state CritSect

outputl = Transact inputl guardian

output2 = Transact input2 guardian

The use of a guard location and the SWAP operation are
the key to implementing these two generic modules. The
MakeGuardian function may be coded as follows:



Process :: State -> Queue ->
(Input -> State (Output, State) ->

data Queue = (ENTRY Input Queue)

data Input = (INPUT Value Continuation)
data Output = (OUTPUT Value Continuation)

Process state queue crit_sect_funct =
(ENTRY input queue’) = queue;
(output, state’) = crit_sect_funct input state;
(OUTPUT result cont) = output;
_ = continue cont result
in
Process state’ queue crit_sect_funct

Figure 8: The Process function.

MakeGuardian init-state CritSect = let
queue = (ENTRY undefined undefined)
guardian = guard queue;
_ = Process init_state queue CritSect
in
guardian
The special operation guard creates a guard, fills it with
the initial value init-state, and returns a reference to it
(its address). The MakeGuardian function also starts the
processing of the (initially empty) queue by invoking the
Process module.
In the code language of the abstract computer system
discussed in section 4, this would translate to:

MakeGuardian init-state crit_sect_ptr;
queue_ptr = ALLOCATE (2);
WRITE queue_ptr + O, UNDEF;
WRITE queue_ptr + 1, UNDEF;

guardian_ptr = ALLOCATE (1);
() = SWAP guardian_ptr queue_ptr;

fork
Process init_state queue_ptr, crit_sect_ptr;

return guardian_ptr;

In this code the SWAP operation is used just to put an initial
value in the guard location. The previous value in the guard
location is garbage and is thrown away.

The guard location holds a pointer to the final (unfilled)
entry of a queue of entries of the form

data Queue =
(ENTRY Input Queue) |
(EMPTY)

The generic Process function applies the critical section
function to input values provided by the queue entries, re-
turning the result values as specified by the given contin-
uation in each instance. Figure 8 shows the coding of the
Process function. (Its normal return value is empty because
the effect of executing Process is to provide return values to
each caller of Transact by means of the continuations saved
in the entries of the queue.)

The special module Transact processes each call making
a new entry in the queue for processing by the Process

Transact argument guardian = let

cont = return_continuation;
-- obtain the contiuation for this call
-- of Transact
new = (ENTRY undefined undefined);
-- make a new unfilled queue entry
current = update guardian new;
-- set the guard so future requests use
-- the new queue entry
input = (INPUT argument cont);
-- construct the new queue entry
define current (ENTRY input new)
-- fill the current queue entrye
in

Figure 9: The special module Transact.

Transact argument guard_ptr return_continuation

cont = return_continuation;
new_ptr = Allocate (2);

WRITE new_ptr + O, UNDEF;

WRITE new_ptr + 1, UNDEF;
current_ptr = SWAP guard_ptr, new_ptr;
input_ptr = Allocate (2);

WRITE input_ptr + O, argument;
WRITE input_ptr + 1, cont;

WRITE current_ptr + O, input_ptr;
WRITE current_ptr + 1, new_ptr;
QUIT;

end Transact

Figure 10: Abstract machine code for the Transact module.

function. Its code is given in Figure 9. The new queue
entry consists of the argument and the return continuation
and becomes the final entry of the queue. This is done by
the update operator which is implemented using the SWAP
memory operation as shown in Figure 10.

The way this code appends entries to the queue for the
Process function is illustrated by the succession of snap-
shots in Figure 11. In Figure 11(A) the guard holds a refer-
ence to current (and final) entry b of the queue. The Process
function is following the chain of entries from the top and
pauses when it attempts to access (with a READ operation)
entry b which is yet to be filled in. In Figure 11(B), a new
(empty) entry c has been created and a SWAP operation per-
formed to substitute c¢ for b in the guard. The new empty
entry is now referenced by the guard. In Figure 11(C) the
pointer to ¢ has been installed (by a WRITE operation) in the
current entry b, allowing the Process function to proceed.

7 An Example: Insertion and Search in an Integer Set

A simple example for transaction processing is the process-
ing of commands for inserting and searching in a set of inte-
gers. Figure 12 shows the functions that, respectively, insert
integers into an ordered list, and search for an integer in the
list.

We define search and insert commands and the corre-
sponding responses as follows:
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Figure 11: Snapshots showing formation of the stream of Entries at the guard.

data Set =
EMPTY |
NONEMPTY int Set

Insert set n :: Set -> Int -> Set
Search set n :: Set -> Int -> Bool

Insert set n =
case set of
EMPTY -> NONEMPTY n (EMPTY)
NONEMPTY m rest ->
if m > n then
NONEMPTY n set
else
NONEMPTY m (Insert n rest)

Search set n =
case set of
ENMPTY -> FALSE
NONEMPTY n rest -> TRUE
NONEMPTY _ rest ->
Search rest n

Figure 12: The Insert and Search functions.

INSERT int
INSERT

data Command =
data Response =

SEARCH int |
SEARCH bool |

We must provide for continuing operation of an arbitrary
caller following completion of each instance of the critical
section. For this purpose we include a continuation with
the arguments and result values for the critical section func-
tion.

(INPUT Command Continuation)
(OUTPUT Response Continuation)

data Input =
data Output =

The CritSect function for this example has a set as its
state and invokes the insert or search function according to
the command given as input. For the search command it
returns a boolean value and the same set as it was given.
For the insert command it returns the given set with the
given integer inserted.

CritSect :: Input -> Set -> (Output, Set)

CritSect input set = let

(cmnd, cont) =
(resp, set’) =

input
case cmnd of

SEARCH n -> SEARCH (Search set n), set
INSERT n -> INSERT, (Insert set n)
output = (resp, cont)

in (output, set?’)

This critical section function, together with the insert
and search functions, form the complete application-specific
code for the integer set example. The other program mod-
ules (MakeGuardian, Transact, and Process) are unchanged
and are common to all transaction processing implementa-
tions.

This example illustrates how the use of [_structure syn-
chronization can yield substantial parallelism from the con-
current processing of many transactions. The CritSect
function may return its set output component even though
its activity (searching the set or scanning for the correct in-
sertion point and constructing a new list) has not completed.
Note that each entry created to hold a new element of a list
representing the integer set is written only once after space
is reserved by the ALLOCATE instruction in the insert code.
The absence of updates and the delaying of access until an
entry is filled combine to achieve the concurrency of oper-
ation without departing from the interleaving semantics of
critical sections.

8 Other Approaches

In this section we discuss other approaches for handling
transactions in a multiple processor setting. The principle
issues addressed are using the clarity of the functional pro-
gramming style as much as possible, and achieving a high de-
gree of concurrency, specifically overlapping the execution of
transactions. First we consider ways in which M-structures
may be used to implement the integer set example, then
we discuss how it might be implemented in a conventional
shared-memory multiprocessor.

8.1 Programming with M-Structures

One alternative to extend functional programming for non-
determinate computation is to introduce updateable objects
called M-Structures [Barth 92]. Every M-structure location
is either empty or full An M-structure take operation on
an empty slot suspends. A put operation to an empty slot



simply writes a value in the slot and makes the slot fullif no
pending take operations are waiting. Otherwise, the value
is passed to one of the suspended take operations, and the
slot is again empty. A put to a full slot is an error.

Below is how the integer set example can be written
with M-structures. Since search is a pure function (no M-
structure operation is needed), we only give code in Id for
the insert operation.?

define Insert set n =

if (MNil? set) then
MCons n nil

else
{m= set.MCons_1;

IN

if m > n then
MCons n set

else
L: {set!'MCons_2 = insert set!MCons_2 n;
IN
set
}
}
Note that, in line L, the ‘!’ on the left-hand-side means

M-structure put and on the right-hand side means an M-
structure take operation. See [Nikhil 90] for cetails concern-
ing I-structures in Id. Note that the M-structure put oper-
ation is an in-place update, so there is no copying.

To highlight the difference of the above code from our
solution, consider what happens when several concurrent
insert or search operations are present. In our solution, once
a command (insert or search) is presented to the critical
section, its effect is fully determined, and the results do not
depend on the relative speed of execution of each command.
The nondeterminacy is confined to the interleaving of the
several commands by the operation of the Transact module.

The same cannot be said for the M-structure solution. In
fact, if there are two concurrent insertions, say S1 and S2, it
is possible for S1 and S2 to continue to leapfrog each other
toward the end of the list. The result of a concurrent search
operation, if present, depends on the speed of its execution
relative to any concurrent insert operations.

Our solution is consistent with the usual semantics for
database transaction processing. The results are the same as
in the sequential run in which each transaction is executed
completely before any other is allowed to start. On the
other hand, when M-structure operations are used to modify
parts of the shared state in place, we know of no general
methodology for ensuring that the semantics of database
transactions are satisfied.

It may be that our solution using a guard and func-
tional operations performs more memory allocation oper-
ations than does the M-structure code using transaction op-
erations written in a non-functional style. However, in our
solution, additional memory is actually needed only when
overlapped transactions are in progress. When such a situa-
tion arises, we suspect that the M-structure code will incur
some extra cost for M-structure coordination. If this cost
involves allocation steps it may as expensive as copying. Of
course, one alternative is to implement our Transact module
using an M-structure variable in place of a guardian, but we
believe using the SWAP operation is both simpler and more
efficient.

2We expect to use the pH language [Nikhil 94] to present this ver-
sion in the final paper.

8.2 Programming Integer Set in a Shared-Memory Envi-
ronment

Here we consider how multiple invocations of the insert
and search operations may be handled on a cache-coherent
shared-memory multiprocessor computer. We assume that
all processors share a common address space, so each proces-
sor is able to execute any procedure present in the memory.
We assume that processes use the standard semaphore op-
erations P and V to implement the necessary coordination.
The system must guarantee (through its cache coherence
machinery) that in execution of the code sequences

P1 P2
write x P(s)
V(s) read x

by processors P1 and P2, whenever execution of V by P1
causes execution of P by P2, the value of x read by P2 is
always identical to the value written by P1. (There must be
no failure due to races in the memory network.)

The simplest solution is to use a single mutual exclusion
semaphore that permits one process at a time to execute
the insert or search function. This has the drawback that
no concurrency of transaction execution is achieved, but the
advantage that only one instance of the list representing the
integer set exists at any time.

Now let us consider how we might construct an imple-
mentation such that transactions could overlap as in our so-
lution using a guardian. There are two parts to the problem.
The first is entering the commands into a common stream.
This part can be done using a mutual exclusion semaphore
guarding a critical section that appends a new input record
to a queue.

The second part is the coding of a daemon process that
will yield overlapped execution of the insert and search oper-
ations. For concurrent operation of commands, we suppose
a separate process is associated with the execution of each
transaction. Two problems must be dealt with: (1) Making
sure that each process is given the right instance of the set
list. (2) Making sure that, if an insert operation is active,
then each subsequent operation waits at each node until the
node becomes defined.

Part (1) is done by a process that takes entries from the
queue and either (a) starts a search process using the current
list of set elements, or (b) initializes a new list and starts
an insert process building the new list from the current one;
the new list is made the current list for subsequent queue
entries.

To do part (2), we need a synchronization mechanism
that permits any number of search and insert operations to
pause at a list node with undefined contents. These oper-
ation are allowed to continue just when the creator of the
node (some earlier insert process) has defined the node con-
tents, effectively simulating an I-structure variable.

In summary, if concurrency of transactions is not es-
sential, transaction processing may be implemented using
functional operation modules and a single mutual exclusion
semaphore. However, it appears difficult to code for over-
lapped execution of transactions (other than multiple read-
ers) without resorting to methods that lack the elegance and
simplicity of the functional style.



9 Conclusion

We have introduced a way of programming the processing of
access and update transactions in a multiprocessor computer
system such that overlapped execution of multiple transac-
tions is achieved and yet program modules for the transac-
tion operations are written in the pure functional style. This
is accomplished through the use of I-structures and the addi-
tion of a SWAP operation to the memory system of an abstract
computer for executing pure functional programs.

Comparison with published solutions using M-structures
shows that, although the published solutions offer the ad-
vantage of update-in-place in avoiding allocation steps, this
is attained at the cost of departing form the pure functional
style in programming the transaction operations. Program-
ming transactions for overlapped execution in a conventional
shared-memory multiprocessor appears to require program-
ming techniques that make heavy use of process coordina-
tion commands and will be difficult to prove correct.
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