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MIT DEC, CRL
Abstract

The semantics of kernel pH are defined in the form of a parallel, normalizing interpreter.
A description of I-structure and M-structure operators is also given within the same frame-
work. Semantics of barriers in pH are presented by translation into the kernel language without
barriers. The framework presented is also suitable for multithreaded compilation of pH.

1 What is pH?

pH [11] is a parallel variant of the Haskell programming language [8] with extensions for loops,
synchronized side-effect operations, and explicit sequentialization. This paper discusses the opera-
tional semantics of these variations and extensions. The concrete syntax of pH is presented in the
preliminary pH manual [11] and will track future Haskell versions.

There is more than one approach to parallel implementations of functional languages. For
example, it is possible to exploit the implicit parallelism of a Haskell program by concurrent evalu-
ation of the arguments of strict operators. The absence of side effects ensures that this concurrent
evaluation cannot change the result. Strictness analysis techniques widen the scope of this idea,
by allowing parallel evaluation of any strict function argument. Further, it is possible to provide
programmer annotations to indicate sub-expressions which should be evaluated in parallel, even
when the compiler cannot prove that the value of all the sub-expressions will be required. Unlike
similar annotations in imperative languages, the annotations can only affect termination, and not
the results (if any). All these approaches take demand-driven evaluation as the starting point: in
the absence of annotations, an expression is evaluated only if its value is required.

An alternative approach is to use a parallel evaluation order which reduces all redexes in parallel,
not only those whose value is required. This strategy also implements non-strict semantics, provided
that no redex has its evaluation delayed indefinitely. A parallel evaluation strategy is followed by
the Id programming language [10], in which any redex not in the body of a conditional or lambda
abstraction is reduced. pH follows the same strategy. A brief description of pH may be given as
follows.
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Department of Defense under Office of Naval Research contract N00014-92-J-1310.
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pH = Haskell syntax and type system + Id evaluation strategy + Id side-effect operators

In practice, implementations of pH may not guarantee that every redex is reduced eventually.
This will imply that some pH programs may fail to give a result and terminate when they would
do so in “traditional” Haskell. However, if pH gives a proper (non-error, non-bottom) result for a
particular program then so does “traditional” Haskell, and these results are the same.

1.1 Why pH?

pH is an attempt to bring together the lazy functional community (as represented by Haskell) and
the dataflow community (as represented by Id and Sisal [7]). It is hoped that by sharing a common
base language, it will be easier to share ideas and implementations and freely exchange programs.
By doing so, programmers need only master a single syntax and type system. There are important
differences between pH and Haskell, however. By choosing Haskell as a framework, it becomes
easier to isolate and therefore understand the differences between the two.

1.2 Structure of pH

pH is a layered language. pH(F') is the purely-functional subset of pH. Its main addition to Haskell
is for- and while-loops. For example, one could compute the sum of the integers between 1 and n
as follows.

Example 1:
let sum = O
in for i <- [1..n] do
next sum = sum + i
finally sum

Loops are purely functional, and can easily be translated into tail-recursive functions. The eager
semantics of pH permits tail-recursion to be implemented more efficiently than lazy semantics.

pH(I) adds I-structures [4] to pH(F). I-structures are single-assignment data structures that
allow fine-grain producer-consumer synchronization among parallel tasks. pH(I) preserves deter-
minacy, i.e., confluence, although the language is no longer referentially transparent.

pH(M) adds M-structures [6] to pH(I). M-structures are multiple-assignment data structures
that allow mutual exclusion synchronization. M-structures introduce side-effects and non-determinacy.
pH(M) also provides the ability to group statements for sequential execution using barriers in order
to avoid unwanted race conditions among side-effect operations.

Full pH is the same as pH(M).

1.3 Outline

The rest of this paper concentrates on semantic issues in which pH differs from Haskell. Section 2
describes the parallel evaluation order of pH in the context of a kernel language and its multi-
threaded interpreter. In Section 3 we extend the kernel language with I-structure and M-structure
operations. Section 4 defines the semantics of barriers by translating them into the kernel language
using explicit termination signals from side-effect operations. Finally, Section 5 concludes with
some notes about current implementations.



c € Constant

fit,x,y,z... € Identifier

SE,X,Y,Z,... € Simple Expression

E € [Expression

PF" € Primitive Fn. with n arguments

CF™ € Data Constructor with n arguments

S € Statement

Constant = Integer | Float | Boolean | Nil

SE = Identifier | Constant

Pt = hd|tl|select_k

PF2 — _|_|_||<|>|

CF* = Cons

CF™ = make_n_tuple

E n= SE| PF™(zq,...,2,) | CF™(21,...,2,)
| Az. E'| case(z, By, ..., Fy)
| ap(, 2) | sap(f, 2) | Block

Block n= {Sinz}

S = elz=F|S;...55

Program == Block

Figure 1: The kernel pH language.

2 Parallel Evaluation Order

pH follows an eager evaluation strategy: all tasks execute in parallel, restricted only by the data
dependencies among them. This strategy automatically exposes large amounts of parallelism both
within and across procedures. This is in contrast with a lazy evaluation strategy followed by Haskell:
only those tasks are evaluated which are required to produce the result. This strategy imposes a
sequential constraint on the overall computation, although the exact ordering of tasks is decided
dynamically.

In this section we describe the eager evaluation model of pH by giving a parallel interpreter
for the kernel language of pH. Qur interpreter is based on a parallel abstract machine, which
is in the spirit of the G-machine and its later variants [9, 5, 12]. We first describe the kernel
language (Section 2.1) and then our parallel abstract machine (Section 2.2) and its instruction set
(Section 2.3). It is followed by a description of the interpreter (Section 2.4).

2.1 The Kernel pH Language

The abstract syntax of the kernel pH language is shown in Figure 1. The kernel language ensures
that every intermediate result of a complex expression is explicitly named using an identifier. This
is convenient for expressing and preserving the sharing of subexpressions within a computation [3].
In order to simplify the description of the evaluation rules in this paper, we do not allow constants
to appear as arguments to primitive functions.

Aside from the usual arithmetic primitives, the kernel language provides functions for con-
structing and selecting elements of lists and n-ary tuples. The language also provides n-ary case



¢t € Instruction
¢ € Location
v € Value = Constant | Location | (Az. £, p)
p € Environment Frame = Identifier — Location
o € Store = Location — {(full v) | (defer és)}
w € Thread = Code x Environments
6 € Suspension = Thread
6s € Suspensions = List(Thread)
ws € Work Queue = List(Thread)
Accumulator = Value
LS Code = List(Instruction)
ps Environment = List(Environment Frame)
Processor = Accumulator x Code X Environment
Machine = List(Processor) x Work Queue X Store
Processor Global Memory
State Accumulator Code Environment | Work Queue Store
Initial (starting proc.) - LSg [] [] {}
Initial (other proc.) - [] [] [] {}
Final (all proc.) - [] [] [] o
Error (any proc.) storerr Ls ps ws o

Where 1sg = [eval(Program), print, schedule]

Figure 2: Dynamic entities used by the abstract machine.

expressions which select one of the branches based on the value of the dispatch identifier, nested
A-expressions which may contain free identifiers, a general function application operator ap, and a
parallel block construct that controls lexical scoping and enables precise sharing of subexpression
values. The order of bindings in a block is not significant. The identifier following the in keyword
in a block expression denotes the result of the block.

2.2 A Parallel Abstract Machine

Our parallel abstract machine consists of a number of sequential processors connected to a global
shared memory. The important features of our machine are described in Figure 2. Each memory
location can hold a value or a list of suspended threads, and is tagged with its status. A full location
contains a value. A newly allocated location is tagged with defer and it is initialized to be empty.
A wvalue is either a constant, an allocated store location, or a function closure. The global memory
holds three types of entities: heap storage, activation frames and a work queue which is a list of
threads, that is, (code, environment) pairs.

The processor state consists of code, environment, and an accumulator which can hold a value.
Any idle processor can get work by dequeuing a thread from the work queue and loading its code
and environment space from the thread. Initially, it is assumed that the whole machine is empty. A
program F is started by executing the following code on some processor in the empty environment.

[eval(£'), print, schedule]



The eval instruction interprets an expression by structural decomposition in a given environ-
ment. Environments map program identifiers to frame locations, and are structured in a stack like
manner. eval of a block allocates a new activation frame in the global memory to store the values
of the bound identifiers of the block. It also creates a new environment frame for these identifiers
and pushes it on the processor environment. The bound identifiers of the block point to locations
in the newly allocated activation frame. New environment frames (but not activation frames) are
also created in case of A-expressions and function applications. The sharing of computations is
achieved entirely through the activation frame locations: all references to an identifier within the
scope of its definition lead to the same frame location. The separation of environment frames and
activation frames permits environments to be copied freely and therefore allows us to treat function
closures in the same way as simple values.

At each step, the processor executes the instruction at the head of the current code sequence,
modifying the processor state in the process. The instruction set of the processor has instructions
to load and store the accumulator, perform arithmetic and logic operations on store locations,
and suspend the current thread in case of missing values. This is in contrast with lazy functional
languages where unevaluated locations contain thunks that compute its value on-demand. Typically
an instruction is popped from the code sequence after execution, but some instructions may also
add new instructions to the code sequence. This is the primary way to alter the control flow. There
are also instructions to push and pop environment frames, and enqueue and dequeue threads from
the work queue.

The work queue is maintained as a FIFO queue in order to guarantee fair scheduling. This
queue must be manipulated atomically. It is easy to modify the machine so that each processor
has its own work queue which is maintained in a FIFO manner. In case a processor goes idle, it
can pick up a thread from the back of the work queue of any other processor. As long as we do not
arbitrarily suspend the currently running thread on any processor, this strategy still implements
a fair schedule while considerably reducing the contention due to the atomic manipulation of the
work queue.

The overall state of our parallel machine is described by the state of all the processors and the
global memory and the work queue. Figure 2 also shows the initial, the final and the error states of
the processors of our machine. The machine starts by scheduling an initial sequence of instructions
on some processor that evaluates the program, prints the result present in the accumulator!, and
then continues to schedule the remaining work present in the work queue. This emphasizes the
non-strict nature of this evaluation model: the program may print a result before final termination.
The machine halts when both the code sequence and the work queue are empty. The machine is
said to be deadlocked when there are suspended computations in the store but there is no work
to be done. If there are no suspended computations, then the machine is said to have terminated
normally. An error may be generated during execution due to exceptional conditions such as a
type mismatch, an arithmetic overflow, or out of bounds access to data structures. However, if an
attempt is made to write into a memory location that is already full then the whole machine is said
to have reached an error state as shown in Figure 2.

2.3 Instruction Set

Figure 3 shows the instructions used by our interpreter. We will describe the semantics of these
instructions in terms of a state transition involving a 5-tuple (v,ts, ps,ws, o). The first three

!The main thread is the only place where a print instruction may appear.



eval(F) :t  Evaluate £ in the current environment and leave the result in the

accumulator
touch () it Check if the location £ is full, if not suspend the current thread
rtouch (£) 2 Check if the location /£ is full, if not suspend the current thread

including the rtouch instruction. (Thus, rtouch can be retried when
the thread is activated again).

load () i Load the accumulator with the value present in the location ¢ (the
location must be full)

take (/) :t Load the accumulator with the value present in the location ¢ and
mark the location empty (the location must be full)

loadi_k (/) v Load the accumulator with the value in the location at an offset

k from the location pointed to by £, or suspend the thread if the
location is empty

store(() 2 Store the value in the accumulator in the location £ and reactivate
any suspensions

storerr(() 2 Generate an error if the location £ is full

PF™(€1,...,4,) . Apply strict primitive operator PF"™ (such as +) to the values at
locations /1, ..., £, (the locations must be full)

switch({y,¢81,...,t8,) = Switch to the branch indexed by the value at location /£,

pushenv (p) 2 Push the environment frame p onto the environment stack

popenv ;2 Pop the top-level environment frame from the environment stack

schedule ;2 Schedule the next thread from the work queue

print :: Print the accumulator contents

Figure 3: The instruction set of the parallel abstract machine.

elements of the tuple refer to the accumulator carrying a value v, the code sequence s, and the
environment ps on the processor where the instruction is executed. The last two elements of the
tuple are the work queue ws, and the dynamic store o which are shared amongst all processors.

All the instructions that modify the global store must be executed atomically. That is, while a
processor reads and modifies a given location within the store, no other processor should be allowed
to read or write that location. Transactions on different locations may proceed in parallel. In case
where an instruction sequence ¢s has to be executed atomically, we will indicate that by writing
atomic(ts).

Touch Instructions

The touch instruction tests the status of a location. If the status is full, it does nothing. Oth-
erwise, (status is defer) the code sequence following the current instruction is suspended at that
location along with the current environment. The rtouch instruction is similar except that the
touch operation is retried.



touch:
(- touch(?):1s ps ws o[l (full v)])
(- s ps ws o)

(- touch(f):is ps ws o[l — (defer és)])
(- [schedule] ps ws o[+ (defer (1s,ps): s)])

rtouch:
(- rtouch(f) :us ps ws o[l (full v)])
(- s ps ws o)

(- rtouch(f) :vs ps ws o[l (defer és)])
(- [schedule] ps ws o[l — (defer (rtouch({) : is, ps) : 6s)])

Note that these instructions do not start the evaluation of the expression that will fill the
location being touched. In lazy evaluation this expression is always known and a thunk for it can
be stored in this location. In that case, the above instructions can be easily generalized to enqueue
the thunk into the work queue.

Load and Store Instructions

The load instruction loads the contents of a given location into the accumulator. The location must
already be full. The take instruction is similar to load except that it leaves the location empty.

load:
(- load(f):ts ps ws o[l — (fullv)])

(v 1s ps ws o)

take:
(- take(f):ts ps ws o[l — (full v)])
(v s ps ws o[l (defer [])])

loadi_k is an indexed, indirect load instruction. It desugars into touching an indexed location
and then loading its value into the accumulator.

loadi_k:
(- loadik(ly) s ps ws o[ly — (full £)])
(- touch({+ k) :load({ + k) :1s ps ws o)

The store instruction stores the contents of the accumulator into the given location. It also
reactivates any suspensions waiting in the location by enqueuing them in the work queue.

store:
(v store(l):ts ps ws o[l (defer 6s)])
(v s ps wsH6s o[l — (fullv)])

Storing in a location that is already full is regarded as an error. The storerr instruction tests
the status of a location and produces an error if it is already full. This instruction can precede a
store instruction to avoid multiple stores to the same location.



storerr:
(- storerr({) :us ps ws o[l — (full v)])
(storerr s ps ws o)

(- storerr({) :vs ps ws o[l (defer és)])
(- s ps ws o)

Arithmetic and Logic Instructions

The standard arithmetic and logic primitives are straightforward. All of them leave the result in
the accumulator.
+:

(- +(l,6) :es ps ws o[l — (full m), by — (full n)])

(m4+n s ps ws o)

Switch Instruction

The switch instruction selects one of its branches based on the value present in the location being
dispatched upon.
switch (1 < m < n):
(- switch(€y,151,...,t8,) 115 ps ws o[ly — (full m)])
(- tSmHis ps ws o)

Environment Manipulation Instructions

The pushenv instructions pushes the given environment frame onto the local environment stack
of a processor, while the popenv instruction pops one frame from the top. The contents of the
accumulator are not disturbed while popping.

pushenv:
(- pushenv(p) :ts ps ws o)

(- s p:ps ws o)

popenv:
(v popenv:is p:ps ws o)

(v 1s ps ws o)

Thread Scheduling Instruction

The execution of a schedule instruction on a processor signifies either the termination or the sus-
pension of a thread. The processor schedules a new thread from the head of the work queue or
starts idling if the work queue is empty. The machine halts when all processors are idling.

schedule:
(- [schedule] ps (.8, ps):ws o)

(- 18" ps' ws o)

(- [schedule] ps [] o)
(- [T ps [1 9)




2.4 Expression Evaluation

In this section we describe the eval instruction which is used to destructure and evaluate expressions.
It leaves the value of the expression in the accumulator.

Evaluation of a constant simply loads that constant into the accumulator.

eval constant:
(- eval(c):ts ps ws o)

(c s ps ws o)

Evaluation of an identifier first touches it and then loads its value in the accumulator.
eval identifier:
(- eval(z):ts ps ws o)
(- touch(ps(z)) :load(ps(z)):ts ps ws o)

In case of a strict primitive function, we touch all its arguments before executing the primitive
application.

eval strict PF":
(- eval(PF"™(z1,...,2,)) 1 ts ps ws o)
(- touch(ps(z1)):...:touch(ps(z,)) : PF*(ps(z1),...,ps(z,)) 1 ts ps ws o)

All data selector functions such as hd, tl, and select_k are directly implemented using the indexed,
indirect load instruction loadi_k.

The non-strict constructor Cons allocates a pair of empty locations in the store and immediately
returns the pointer to the first location as its value. It also pushes work into the work queue to
evaluate the arguments of Cons and to fill these locations eagerly. The n-ary tuple constructor
make_n_tuple operates in the same fashion. Note that under lazy evaluation we would have stored
thunks into these locations which would be evaluated on demand.

eval Cons:
(- eval(Cons(z1,z2)) :ts ps ws o)
(£ 15 ps wsH|wi,ws] o)

where o' =0+ { £ — (defer []), ({4 1) — (defer []) }
wy = ([eval(z1), store(£), schedule], ps)
wq = ([eval(z3), store(£ + 1), schedule], ps)

A-expressions are evaluated to a closure value. The closure records the locations for the free
identifiers of the A-body in a new environment frame.

eval A-expression:
(- eval(Az.E):1s ps ws o)

((Az. E,p) s ps ws o)

where y1,...,ym = FV(Az.E)
p={yi=psy),- - ym = ps(ym) }
Evaluation of a function application proceeds by first touching the function and then applying

the resulting closure to the argument. The function argument is touched prior to application only
if the function application is strict (sap).



eval ap:
(- eval(ap(f,z)):ts ps ws o)
T ouch (75(7)) - ab(ps), p3(2) 115 s w0

eval sap:

(- eval(sap(f,z)):ts ps ws o)
( touch(ps(f)) : touch(ps(2)) : ap(ps(J); ps()) : i5

Given a closure, the ap instruction extends the closure environment frame with the given argu-
ment location and starts the evaluation of the function body after pushing the new environment
frame onto the current environment. The old environment is restored after the evaluation of the

ps ws o)

body produces a result in the accumulator?.
ap:
(- ap(ly,l,) :ws ps ws o[ly— (full (Az. E, p))])
(- pushenv(p’) :eval(F) : popenv :ts ps ws o)
where p' = p+{z— 1, }

The evaluation of the case expression proceeds by first touching the dispatch expression. This
must yield an integer within the range of the dispatch which is used to select the appropriate
branch.
eval case:

(- eval(case(z, F1,...,FEy))its ps ws o)
(- touch(ps(z)) : switch(ps(z), [eval(E1)], ..., [eval(E,)]) :ts ps ws o)

The evaluation of a block expression allocates a new activation frame in the store with a fresh
location for each bound identifier of the block. It also allocates new environment frame which
points to the locations in the new activation frame. This environment frame is pushed onto the
current environment. Following eager evaluation, auxiliary threads are added to the work queue to
evaluate each of the right-hand side expressions in the extended environment. The result identifier
is also evaluated under this extended environment.

eval block:
(- eval{z1=Fy;...;zp,=Fy,inz }) s ps ws o)
(- pushenv(p) : eval(z) : popenv :ts ps wsHws' o)
where p={ 21— ¥l,...;2,—l, }

o' =o+{l— (defer[]),..., 0, — (defer []) }
ws' = [([eval(£}), store(fy), schedule], p : ps),

([eval(F},), store(£,,), schedule], p : ps)]

It is also possible to initialize the newly allocated block locations with the thunks for their
respective right-hand side expressions, and not enqueue threads into the work queue. These thunks
will be enqueued when the locations are touched.

3 Side-Effect Operations

Functional programming languages purposely do not permit assignment or mutable storage. In-
stead, such features are often offered through various implementation tricks such as by using

2Note that restoring the environment does not imply that the function environment can be deallocated because
some threads of the function body may not have terminated yet.
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Constant = ---| e

PF! = ---|iAlloc |mAlloc | iFetch | mFetch | W
Pr? = ---|iStore | mStore | &
S = | (Sl - 52)

Figure 4: Kernel language extensions for side-effect operations.

monadic programming techniques. Alternatively, side-effects may be introduced via the traditional
assignment operator after specifying a precise sequential ordering on all operations (e.g., Scheme
and ML). Id, motivated by concerns for parallelism, offers yet another alternative for incorporating
side-effects. In Id, it is possible to specify only a partial order on side-effect operations and still
retain an overall consistent picture of the computation.

pH supports imperative operations on I-structure [4] and M-structure [6] objects. I-structures
allow the creation of a data structure to be separated from the definition of its components: at-
tempts to use the value of a component are automatically delayed until that component is defined;
attempts to redefine a component lead to an error state. M-structures, on the other hand, are fully
mutable data structures whose components can be redefined repeatedly: an mFetch operation reads
and empties a full component; an mStore operation (re)defines it; two successive mStore operations
on the same component lead to an error state unless separated by an mFetch operation.

For some programs in pH we need a way to sequentialize M-structure operations in order to
avoid race conditions implied by its parallel evaluation order. This is accomplished by the use of
control regions and barriers [2]. A control region is informally defined as a set of concurrent threads
that are under the same control dependence and therefore always execute together. Threads within
the same control region may execute in any order or in an interleaved manner as long as the data
dependencies among them are respected. Barriers provide a mechanism to detect the termination of
a set of parallel activities enclosed within a control region. A barrier (---) creates two sub-regions
within a given control region — one above the barrier called the pre-region and the other below
the barrier called the post-region. Intuitively, no computation within the post-region is allowed to
proceed until all the side-effect computations within the pre-region have terminated. This semantics
is different from those proposed in [2] where a barrier waits for the termination of all computations
rather than just those which cause side-effects.

In the rest of this section we describe the pH extensions to deal with I-structure and M-structure
operations. The semantics of barriers is described in Section 4.

3.1 Kernel Language Extensions

We extend the kernel language to incorporate side-effect operations and barriers as shown in Fig-
ure 4. We add primitives to allocate, read, and write I-structures and M-structures. The fetch and
store operations directly address store locations: indexed addressing is handled separately in the
kernel language.

We also extend the syntax for block bindings to allow barriers—two sets of parallel block
bindings may now be sequentialized by using a barrier (---) between them. Additional constants
(e), primitive operators (W and &) and strict function application (sap) are used to translate barriers
into an ordinary set of bindings.

11



3.2 Evaluation Rules for Side-Effect Operations

In this section we describe additional evaluation rules for internal primitive operators involving
[-structures, M-structures, and barriers. All these operators are strict on all their inputs.

I-structure Instructions

The iAlloc instruction allocates an empty [-structure array. The iFetch and iStore instructions
address an I-structure location directly; all address arithmetic must be done separately. The iFetch
instruction is similar to loadi_k. The iStore instruction updates an empty location with a value and
reactivates any suspended continuations. Storing to an already full location is considered to be an
error.

iAlloc:
(- iAlloc(ly) :ts ps ws o[ly — (full n)])
(£ s ps ws o)

where 0/ = o +{ £+ (defer []),...,({+n — 1) — (defer []) }

iFetch:
(. iFetch(l;) :1s ps ws o[ly — (full £)])
(- touch(f) :load(f) :ts ps ws o)

iStore:
(- iStore(ly,0,) :1s ps ws o[ly — (full £)])
(- atomic([storerr({),load((,),store(f)]) : ts ps ws o)

M-structure Instructions

The mAlloc and mStore instructions are identical to the corresponding instructions for I-structures.
The mFetch instruction is similar to the iFetch except that it empties the location being accessed
and has to be retried if the location is already empty.

mAlloc:
(- mAlloc(l;) :es ps ws o[ly — (full n)])
(£ s ps ws o)

where 0’ = o+ { £+ (defer []),...,({+n— 1) — (defer []) }

mFetch:
(- mFetch({y;) :us ps ws o[ly — (full £)])
(- atomic([rtouch(?), take(?)]) :vs ps ws o)

mStore:
(- mStore({y,0,) 11s ps ws ol[ly — (full £)])
(- atomic([storerr({),load(?,),store(f)]) : ts ps ws o)

4 Semantics of M-Barriers

In this section we describe the semantics of barriers by translating them into ordinary block bind-
ings. The idea is to systematically construct a composite termination signal from all the side-effect

12



EXPRESSIONS

TE ::  Expression — Expression
TE[] = c e
TEﬂxﬂ = T, e
TE[mFetch(z)] = {y=mFetch(z);

iny, Wy}
TE[mStore(z, z)] = {y=mStore(z, z);

iny, Wy}
TE[PF" (z1,...,24,)] = PF™(zq1,...,2,), ®
TE[ z. F] = M. TE[E], e
TE[case (z, F1,...,E,)] = case (z, TE[F4],..., TE[FE,])
TE[ap(f, )] = ap(f,z)

TE[{ S inz }] = {Sinz, s}
where S’, s = TS[S]

STATEMENTS
TS[] i Statement — List(Statement) X Identifier
TS[(] = (s=e), s
TS[z = F] = (z,s=TE[FE]), s
TS[Sy;...;5,] = (S1;..58;s=s1& - &s,), s
where Sl s;,=TS[S;] 1<i<n
TS[S1 -—- 53] = (S

f=As{Syiny, ..., Ym,s2 };
y17"'7ym78/2:Sap(f731))7 8/2
where S s; = TS[S] 1<i<2
Yy Ym = BV(SQ)

Figure 5: Semantics of M-barriers.

operations taking place within the pre-region of a barrier (including its child regions) which would
then be used to trigger the operations present in the post-region of the barrier. The notion of signal
generation and composition may be understood by looking at the translation of a simple parallel
block as shown below.

TEﬂi{ibl :El, = {$1,81 = TE[E1H7
z, = E,; Tn, s, = TE[E,];
inz }] inz,s1 & -+ &s, }

An expression F; is translated as TE[F;] which dynamically returns a value (bound to z;)
along with an explicit termination signal s;. The operator W is used to detect the termination of
each side-effect operation (mFetch and mStore) within £;. The value of s; would become e as soon
as all the side-effect operations in F; have terminated. The operator & is then used to combine all
such signals into a single signal for the whole block.

The primitive W operator produces a signal e when a given identifier becomes a value. The
general evaluation rule for strict primitive functions would ensure that the identifier being tested
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is touched before applying the W operator. Similarly, the primitive & operator is used to combine
signals from two subexpressions into one signal after they have been touched.
W:

(- W(ly):s ps ws o[ly — (fullv)])

(o s ps ws o)

(- &(l1,03) :1s ps ws ofly — (full @), fy — (full e)])

(o s ps ws o)

The complete barrier translation appears in Figure 5. Note that tuple return values and non-
refutable pattern matching is used only for clarity—these operations are directly desugared into
primitive operators in the obvious way. The only non-trivial base cases for signal generation are
those for the mFetch and mStore primitive operators. The mFetch operation is considered to have
terminated when the value of the location being fetched is returned. Similarly, the mStore operation
is considered to have terminated when it returns the value being stored.

In the translation of S; --- 55, note that S, gets protected by a A-expression, so that it does
not get evaluated until the A-expression is applied to something. That something is the termination
signal of S, and we use sap to ensure that the application does not commence until the termination
signal is available. Finally, since the bound variables of S; have now gone into an inner scope (in
the A-expression), we return them all and rebind them again in the outer scope.

The barrier semantics shown here are different from the semantics presented in [2] in that here
we are concerned only with the termination of the side-effect operations present within the pre-
region of a barrier, while the semantics presented in [2] waited for the termination of the entire
computation within the pre-region.

5 Conclusion

In this paper we have presented the various semantic issues in the design of pH at which it differs
from or extends the Haskell programming language. The major difference is that pH uses a parallel
eager evaluation strategy as opposed to the lazy evaluation strategy of Haskell. First, we described
the kernel pH language and a normalizing interpreter for it that implements this parallel evaluation
order. Next, we extended the language and the interpreter with synchronizing side-effect operations,
I-structures and M-structures. Finally, we described a notion of sequentialization of side-effects
using barriers. We showed a systematic translation of a kernel pH program with barriers into one
without barriers using primitive termination detection operators.

The readers may note that our interpreter used an explicit instruction stream rather than di-
rectly evaluating kernel language expressions. This organization allows us to define a multithreaded
compilation scheme for the kernel language within the same framework. The process of compilation
can be defined as simply generating all the threads statically instead of manipulating the instruc-
tion stream dynamically. It essentially gets rid of the eval instruction. Such a compilation scheme
for the kernel language is described in [1].

Currently, there is a working implementation of the pH language using the Haskell/pH HBCC
front-end (written in Haskell) from Chalmers University and the Id compiler Monsoon back-end
(written in Lisp) from MIT. The HBCC front-end produces a kernel pH intermediate format that
is converted into dataflow graphs and fed into the Monsoon back-end. Currently, we have exercised
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this compiler with purely functional Haskell programs or pH programs derived by automatically
transliterating Id programs. At MIT, we are currently working on a new pH back-end for commercial
uniprocessor and multiprocessor architectures that is closer in spirit to the interpretation scheme
described in this paper.
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T € Threadmap = Identifier - Code

o € Identmap = Identifier — (Integer X Integer)

p € Environment = (Integer X Integer) — Location

TExp[] : Expression — Identmap — (Code x Threadmap)
Compilation: (tsg,7) = TExp[Program]{ }

Figure 6: Compile-time Objects.

A Compilation of Kernel pH

The compilation process involves separating program control from the data it manipulates at run-
time. Essentially, this involves a systematic elimination of all eval instructions from the program,
replacing them with compiled sequences of low-level instructions that compute the values of the
original expressions. We also need to define the layout of environments and the mapping from
identifier names to environment slots at compile-time.

In this section we will define a compiler for kernel pH programs based on the same machinery
as described in Section 2. Instead of dynamically generating and interpreting code sequences as in
Section 2, we will now generate a fixed set of code sequences called threads at compile-time. The
compiler is defined in three phases: first, we describe the extensions to the abstract machine and
its instruction set; next, we describe the compilation scheme for the source program transforming
them into a collection of threads; and finally, we describe how these code sequences are executed
on the abstract machine by giving additional execution rules for the new instructions.

A.1 Compilation Machinery

The semantic categories and translation functions used during compilation are shown in Figure 6
and are discussed below.

Every program expression bound to an identifier is compiled into a single primary thread that
computes the value of that identifier. Other identifiers bound within that computation give rise to
their own threads that are collected into a compile-time mapping from identifiers to threads (7).
The precise compilation rule for each source language construct appear in Section A.2.

The run-time environment mapping from identifier names to locations is split into two mappings:
one compile-time mapping («) from identifier names to a pair of index offsets (, j) into the current
environment stack, and another run-time mapping (p) from index-offset pairs to locations. The first
index 7 in a pair (7, j) refers to the position of the environment frame from the top of the current
environment stack (zero based). The second index j gives the offset within that frame (zero based)
that carries the store location for that identifier.

During compilation, we may sometimes need to refer to some of the components of the current
machine state. We use < for the accumulator and stack for the environment stack.

Finally, the additional machine instructions are shown in Figure 7. The detailed explanations
appear along with the execution rules given in Section A.3.
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loadc(c) :t Load a constant into the accumulator

makeclsr(zs, p) :t Make a closure for the thread ¢s with the environment p

apply((is, jf), (12, J2)) :: Apply the closure f to the argument z

pushwork (s, ps) :: Make and push work with the thread ¢s, and the environment
stack ps

copyenv((ig, jo) - .. {in—1,Jn-1)) = Allocate an environment using existing identifier locations

allocenv(n) :t Allocate an environment with n new identifier locations

Figure 7: Additional Compiler Instructions.

A.2 Compilation Rules

In this section we describe the compilation process of kernel language expressions into a collection
of threads.

Constants

An immediate constant is simply loaded into the accumulator.

TExp[c] @ = [loadc(c)], ¢

Identifiers
An identifier reference compiles into a sequence of touch and load instructions that touch the
preassigned environment slot and load its value into the accumulator.

TExp[z] o = [touch(a(z)), load(a(z))], ¢

Primitive Functions

For strict primitives, we first touch their arguments and then apply the primitive function. The
identifier translation gives the precise coordinates of each argument being applied to the primitive
function.

TExp[PF"(zy...2,)] a = [touch(a(z1)), ..., touch(a(z,)), PF" (a(z1),. .., a(z,))], ¢
Data selector functions such as hd,t1l and select_k are implemented using the indirect load
instruction loadi_k.
TExp[select _k(z)] o = [touch(a(z)),loadik(a(z))], ¢
The Cons operator is no longer considered as a primitive for compilation purposes. It is desug-
ared into a block of statements that allocate an I-structure and fill it as shown below.

Cons(z1,22) = { t1 = iAlloc(2);
to = iStore(ty, z1);

t3 =t + 1;
ty = iStore(ts, z2);
in tl }

make_n_tuple is desugared similarly.
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A-abstraction

The compilation of a function must ensure that both the free identifiers of the function and the
dynamically bound identifiers at an application can be accessed properly from within the function
body. Since there is no return stack in our machine, we must also explicitly provide a place to save
the caller continuation at the time of function application which is reactivated by storing the result
of the callee.

TExp[Az. F] a ={ sy, 7 = TExp[F] ay;
1S54 = sy H-[store((0, 0)) : popenv : schedule];
in [copyenv(a(y1), ..., a(yy)) : makeclsr(tsqg, O)], 7 }
where
Y1 Ym = FV(Az.E)
ap={2—(0,1),y1 = (0,2),...,yn — (0,m+1) }

We compile the function body under the assumption that its argument and all its free identifiers
are accessible through the top-level environment frame as reflected in the identifier map ;. The
first slot in the top-level frame points to the location where the return continuation of the caller
function is stored. This environment structure and the location to store the return continuation
will be setup during function application. Note that the return continuation is reactivated at the
end of the function body by updating this slot with the final result.

The A-abstraction itself compiles to produce a closure which carries an environment frame
pointing to its free identifiers.

Function Application

A function application first evaluates the function and then applies it to the given argument. The
application rule is described later in Section A.3.

TExp[ap(f, 2)] @ = [touch(a(f)) : apply(a(f), a(2),]), &

Case Expression

For case expressions, we simply compile threads for each branch and generate a switch instruction
to select the appropriate one.

TExp[case(z, F1,...,E)] a=
{ 181,71 = TExp[F1] o

184, 7 = TExp[E,] o;
in [touch(a(z)) : switch(a(z),es1,...,t8,)], T +---+ 7 }

Block Expression

For a block, first we need to allocate an environment to hold all the bound identifiers. Each of
the right-hand sides are compiled into threads that update the appropriate environment slots with
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their respective values. These threads are pushed into the work queue for evaluation. The “letrec”
semantics of the block are maintained by allowing the new threads being compiled to refer to
themselves via an extended thread map. The identifier map is also adjusted to reflect the new
environment frame being pushed onto the environment stack.

TExp[{ 2, = Fy;-- 2, =E, inz }Ja =
{ ts1,71 = TExp[F] ;
18t = 1sy +H [store((0, 0)) : schedule];

tSp, Tn = TExp[E,] o;
tsh, = s, H-[store((0, n — 1)]) : schedule];

pushwork(¢s!,, stack) : enter(o/(z)) : popenv], T +7m+---+7, }
where

T ={z1 s, a8 }
o(z)=ifz =z (1 <k < n)then (0,k) else (fst(a(z)+ 1), snd(a(z)))

A.3 Execution Rules for Additional Instructions

In this section we provide the execution rules for the additional instructions given in Figure 7. Note
that identifier names have been translated into index-offset pairs (¢, 7) pointing into the environment
stack that must be dereferenced at run-time to access the store location.

Loading Accumulator

The loadc instruction is used to load an immediate constant into the accumulator.
loadc:
(- loadc(c):ts ps ws o)
(c s ps ws o)

Closure Creation

The makeclsr instruction simply creates a new closure from the given thread and the environment
stack.
makeclsr:
(- makeclsr(ts,p):ts ps ws o)
((clsr (1).ts,p) ts ps ws o)

Function Application
Function application first allocates a flat argument environment for the function call, copying the

closure environment into it. It also copies the current argument mapping and allocates a new
location to save the return continuation of the caller. The return continuation would enable the
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callee to resume the caller after the function call has completed. Finally, the entry point present
within the closure is scheduled.

apply:
(- apply((ig,7f),(iz,J2)) 1 ts ps ws ofps[ig, jg] — (full (clsr (1). 5", p"))])
W Py

whete gy = €: pslis, ] :
o' = o+ { £ — (defer [(1s, ps)]) }

Resource Management

The pushwork instruction creates a thread with the given instruction thread and the environment
chain.

pushwork:
(- pushwork(cs’, ps’) :1s ps ws o)
5 ps wstH [ p90] o)

The copyenv and allocenv instructions construct environments. copyenv is used to create a new
environment mapping from existing identifier locations such as those for the free identifiers of a
function. allocenv is used for new identifiers bindings in a block. It allocates new locations in the
store and initializes them to be empty.

copyenv:
(- copyenv((ig, jo).--(tn—1,Jn-1)) i tS ps ws o)
(p ts ps ws o)
where p = [ps[io, jol, - - -, pS[in—1, Jn-1]]

allocenv:
(- allocenv(n) :ts ps ws o)

(p s ps ws o)
where p=[lo,..., 0 1]
o' =0+ {ly— (defer []),...,0,_1 — (defer []) }

20



