CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Partitioning Non-strict Functional Languages
for Multi-threaded Code Generation

Satyan Coorg

In Proceedings of Static Analysis Symposium '95,
September 1995, Glasgow, Scotland, UK

1995, September

Computation Structures Group
Memo 378

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Partitioning Non-strict Functional Languages for
Multi-threaded Code Generation!

CSG Memo 378
September 19, 1995

Satyan R. Coorg

To appear in the Proceedings of Static Analysis Symposium’95, September 25-27,
Glasgow, Scotland, UK.

The research described in this paper was funded in part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research con-
\ tract N00014-92-J-1310. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Partitioning Non-strict Functional Languages for Multi-threaded Code

GenerationT

Satyan R. Coorg*
MIT Laboratory for Computer Science
NE43-217, 545 Technology Square
Cambridge, MA 02139, USA

Abstract

In this paper, we present a new approach to partitioning,
the problem of generating sequential threads for programs
written in a non-strict functional language. The goal of par-
titioning is to generate threads as large as possible, while re-
taining the non-strict semantics of the program. We define
partitioning as a program transformation and design algo-
rithms for basic block partitioning and inter-procedural par-
titioning. The inter-procedural algorithm presented here is
more powerful than the ones previously known and is based
on abstract interpretation, enabling the algorithm to han-
dle recursion in a straightforward manner. We prove the
correctness of these algorithms in a denotational semantic
framework.

Keywords: Partitioning, abstract interpretation, demand
and tolerance sets, inter-procedural analysis, non-strict
functional languages.

1 Introduction

Functional programming languages can be divided into two
classes: strict and non-strict. In a non-strict language, func-
tions may return values before all their arguments are avail-
able, and data structures may be defined before all their
components are defined. Many modern functional languages
are non-strict; examples include Haskell [13] and Id [17].
Such languages give greater expressive power to the pro-
grammer than a strict language. Some of the languages pro-
vide non-strictness because of its cleaner semantics. Others,
like 1Id, also use non-strictness to generate parallelism in a
program.

Compiling non-strict languages to conventional micro-
processors has been the focus of many recent papers [26, 21,
20]. Some features in the design of commercial microproces-
sors make it difficult to execute non-strict programs directly.
These processors are highly tuned to execute a sequence of
instructions efficiently by providing features like a large reg-
ister set and deep pipelining. Unfortunately, this also im-
plies that there is a high penalty for dynamic scheduling
of instructions. As serial execution is interrupted, registers
have to be saved and restored, there may be bubbles in the
instruction pipeline etc. Synchronization is also expensive

T The research described in this paper was funded in part by the Ad-
vanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-92-J-1310.

*Email:satyan@lcs.mit.edu, Phone: 617-253-8858, Fax: 617-253-6652.

in these processors since it has to be explicitly performed
(in software) using instructions.

For programs in a non-strict language, it is not always
possible at compile-time to specify an exact ordering of in-
structions. This is illustrated in the following example writ-
ten in Id.

Example 1:

def £
{x =
y =
in

(x,y)3};

o
* + O
N o=

{... {...
(c,d) =f 2 c (c,d) =f4d1

3 o)

The function f takes two arguments a,b and returns two
results x,y. The set of statements enclosed by {...} form a
recursive let block definition. There is no syntactic ordering
of the statements of the block. Also shown are calls to the
function f in some other parts of the program (these are
referred to as contexts of £). In both the contexts, a result
of £ is fed back into one of the function’s arguments.

Consider the execution of the first context in a language
with strict semantics. The function £ is not called until both
of its arguments are available. In this case, it is not going
to be called until the variable ¢ gets a value. As the value
of ¢ depends on the call itself, this leads to a deadlockin the
program; the variables ¢ and d never get defined.

In a non-strict execution, it is possible to call a function
even though not all of its arguments are available. Also, it
is possible to return some results even though not all of the
function’s results are available. So, the function f is called
with the first argument 2 and the second argument L (an
undefined value). Then, the value of x can be computed to
be 3. Now, the variable ¢ gets defined to be the value 3, and
the computation of y and d can proceed. Hence, the non-
strict execution produces meaningful values for the variables
¢ and d. Note that in this execution, the + instruction must
have executed before the * instruction — there is no other
order that could produce the correct results for f.

Similarly, the second context produces a deadlock in a
strict execution, but produces valid results in a non-strict
execution. However, this context requires that the * in-
struction execute before the +. Thus, depending upon the
context, the instructions in f can execute in either order.
We have no choice but to compile these programs such

that the two instructions execute independently, when their
data becomes available. Compiling £ in this manner entails
performing dynamic scheduling/synchronization at each in-
struction — leading to an inefficient execution on micropro-
Cessors.

Traub [25] made the significant observation that depen-
dence analysis could enable efficient compilation of some
functions. A simple example of such a function is given
below.

Example 2:
def f a b =
{x = a+ b;
y=ax*xb
in
(x,y)}

In this function, we can infer that the dependence behavior
of both the * and + instruction is very similar: they both
depend on the values of a and b. For this function, any con-
text that feeds results back to arguments always deadlocks,
even in a non-strict execution. Thus, it is safe to compile
the function such that the two instruction execute together,
in some order.

Thus, the goal partitioning [25] is to infer the possible
dependencies in a program and use that information to se-
quentialize parts of a program. This is achieved by compil-
ing each function into a set of threads while preserving the
function’s non-strict semantics. Each thread is a sequence
of instructions and once a thread begins execution, it does
not need any dynamic scheduling/synchronization during its
execution. Threads of this form yield efficient implementa-
tion on conventional architectures using an abstract machine
such as TAM [9]. They can also be implemented on parallel
multi-threaded hardware (e.g., *T [18]).

Combining instructions into threads enables more effi-
cient use of registers and amortizes the overheard of dynamic
scheduling/synchronization over many instructions. Parti-
tioning attempts to make threads as large as possible, to
enable efficient execution of non-strict programs on micro-
processors.

The strategy used to implement non-strictness (that is,
functions accepting undefined arguments and returning par-
tial results) is called the lenient strategy [25]. This strategy
gives flexibility to the programmer in using the recursive let
block. It enables circular dependencies to be resolved at run-
time, instead of being statically resolved. Non-strictness in
data-structures also gives the programmer ability to create
circular data-structures functionally [25].

Another strategy that provides non-strictness is the lazy
evaluation strategy, where the evaluation of an expression is
delayed until the execution cannot proceed without the value
of that expression. Unlike lenient evaluation, lazy evaluation
also gives the user the ability to manipulate infinite data
structures [11]. In this paper, we are primarily interested in
implementing a non-strict language with the lenient strategy
(though we do remark on the applicability of the techniques
developed here to implement lazy evaluation).

The contributions of this paper are:

e The definition of partitioning as a program transfor-
mation.

e Design of new basic block partitioning algorithms.
Also, a precise characterization of the complexity of
the partitioning problem.

e A new inter-procedural partitioning algorithm based
on abstract interpretation.

e The proof of correctness of the partitioning algorithms
using denotational semantics.

The rest of the paper is organized as follows. Section 2
defines a simple non-strict kernel language and its seman-
tics. Section 3 formally defines the partitioning problem and
the notion of correctness of a partitioning. Section 4 deals
with the problem of partitioning basic blocks. Section 5 uses
abstract interpretation techniques to extend the basic block
partitioning algorithm to partition arbitrary blocks. Sec-
tion 6 compares this paper with related work and section 7
concludes. In the appendix, we present proof sketches of
some of the theorems stated in this paper.

2 Notation, Syntax and Semantics

We design our algorithms on a simple kernel language, SP-
TAC (Simple P-TAC) language based on the intermediate
language P-TAC (Parallel Three-Address Code) [2] that is
used during the compilation of Id. SP-TAC is a simple first
order functional language, with constants, variables, prim-
itive operators, conditionals, user defined functions and re-
cursive let-blocks. It is a restricted form of P-TAC in sev-
eral ways: there are no higher order functions, structured
data types (like lists), or side-effects. Though SP-TAC is a
very restrictive language to write programs in, it is a non-
strict language and it brings out the issues in compiling non-
strictness. Also, techniques developed for partitioning SP-
TAC are directly applicable to more expressive languages.

2.1 Abstract Syntax of SP-TAC

c € Constants
z,y € Variables
p € Primitive operators
f € User defined functions
se € Simple expressions
e € Expressions
st € Statements
b € Blocks
pr € Programs
c = true|false|1]|2]...
p = 4| — |and]|...
se u= c|x
:= se|b|p(ser,ses,..., sen) |
f(se1, sez, ..., sen) | if se then b; else by
st = (y17y27"'7y'ﬂ):6
b = {{st}" in(se1, sez,...,sen)}
pr = {fi(z1,22,...,2n) = b}

Figure 1: The Syntax of a Kernel Language

Figure 1 shows the abstract syntax of SP-TAC. We make
the following assumptions about the language.

e There is no currying of user defined functions. This
ensures that we are dealing with a first order language.

e All primitive operators are strict. That is, they require
all their inputs to produce their output value.

o All local and bound variables are a-renamed so that
they are defined uniquely in the program.

For notational convenience, examples in this paper are given
in Id. It is straightforward to translate them into programs
in the kernel language [3].

2.2 Representing SP-TAC using Graphs

In this paper, we also use a graph representation of a block
of SP-TAC. This representation (called a dataflow graph)
is similar to the one used in the Id compiler to perform
various optimizations [23]. The language syntax shown in
the previous section is essentially a textual representation of
these dataflow graphs.

Definition 1 (Dataflow Graph) Given a block b, the
dataflow graph G(b) corresponding to b is a directed graph.
The nodes N(b) in the graph consist of input nodes — cor-
responding to the free variables of the block, output nodes —
corresponding to the values returned by the block, and oper-
ator nodes — corresponding to the various operators specified
in the block. The edges E(b) of this graph correspond to the
flow of values in the block.

In this paper, we treat the graph representation and the
textual representation as equivalent. For example, when we
refer to nodesin a block, we actually refer to the nodes in the
dataflow graph corresponding to the block. Figure 2 shows
the dataflow graph corresponding to the functions defined
in examples 1 and 2 in section 1.

L |

1
roo
® O
(b)

Figure 2: Figures (a) and (b) show examples of dataflow
graphs. Input and output nodes are denoted by circles and
constant nodes by triangles. Rectangular nodes correspond
to the various operators in the function.

2.3 Semantics

Our framework is based on denotational semantics. We
chose to do this because techniques for designing and prov-
ing analyses based on abstract interpretation are well devel-
oped in this framework and these techniques handle recur-
sive function definitions in a natural manner. The semantics
of SP-TAC itself is straightforward as it is a simple first or-
der language. It is based on the semantics given in [4] and
specifies a non-strict semantics of the language.

E:n] = n,integer n

Ecftrue] = true

SC[[false]] = fal,se

Ex[+] = Az,y).(Int?(z) and Int?(y))
— T + y,error

Es[[c] bve = &[]

E:[x] bve = bue[z]

E[se] bve fenv = E[se] bve

Elp(ser, sea, ..., sen)] bve fenv =
Exllp] (Es[ser] bue, ..., Es[sen] bue)
Elf(ser, sez, ..., sen)] bve fenv =
fenv[f] (Es[ser] bue, ..., Es[sen] bve)
E[if se then b else by] bve fenv =
(Es[[se] bve) — (Ep[b1] bve fenv), (Eu[b2] bve fenv)
E[b] bve fenv = Ep[b] bve fenv

E{(ya, -

letrec
newbve = [y;; — (E]e:] (newbve.bve) fenv) | 7]
in (£.[se1] newbve, . . ., E[sen] newbve)

JYim) = e} in (se1, ..., se,)}] bve fenv =

E{fi(z1,22,...,20) = b;}*] = fenv, whererec
fenv =[fi—= (Ay1,y2, .-, yn).Es[b:] [z: = yi] fenv)]

Figure 3: Semantic Equations of SP-TAC.

Denotational semantics [22] is given by defining domains
(complete partially ordered sets) and constructing a map-
ping from entities in the language to elements of these do-
mains. For SP-TAC, we need to define the following do-
mains. We have the standard domains Int and Bool for
integers and booleans. These domains contain an element
1 that stands for the “undefined” value. To model multiple
values, we use product domains [22]. We use D* to denote
a domain formed by the k-product D x D x ... x D. The
infix operator | is used to select any component of a value
in D,

In addition to these domains, we have domains of func-
tions that map (multiple) values to (multiple) values. There
are also domains corresponding to variable environments
and function environments. These domains map variables
to values and function names to functions respectively. The
formal definition of the domains we use in our semantics are:

Int Integers
Bool Booleans
Val = Int + Bool Values
Fun =], o, (Vall - Val*)
D =Val +{error}

Dr = Uk>1 Valk + {error}
Bve=V = D

Fenv = Fv— Fun

First order functions
Denotable values
Tuples of values
Variable Environments
Function Environments

The various semantic functions are given below:

E.: Con — Val
Er: Pf — Fun
E:: SE — Bve— D

Constants
Primitive operators
Simple Exps

&y : Bo— Bve — Fenv — Dr Blocks
£ : Fzp — Bve — Fenv — Dr Expressions
&p i Prog — Fenv Programs

Now, we describe semantic equations that define the be-
havior of these semantic functions. Here is some notation
used in describing our semantic equations:

o If env and env’ are two environments, we use env’.env
to denote the environment env” such that env”[y] =
env'[y] if y € Domain(env’), env"'[y] = env[y], oth-
erwise. This is the way environments are linked in a
statically scoped block structured language.

o We also make use of a case operator (denoted by —).
The meaning of x — y, z is that depending on whether
x 18 true or false either y or z is the value of the entire
case expression.

The semantic equations are given in figure 3. For clarity
of the equations, we have omitted the projections and injec-
tions between the various domains. Given a program pr, we

use EP7[b] bue to denote E[b] bve (E,[pr]).

3 Definition of Partitioning

In section 1, we informally defined the partitioning
problem as compiling a non-strict program into sequential
threads. In this section, we formalize that intuition, by
defining partitioning as a transformation from a program

in SP-TAC to another program in SP-TAC.

Definition 2 (Partitioning) A partitioning of a block b is
a set of partitions Q = {q1,...,qx}. Fach partition q; is a
set of primitive operator nodes ny,...,n, of b.

Note that the execution of a thread is very similar to the
execution of a primitive operator. The thread waits for all
its inputs to become available, performs some computation
and produces its outputs when all the computation in the
thread has terminated. Thus, executing a partitioned block
is similar to executing a block where the primitive nodes
in a partition are merged into a single node. Such a graph
is called the reduced graph corresponding to a partitioning.
Figure 4 shows a dataflow graph and its reduced graph cor-
responding to a partitioning.

How can we capture the semantics of merging primitive
operators into a single node? We use a new primitive oper-
ator (called synchronization or S operator) to achieve this.
There is actually a family of such operators; each operator
in the family differs in the number of operands it accepts.

Definition 3 (Synchronization Operator) A synchro-
nization operator Sy is a primitive operator with the fol-
lowing behavior. For each k > 1,

Sk(Ul, N

Sk(vi,...,vx) = (v1,...,0k)

Lve) = (L., 1)

Intuitively, the operator “waits” for all its operands to be-
come values. Once this happens, the S operator “fires” and
acts as an identity operator on each of its operands.

Using this operator, it is possible to express the behavior
of executing a partitioned block. We achieve this by defining
a transformed block that models the behavior of a partitioned
block. The formal definition is given below.

Definition 4 (Partitioning Transformation) Given a
block b and a partitioning Q, the partitioned block bg is de-
fined as follows. For each partition q € Q define:

1. I;={n|(n ¢ q) A(m € q) A edge(n, m) € b}
2. Oy ={m|(n ¢ q) A(m € q) A\ edge(m,n) € b}

3. Add two synchronization operators Si1,| and S\o,| with
inputs Iq and Og respectively. Connect outputs of S,
to nodes in q that were connected to 1,, and outputs of
S|o,| to nodes not in q that were connected to Oq.

The idea behind the transformation is to use two synchro-
nization operators to model the execution of a thread. One
“waits” for all the inputs of a thread to become available.
The other makes sure that all the computation in a thread is
fully performed before any other thread can use values com-
puted by this thread. This transformation ensures that the
set of primitive operators in a partition behave as though
they are a single primitive operator. A compile-time order-
ing can now be generated for each partition by a topological
sort of the operators in it. Our algorithms only produce
the partitions for a block — they do not produce the actual
threads. Figure 4 also shows a transformed dataflow graph
using S operators.

3.1 Correctness of Partitioning

When can we say that a partitioning of a block is correct?
Informally, we would like partitioning to behave as any other
compiler optimization. That is, it should not change the
“meaning” of the input program. As we are partitioning at
the level of blocks, we say that a partitioning is correct if the
meaning of the block (given by its denotational semantics)
is preserved. Formally,

Definition 5 (Correctness of Partitioning) A par-
titioning Q of a block b in a program pr is correct iff the
partitioned block bg satisfies the following property. For all
bve:

EP [bg] bve = EFT[[b] bve

This definition guarantees that we can use the partitioned
block anywhere in the program where the original block was
used. However, this definition is not directly verifiable at
compile-time, it requires knowledge of run-time values of
the variables in a block. Later, we will show a simpler syn-
tactic criterion that guarantees the semantic correctness of
partitioning, and make use of the simpler criterion to design
our partitioning algorithms.

How can the partitioning of a block be incorrect? By
the above definition, a partitioning is incorrect if it returns
values that are different from those returned by the origi-
nal block. Can the partitioning change the behavior of the
block such that it returns a different fully defined value (say
4) instead of the value 37 Intuitively, this is not possible,
as partitioning introduces only additional synchronization
constraints — it does not change the value semantics of the
block. The only change that could happen is that a block,
instead of computing a value (say 3) on some set of inputs
now computes L (i.e., deadlocks). It is possible to formalize
this into the following theorem.

Theorem 6 (Effect of Partitioning) Let b be a block in
a program pr and bg its partitioned version of a partitioning

Q. Then, for all bve:

EP [bg] bve T EPT[[b] bve

(©)

Figure 4: Figure (a) shows a fragment of a dataflow graph with a partition {4,5,6}. Figure (b) shows the reduced graph
obtained by coalescing the nodes in a partition to a single node. Figure (c) shows the transformed graph corresponding to
the partition. Two S operators have been introduced to model the behavior of a thread.

The proof of this theorem involves establishing a correspon-
dence between the variables in b with the variables in bg and
showing by fix-point induction that the value of a variable
in bg is C the value of the corresponding variable in b.

In designing our algorithms in later sections, we assume
that there is no cycle consisting of primitive operators in our
input blocks. If such a cycle exists, it is easy to show that all
the nodes in the cycle will have undefined values, and hence
these nodes do not affect the correctness of a partitioning.

4 Basic Block Partitioning

In this section, we consider the problem of partitioning basic
blocks, that is, blocks whose operator nodes are all primitive
operators’ — they do not contain conditionals and calls to
user-defined functions. It is useful to study this restricted
version of the problem, as the techniques developed to parti-
tion basic blocks can be extended to partition more general
blocks. Note that we consider only acyclic basic blocks, as
we have made the assumption that there are no cycles in-
volving primitive nodes in our inputs.

4.1 Correctness of Basic Block Partitioning

In section 3, we have defined the general notion of correct-
ness of a partitioning. For basic blocks, it is possible to
simplify the correctness criterion to simple conditions on
the structure of the partitioned basic block.

Note that partitioning does not distinguish one primi-
tive operator (say +) from another (say *) — correctness of
a partitioning depends on whether a value is computed at
all, and not whether a different value is computed by a block.
In some sense, we can consider all primitive operators to be
“equivalent”. As a basic block consists only of primitive op-
erators, two basic blocks differ only in their structure, i.e.,
the way the operators are connected together. A partition-
ing is correct if it preserves the structure of a basic block, as
seen by a context. Clearly, it should not introduce any cycles

I Nodes corresponding to constants and their edges can be deleted
from a basic block — they do not affect partitioning.

in the partitioned block — that would destroy the acyclicity
property and cause a deadlock in the block. Also, a con-
text “looks at” only the inputs and outputs of a basic block
— thus input-output connectivity should be maintained. It
turns out that these conditions are sufficient to ensure the
correctness of a partitioning of a basic block. These condi-
tions are formalized in the theorem below (see the appendix
for the proof).

Theorem 7 (Basic Block Correctness) Letb be a basic
block and bg its partitioned version. @ is a correct parti-
tioning of b iff acyclicity and input-outpul connectivity are
preserved. That is,

1. bg is acyclic.

2. Let 1 be an input of b and o an output of b. Then, 1 is
connected to o in b iff it is connected to o in bg.

Using this theorem, we can now design algorithms to
partition basic blocks. It is sufficient to prove that our al-
gorithms preserve the two conditions of the above theorem;
that is enough to guarantee the correctness of our partition-
ing algorithms.

4.2 Demand and Tolerance Sets

In this section, we describe the properties of demand and
tolerance sets that can be computed for each node in a basic
block. These sets are useful in designing a partitioning algo-
rithm as the correctness property can be formulated in terms
of these sets. Moreover, they can be efficiently computed for
any basic block.

Definition 8 (Demand Sets) In a block b, the demand
set of a node is the set of outputs that depend on that node.
Demand sets can be computed by the following (backward)
propagation algorithm on basic block.

Demand(o) = {o},if o is an oulput node
Demand(n) = U Demand(m), otherwise
(n,m)€b

© ®

(b)

Figure 5: Figure (a) shows the demand sets of each node of the given basic block. Figure (b) shows its tolerance sets. Figure
(c) shows the partitions and reduced graph obtained by both algorithm 1 and algorithm 2. The partitions are optimal for

this example.

Demand sets for a basic block are show in figure 5.

Definition 9 (Tolerance Sets) In a block b, an output o
tolerates a node n iff edge (n,0) can be added to b without
affecting input-output connectivity. The tolerance set of a
node n is the set of outputs that tolerate n. Tolerance sets
can be computed by the following (forward) propagation al-
gorithm on basic block graphs.

Tolerance(i) = Demand(t),if1 is an input node
Tolerance(n) = ﬂ Tolerance(m), otherwise
(m,n)Eb

Clearly, the tolerance set of an input node contains at least
its demand set; adding edges from an input node to any node
in its demand set will not affect input-output connectivity.
Also, no other output can be in the tolerance set of an input
— that would add a connection where none existed. Thus,
the tolerance set of an input node is exactly its demand set.
Similarly, it can be argued that the a node o tolerates n iff
o tolerates all of n’s parents. Thus, the tolerance set of a
node is the intersection of the tolerance sets of its parents.
Tolerance sets for a basic block are shown in figure 5.
Using the definitions of demand and tolerance sets, we
can design a simple algorithm that computes the demand
sets in a backward pass and then performs a forward pass
to compute the tolerance sets. The algorithm runs in O(N2:)
time and space, where N is the number of nodes in the basic

block.

4.3 Algorithms for Basic Block Partitioning

In this section, we design two algorithms for partitioning
based on demand and tolerance sets. The basic idea behind
the algorithms is to preserve input-output connectivity of
the basic block, thus ensuring correctness.

What effect does merging two nodes (say n and m) have
on the connectivity of the basic block? For input-output
connectivity, this is equivalent to adding edges in the block
from node m to each output connected to n and vice-versa.

By definition of tolerance, this preserves the connectivity
if each output connected to n tolerates node m, that is,
Demand(n) C Tolerance(m) and vice-versa. Algorithm 1
(shown in figure 6) uses this condition to identify nodes that
can be merged and partitions the basic block.

Algorithm 1
Given a basic block b:

1. Compute demand and tolerance sets for each node of
b.

2. Compute an (undirected) graph Gerge as follows:
(a) The nodes of Gperge are the nodes of b.

(b) An edge (n,m) is in Gmerge iff Demand(n) C
Tolerance(m) and Demand(m) C Tolerance(n).

3. Do

(a) Let C be a maximal clique? of Gmerge. Merge
nodes in C into a single partition.

(b) Form the reduced basic block. Recompute de-
mand sets, tolerance sets, and Gmerge for the new

basic block.

until the partitions do not change.

Figure 6: Algorithm 1 for Basic Block Partitioning

The idea in algorithm 1 is to construct an auxiliary (undi-
rected) graph, with the nodes corresponding to the operators
in the block. An edge between two nodes indicates that the
two nodes can be merged (using the condition given above).
A clique in the graph identifies a set of nodes such that
a node in the clique can be merged with any other node
— thus, yielding a partition of the block. This process is

2A cligue of a graph is a set of nodes that are all adjacent to each
other. A maximal clique is one to which no other node can be added
without destroying the clique property.

repeated on the reduced basic block until no more parti-
tions can be formed. It is clear that algorithm 1 preserves
input-output connectivity. It also preserves acyclicity, see
the proof sketch of theorem 13 in the appendix for details.
Figure 5 also shows the partitions obtained by algorithm 1
on a basic block.

Algorithm 1 generates the largest possible threads if
instead of merging maximal cliques, it merged mazimum
cliques. However, it is well known that finding the maxi-
mum clique in a general graph is NP-hard [10]. The best
known algorithm for this problem takes exponential time
in the size of the input graph. Do the graphs we construct
(Gmerge:) have any special structure that can be exploited to
give a more efficient algorithm? Unfortunately, the answer
is no. It is possible to show that finding an optimal parti-
tioning (either minimum number of partitions or largest size
partitions) is NP-hard [8].

Assuming that we are content with maximal cliques, we
can estimate the complexity of the algorithm as follows. The
complexity is dominated by the loop in step 3, which merges
partitions at each step. The number of such steps is O(N).
In each iteration, we compute the maximal clique and recom-
pute Giperge. For finding a maximal clique, a simple greedy
algorithm can be designed which runs in O(N?) time. Also,
a clever recomputation of the new graph Gerge that makes
use of its older version takes O(N2) time. Thus, the overall
time complexity is O(N?).

It is possible to design a simpler algorithm for basic block
partitioning. This algorithm detects only a subset of pos-
sible merges in the block and merges them into a single
partition. Thus, it may not be able to detect all the par-
titions that could be formed. However, it does not require
the construction of the auxiliary graph (Gmerge) and can
be implemented more efficiently. Algorithm 2 (shown in fig-
ure 7) is based on the idea that merging nodes with the same
demand and tolerance sets produces correct partitions.

Algorithm 2
Given a basic block b:

1. Compute demand and tolerance sets for each node of
b.
2. Do

(a) Merge nodes with the same demand set into a
single partition. Recompute tolerance sets from
reduced graph.

(b) Merge nodes with the same tolerance set into a
single partition. Recompute demand sets from
reduced graph.

until the partitions do not change.

Figure 7: Algorithm 2 for Basic Block Partitioning

Clearly, merging nodes with the same demand set pre-
serves input-output connectivity; merging nodes m and n
has the effect of introducing edges from m to the demand
set of n, and this will have no effect on input-output con-
nectivity as every node in the demand set of n is already
connected to m. Similarly, using the properties of tolerance
sets, it can be argued that merging nodes with the same
tolerance sets also preserves input-output connectivity.

The worst-case complexity of algorithm 2 is the same as
that of algorithm 1 (O(N?)). However, it has been observed
in practice [20] that a similar algorithm converges very fast —
the loop in step 2 executes only a few (< 4) iterations. Thus,
it may have a practical advantage over algorithm 1. For the
basic block in figure 5, algorithm 2 also generates the same
partitions generated by algorithm 1. An implementation
may use a mix of the two algorithms present in this section
to derive large partitions while keeping the complexity of
the algorithm low. One simple strategy is to run algorithm
2 first and then run algorithm 1 on the reduced graph.

5 Global Partitioning

In the previous section, we have seen how to partition basic
blocks. Now, we address the problem of partitioning blocks
that contain conditional expressions and calls to other user
defined functions. We use the term general blocks to refer
to such blocks and global partitioning to refer to partition-
ing such blocks. Although our discussion in this section
is focussed primarily on dealing with calls to user defined
functions, the same techniques can be used to handle con-
ditionals by abstracting them into a separate function.

5.1 Converting General to Basic Blocks

Our strategy in performing global partitioning is to re-
duce a general block to a set of basic blocks by using depen-
dence information of functions called in the general block.
In this section, we present our approach using an example.
We formalize these techniques in sections 5.2 and 5.3.

Consider the simple block shown in figure 8(a). The
block has two inputs, two outputs and calls a function f.
Suppose the function f is not known, but we would like
to partition the block anyway. We can convert the block
into a basic block by assuming “worst case” or “unknown”
behavior of the function f. As shown in figure 8(b), we
disconnect the node calling £. Then, we create new outputs
(z,w) and a new input (c) and use these nodes instead of a
call to the function f. Partitioning this basic block merges
nodes {3,4} into a single partition.

Why does this process yield correct partitions? Note that
our basic block algorithm is correct, that is, the behavior of
the partitioned block is identical to the behavior of the orig-
inal block under any context, regardless of the dependencies
between the inputs and outputs of the block. In particular,
the algorithm will generate safe partitions even when the
dependencies between outputs z,w and input ¢ correspond
to the actual dependencies of function f.

Now, suppose that the function f being called in figure 8
is the one given below:

def fuv=mu+ v;

It is obvious that f acts exactly like the primitive operator +,
so the block can be converted to the basic block in figure 8(c)
(node 5 is shown shaded as it is not an actual primitive
operator but a “dummy” one). We can then partition the
basic block yielding the partitions {1,2} and {3,4}°. Thus,
we have been able to generate better partitions than that
was possible by disconnecting the call to £. 1t is also easy to
observe that the same basic block is also sufficient to model
the following function:

3In an ordinary basic block, all five nodes would be in a single
partition. As node 5 is a dummy node, we cannot include it in any
partition.

Figure 8: Figure (a) shows a simple block that calls a function f. Figure (b) shows the basic block obtained by disconnecting
the call to £. Figure (c) corresponds to the path [u,v] of £. Figure (d) corresponds to the path [u] and figure (e) corresponds

to the path L.

def f uv=
{t1 =u *x 2;
t2 = v + 3;
t3 = t1 - t2
in

t3};

In this case too, f acts like a primitive operator on its two
arguments — the result depends on both the arguments, and
the result is always available if both the arguments are sup-
plied. We say that £ has the path [u,v] to denote this prop-
erty.

It may not be possible to specify a single path for every
function. A simple example of such a function is given below:

def £f u v = if u then v else 3;

Here, we do not know (at compile-time) whether £ depends
on its second argument — that depends on the value of u.
We do know that it can only be one of two possibilities: the
result depends on both the arguments if the then branch
is selected or just the first argument if the else branch is
selected. We allow both these possibilities to be represented:
f is assigned a set of paths {[u,v],[u]}. In this case, we
generate two basic blocks from the block calling f: one for
each path of £f. For our example, in addition to the basic
block in figure 8(c), we generate another basic block; the
one shown in figure 8(d).

Consider the following recursive function defined below.
What are the paths for this function?

def f uv= if (u == 0) then v else f (u-1) v;

If this function terminates, we can argue that the result
depends on both u and v — thus the function has the path
[u, v]. There is also the possibility that the function does not
terminate. We use the path L, to denote that possibility.
Thus, the paths for the function f are {[u,v], L,}. Using
this definition of f in the example, we generate the graph in
figure 8(e) instead of figure 8(d). The bot node in the graph
denotes that the node is undefined.

To summarize, in this section we have seen how one can
disconnect function-calls or use the paths of the function be-
ing called to generate basic blocks. In the next two sections,
we formalize these ideas and design a global partitioning
algorithm using them.

5.2 Path Semantics

Axl+] = As{zUyl(z,y) € s}
AfQabe = I}

A.[z] abve = abve[z]

Alse] abve aenv = A[se] abve

A[b] abve aenv = Au[[b] abve aenv

Alp(ser, sea, ..., seyn)] abve aenv =
Arllp] (As[ser] abve x - - - x A[sen] abve)

[f(se1, sez, ..., sen)] abve aenv =

aenv[[f] (As[sei] abve x - - - x A[sen] abve)

A[if se then by else by] abve aenv =
{(zUy1,...,2Uyn), (zUz,...
z € A[se] abve and
(y1,---,yn) € Ap[b1] abve aenv and
(z1,-.-,2n) € Ap[b2] abve aenv

Ae[H{(yir, - -

letrec
newabve = [y;; — (A[e;] (newabve.abve) aenv) | 7]
in (A.[se1] newbve, ..., A[se,] newbve)

Ap{fi(z1, 22, .. = b;}] = aenv, whererec aenv =

[fimr (As. {Ab[[b]] [z = {yi}]aenv|(ys, .., yn) € 5})]
Figure 9: Path Semantics of SP-TAC

,z Uzy,)}, where

JYim) = e} in (se1, ..., se,)}] abve aenv =

How do we compute paths for every function in an input
program? We follow the well known technique of abstract
interpretation [1] as used by [4]. Paths of a function are
derived by using a non-standard semantics of SP-TAC (as
opposed to the standard semantics presented in section 2).

Definition 10 (Paths) A path is either a set of variables
or Ly,. In the Path domain L1, is the least element. The
paths for a function f with N arguments and returning M
results is a set® of M-tuples of paths. An individual path

4Actually, it is an element of the Egli-Milner Powerdomain of the
Paths domain. Though the powerdomain construction is important
in proving properties of our path semantics, we do not go into the
details here.

[u1,...,ur]| denotes that if the function f takes that path,
the value corresponding to the path depends on all u1, ..., ug
and is always defined if uy,...,ur are defined.

These are similar to the paths introduced in [5], except that
the paths in [5] also considered different orderings of the
arguments. That is, the path [u, v] was considered different
from the path [v,u].

Here are the domains used in our non-standard seman-
tics.

Path Domain of Paths
PS Sets of paths
PTS Sets of path-tuples
Pfun Abstract Functions

Aenv Function environment
Abve Variable Environment
The semantic functions are:

A:; : SE — Abve — PS
Ayx: Pf — Pfun

Simple Exps
Primitive Operators

Ay : Bo = Abve — Aenv — PTS Blocks
A: Exp — Abve — Aenv — PTS Expressions
Ay Pr — Aenv Programs

We use p1 U p2 to denote the ordinary set union operation
when both p; and p, are sets. If one of p; or p2 is L, then
p1 Ups is also L.

Consider the various semantic equations given in figure 9.

1. The semantic function A, (for constants and variables)
is straightforward. In case of a constant, it returns the
empty path, reflecting the fact that a constant does
not have to depend on any variable for its value. For
variables, it returns the paths of the variable present
in the environment.

2. For primitive functions, the paths returned reflect the
strict behavior of primitive functions. For the + oper-
ator, a union of the variables of the first operand and
the second operand is returned modeling the fact that
+ requires both operands to produce a value.

3. The semantic function for if returns two sets, one
corresponding to the variables needed when the then
branch is taken and the other corresponding to when
the else branch is taken.

4. The semantic function A for expressions is very sim-
ilar to the standard semantic function £. It recurses
appropriately when the expression is either a primitive
function or a user-defined function.

5. The semantic function for blocks and functions are
similar to their standard semantics counterparts. They
use recursion in the environments to model recursion
in the blocks and functions.

It is possible to consider the semantic equations given
above as an algorithm and compute paths for every func-
tion using these equations. The algorithm uses fix-point it-
eration to compute paths of recursive functions. Intuitively,
this assumes that the paths of a function are 1, to begin
with and computes the paths of the function using the above
equations. This process is repeated with the new paths com-
puted for the function until the paths of every function re-
main unchanged. The computation of paths for the recursive
function fact is shown below:

def fact n =
if (n == 0) then 1 else n * fact (n - 1);

Expression Pathsg | Paths:
= OEEEAQ

i I I
n-1 M|)
(fact (n-1)) | L, [n], Lp
(fact n) [n], Ly | [n],Lp

There are two issues that need to be addressed here:

e (Correctness) We should show that there is a strong
relation between the standard semantics defined in sec-
tion 2 and the path semantics give here. The proof of
this is quite long, the reader is referred to [4, 8] for
details. Basically, the safety of path semantics guar-
antees that a function always takes one of the paths
computed by the path semantics.

e (Computability) The algorithm computing paths
should terminate on every possible input program. In-
formally, this is guaranteed by the fact that a function
can have only a finite number of paths ((2V + 1)
for an N-argument, M-result function) and paths of a
function in an iteration “increases” with every itera-
tion.

The complexity of the algorithm is Q(2™) for a function

with N-arguments and M-results. Though this is exponen-
tial, it is still practical for ordinary programs if the number
of arguments of a function is bounded by some small con-
stant. As it subsumes strictness analysis [5], it is not pos-
sible to give a more efficient algorithm (strictness analysis
requires exponential time [14]).

5.3 Global Partitioning using Paths

In this section, we design a global partitioning algorithm us-
ing the path analysis described in the previous section. Our
algorithm is based on the intuition presented in section 5,
that is, convert general to basic blocks.

Algorithm 3 (shown in figure 10) partitions a general
block by propagating information in the paths, one function
at a time®. The idea is to generate the basic blocks cor-
responding to each path of the function. By the safety of
path semantics, we are guaranteed that the behavior of the
general block is identical to one of the basic blocks. If we
generate a partitioning that is correct for each of the basic
blocks, we can be assured that the partitioning is correct for
the general block too.

This is achieved by using any basic block partitioning
algorithm (algorithm 1 or algorithm 2); the difference is the
way demand and tolerance sets are computed for each node
in a general block. Instead of computing them directly, they
are computed using the demand and tolerance sets of the
basic blocks b1, ...,bp.

Computing demand and tolerance sets of the basic blocks
bi,...,bp 1s done as in section 4 — with two minor changes.
First, nodes that are connected to bot may be deleted —
they never compute any value. Second, we rename the out-
put labels in each of the basic blocks b1,...,bp to ensure
that the dependence properties of one basic block are not

51t is possible to propagate information for more than one function
at a time. However, this leads to the generation of a large number of
basic blocks, increasing the complexity of the algorithm.

“mixed up” with that of another basic block. Then, the
union of demand (tolerance) sets of a node n in by, ..
captures the dependence properties of all the basic blocks:
if any relation between two sets is true in b, it will also be
true in by, ...,bp. In essence, algorithm 3 uses the demand
and tolerance sets to simultaneously simulate a basic block
algorithm on each b1,...,bp, generating partitions safe for

all of them.

. bp

Algorithm 3
Given a block b:

1. Select a node in b that calls some function (say f).
Disconnect all other nodes that are not primitive op-
erators. Disconnecting a node involves introducing a
new output node corresponding to each of the func-
tion’s arguments and a new input node corresponding
to each of the function’s results.

2. Let f be an M-result function and have P paths. For
each 1 < 5 < P construct block b; as follows:

(a) Let the 5 path be (pj1,ps2,. .-
(b) For each 1 <k < M do

i. Let O be the nodes of b connected to the k"
output of f.

7pJM)'

ii. If pjr = L, connect each node in O to a new
input node called bot.

iii. Otherwise, introduce a new “dummy” node
(op) with inputs connected to the arguments
of fin pji. Connect the output op with each
node in O.

3. For 1 < j < P, delete all nodes in b; that are (transi-
tively) connected to a bot node.

4. Rename all input and output nodes so that there is no
conflict of names between blocks.

5. Apply any basic block partitioning®algorithm with
the demand and tolerance sets of nodes in b com-
puted using the demand and tolerance sets of nodes

in by,...,bp as follows:
Demandy(n) = U Demandy; (n)
1<;<P
Tolerancey(n) = U Tolerancey; (n)
1<;<P

6. Go to step 1 if changes to the partitioning of b occur.

Figure 10: Algorithm 3 that Partitions General Blocks

The complexity of the algorithm is O(PN?®) where P is
the largest number of paths of a function in the program.

6 Comparison with Related Work

Strictness analysis [16, 6, 7] has similar goals to that of parti-
tioning. It tries to determine which arguments of a function

6 A small change is needed. We have to make sure the “dummy”
operators introduced do not fall into any partition.

10

are strict, so that they may be evaluated directly — instead
of building a closure/graph for them, which is significantly
more expensive. Partitioning (as presented in this paper)
differs from this technique in several ways: the algorithms
given here do not seek to preserve laziness, the benefit of
partitioning is more explicit — it results in the creation of
larger threads.

Partitioning techniques could be useful in compiling lazy
functional languages too. The difference is that the choice
for partitioning algorithms is restricted: only demand set
partitioning preserves laziness [24]. In some cases, demand
set partitioning can generate better code than traditional
strictness analysis, by making use of the fact that two argu-
ments are always used “together” in a function, even though
the function may not be strict in them [26].

Path analysis [5, 4] identifies the order in which expres-
sions in a function are evaluated. It has applications in
reusing storage, optimizing representation of thunks [4]. Our
contribution is to recognize that a restricted definition of
paths is very useful in capturing dependence information of
functions, and this information can be effectively used in a
global partitioning algorithm.

Much of the research in partitioning is based on the sem-
inal work in [25]. It defined the partitioning problem, its
relation to dependence analysis and provided some insight
into the partitioning problem by proving a related problem
NP-hard. Our work provides the first insight into the com-
plexity of the problem — it shows that finding an optimal
partitioning (minimum number of partitions or largest pos-
sible partitions) is NP-hard even for basic blocks.

Developing heuristics to generate safe partitions is the
focus of many papers [12, 21, 20]. These include dependence
partitioning[15] based on the notion of dependence sets. De-
pendence sets are the natural “dual” of demand sets, where
each node is annotated with the set of inputs that it depends
on. In dependence set partitioning, nodes with the same de-
pendence set can be merged together. Tolerance sets defined
in this paper subsume the notion of demand sets: i.e., it is
always possible to merge two nodes using their tolerance
sets, if 1t is possible to do so using dependence sets, but
not vice-versa. Figure 5 provides an example of this. The
dependence sets of nodes 2 and 5 are {a,b} and {b} respec-
tively, but it is still safe to merge them as they have the
same tolerance sets.

Demand sets itself were introduced in [21, 12], and the
iterated partitioning algorithm (similar to algorithm 2) was
introduced in [26, 12]. Most of these papers did not do any
global analysis for partitioning, they used the disconnect-
ing operation used in algorithm 3 to handle conditionals
and calls to user defined functions. Also, these algorithms
did not produce mazimal partitions, i.e., even after these
algorithms terminated, it was possible that there are two
partitions that could be merged safely.

An inter-procedural algorithm for partitioning was first
designed in [26]. This algorithm is based on the idea that
the demand/dependence sets themselves contain some de-
pendence information, and propagating these sets between
the definition of a function to its call-site yields better parti-
tions. A major limitation of the inter-procedural algorithm
given there is its inability to handle recursive functions. Our
algorithm has no such limitations, as the paths of recur-
sive functions are well-defined and our inter-procedural al-
gorithm is based only on a function’s paths. For example,
in figure 8, our inter-procedural algorithm succeeds in merg-
ing nodes 1 and 2 when f is the recursive function given in

Section 5.1. Their algorithm has to make a worst case as-
sumption about the recursive call to f, and is unable to
merge these two nodes.

Interestingly, our algorithm is more powerful even in the
non-recursive case.
Example 3:

def f
{x =
y =
z =
in
z};
In this example, the algorithm of [26] fails to merge the in-
put nodes corresponding to p and b, even though the result
is strict in both of them. This is because the strictness infor-
mation is obscured by the presence of non-strict arguments
a and c. Our inter-prodedural algorithm detects that p and
b can be merged in both the basic blocks generated by the
two branches of the conditional, thus merging p and b.
Independent of this work, the partitioning algorithms in
[26] have been extended in [20, 19] to generate maximal
partitions for basic blocks and to handle recursive functions.
Algorithm 1 for partitioning basic blocks is equivalent to the
one presented in [19], though it is a different formulation
and its complexity is slightly better. Algorithm 2, however,
is a new algorithm that subsumes the algorithm in [26], but
still retains its structure. The inter-procedural algorithm
given in [19] differs from our inter-procedural algorithm in
the following ways.

pabec-=

a + b;

b * c;

if p then x else y

o [t still uses dependence and demand sets to propagate
global information, and thus retains some of the limi-
tations of [26] (e.g., example 3).

o The extension that detects strictness information is
an approximation to the abstract interpretation algo-
rithm used here.

However, the complexity of our inter-procedural algorithm
is higher than that of the algorithm in [19].

7 Conclusions and Extensions

In this paper, we have presented new algorithms for parti-
tioning non-strict functional languages. We have presented
two new algorithms for basic block partitioning and charac-
terized the complexity of the problem. We have extended
the basic block algorithms to propagate information glob-
ally. Our inter-procedural algorithm is based on abstract
interpretation and handles recursive functions in a natural
manner. We have also defined partitioning as a program
transformation enabling us to prove the correctness of our
algorithms using denotational semantics.

Several straightforward extensions follow from the tech-
niques presented in this paper. We can extend our al-
gorithms to incorporate higher-order functions and data-
structures that are not present in our kernel language.
The basic technique is to be conservative when dealing
with blocks that contain higher-order functions or data-
structures. Though path analysis extends naturally to
higher-order functions, it is computationally more efficient
to make approximations when dealing with them [4]. On the
partitioning side, one can disconnect nodes that call perform
calls to unknown functions and then partition the block us-
ing algorithm 3. A similar approach can be used to deal with

11

data-structures. However, it is interesting to extend the al-
gorithms to deal with data-structures like lists and arrays
making use of their dependence information. Research done
in analyzing strictness properties of lists [27] and Fortran
style array subscript analysis would probably be of relevance
here.

A nontrivial extension of the partitioning algorithm is
to incorporate contextinformation during partitioning. The
idea behind this is simple: in many cases, one can deduce
that a function is always being used in a strict manner and
this information can be used to generate better partitions for
the the function. An extension to the partitioning algorithm
that achieves this is presented in [8].

We plan to implement these algorithms in a compiler for
Id. This would shed light on the quantitative benefits of the
various parts of our partitioning algorithms.

8 Acknowledgments

Many thanks to Shail Aditya, Arvind, and Boon Ang for
their helpful comments and suggestions.

References

[1] S. Abramsky and C. L. (eds) Hankin. Abstract Interpre-
tation of Declarative Languages. Ellis-Horwood, 1987.

[2] Z. Ariola and Arvind. P-TAC: A Parallel Intermediate
Language. In Proceedings of the ACM Conference on
Functional Programming Languages and Computer Ar-
chitecture, London, UK, pages 230-242. ACM, Septem-
ber 1989.

[3] Z. Ariola and Arvind. Compilation of Id. In Proc.
of the Fourth Workshop on Languages and Compilers
for Parallel Computing (LNCS 589). Springer-Verlag,
August 1991.

[4] A. Bloss. Path Analysis and the Optimization of Non-
strict Functional Languages. PhD thesis, Dept. of Com-
puter Science, Yale University, May 1989.

[5] A. Bloss and P. Hudak. Path Semantics. In Mathemat-
ical Foundations of Programming Language Semantics
(LNCS 298). Springer-Verlag, April 1987.

[6] J. Burn, C. Hankin, and S. Abramsky. Strictness Anal-
ysis for Higher-order Functions. Science of Computer
Programming, 9, 1986.

[7] C. Clack and S. L. Peyton-Jones. Strictness Analy-
sis — A Practical Approach. In Proceedings of ACM
Conference of Functional Programming Languages and
Computer Architecture. ACM, September 1985.

[8] S. R. Coorg. Partitioning Non-strict Languages for
Multi-threaded Code Generation. Masters Thesis,
EECS, MIT, May 1994.

[9] D. E. Culler, S. C. Goldstein, K. E. Schauser, and
T. von Eicken. TAM — A Compiler Controlled
Threaded Abstract Machine. Journal of Parallel and
Distributed Computing, 18(4):347-370, July 1993.

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco, CA,
1979.

[10]

[11] P. Henderson. Functional Programming: Applications
and Implementation. Prentice Hall, Englewood Cliffs,
NJ, 1980.

J. E. Hoch, D. M. Davenprot, V. G. Grafe, and K. M.
Steele. Compile-time Partitioning of a Non-strict Lan-
guage into Sequential Threads. In Proc. Symp. on Par-
allel and Distributed Processing, Dec 1991.

P. Hudak and P. Wadler (editors). Report on the
Programming Language Haskell, A Non-strict Purely
Functional Language (Version 1.0). Technical Report
YALEU/DCS/RR777, Yale University, Department of
Computer Science, April 1990.

[12]

[13]

[14] P. Hudak and J. Young. Higher-order Strictness Anal-
ysis of the Untyped Lambda-Calculus. In Proc. 12th
ACM Symposium on Principles of Programming Lan-

guages, pages 97-109. ACM, Jan 1986.

R. A. Tanucci. A Dataflow/von Neumann Hybrid Archi-
tecture. PhD thesis, Dept. of EECS, MIT, May 1988.
(Also MIT LCS TR-418).

[15]

[16] A. Mycroft. The Theory and Practice of Transforming
Call-by-need into Call-by-value. In International Sym-
posium on Programming (LNCS 83). Springer-Verlag,
April 1980.

[17] R. S. Nikhil. Id Language Reference Manual Version
90.1. Technical Report CSG Memo 284-2, MIT Labo-
ratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, July 15 1991.

[18] R.S. Nikhil, G.M. Papadopoulos, and Arvind. *T:
A Multithreaded Massively Parallel Architecture. In
Proc. 19th Annual Intl. Symp. on Computer Architec-
ture, May 1992.

[19] K. E. Schauser. Compiling Lenient Languages for Par-
allel Asynchronous Fxecution. PhD thesis, Computer
Science Div., Univ. of California at Berkeley., May
1994.

[20] K. E. Schauser, D. Culler, and S. C. Goldstein. Sep-
aration Constraint Partitioning — A New Algorithm
for Partitioning Non-strict Programs into Sequential

Threads. In Proc. ACM Conference on Principles of
Programming Languages (POPL), January 1995.

K. E. Schauser, D. Culler, and von Eicken T. Compiler-
controlled Multithreading for Lenient Parallel Lan-
guages. In Proc. Conf. on Functional Programming
Languages and Computer Architecture, August 1991.

[21]

D. A. Schmidt. Denotational Semantics — A Method-
ology for Language Development. Allyn and Bacon,
Boston, MA, 1986.

K. R. Traub. A Compiler for the MIT Tagged-Token
Dataflow Architecture. Technical Report TR-370, MIT
Lab. for Computer Science, August 1986. (MS Thesis,
Dept. of EECS, MIT).

[22]

(23]

[24] K. R. Traub. Compilation as Partitioning: A New Ap-
proach to Compile Non-strict Functional Languages. In
Proc. of the ACM Conf. on Functional Programming

and Computer Architecture, pages 75-88. ACM, 1989.

12

[25] K. R. Traub. Implementation of Non-strict Functional
Programming Languages. MI'T Press, Cambridge, MA,
1991.

K. R. Traub, D. E. Culler, and K. E. Schauser. Global
Analysis for Partitioning Non-strict Programs into Se-
quential Threads. In Proc. of the ACM Conf. on LISP

and Functional Programming, June 1992.

[26]

[27] P. Wadler. Strictness Analysis on Non-Flat Domains.

In [1].
A Proof Sketches of the Theorems

In this section, we present proof sketches of some of the
main theorems presented in the paper. Refer to [8] for full
versions of these.

Proof: (Sketch of theorem 7) We only prove the sufficiency
of these conditions here. Assume (for contradiction) that
bg is not correct. That is, there is an environment bve
such that EP7[b] bve # EF"[bg] bve. By the property of
partitioning, this can only be true if one of the outputs
(say o) has a value in the first case, and is L in the second.
As o has a value, each of inputs [of b that are connected
to o should be defined in bve. As o is L in the second
case and bg is acyclic, one of the inputs /g of bg must
be L in bve. Thus, I # Ig, a contradiction to the second
condition. a

The proof of correctness of algorithms 1 and 2 make use
of the following properties of demand and tolerance sets of

a basic block.

Lemma 11 (Demand-Tolerance Relation) For a node
n, Demand(n) C Tolerance(n).

Lemma 12 (Demand and Tolerance Monotonicity)
If node n is transitively connected (from n) to node m
in a basic block, then Demand(m) C Demand(n) and
Tolerance(m) C Tolerance(n).

Theorem 13 (Correctness of Algorithm 1) Algorithm
1 correctly partitions a basic block.

Proof: (Sketch) We use the basic block correctness criterion
to prove that each step of the algorithm (where a clique is
identified and merged) is correct. The correctness of the
entire algorithm follows by an easy induction.

1. First, we prove that the connectivity condition is sat-
isfied. For simplicity, consider the merging of just
two nodes n and m such that (n,m) is an edge of
Gmerge. For iInput-output connectivity, this is equiv-
alent to adding an edge from m to each of the out-
puts connected to n (i.e., Demand(n)) and vice-
versa. By the definition of tolerance sets, this does
not affect input-output connectivity if Demand(n) C
Tolerance(m), which is true.

2. Now, we prove that the graph corresponding to the
reduced basic block is acyclic. Assume (for contra-
diction) that a cycle is caused by merging the nodes
in the clique. Without loss of generality, there are
two nodes n and m in the clique and a node n’ not
in the clique, such that n is connected to n’ and
n’ is connected to m in b. Due to monotonicity of
demand and tolerance sets, for any other node m’,
if both (n,m') and (m, m’) are in Gmerge, then so

is (n',m'). Thus, n’ could also be included in the
clique and hence, the clique is not maximal, a con-
tradiction.

0

Theorem 14 (Correctness of Algorithm 2) Algorithm
2 correctly partitions a basic block.

Proof: (Sketch) Correctness of Algorithm 2 follows from
the fact that nodes with the same demand (or tol-
erance) set form a clique of the graph Gierge In
algorithm 1. Consider two nodes n and m such
that Demand(n) = Demand(m). By lemma 11,
Demand(m) C Tolerance(m). Thus, Demand(n) C
Tolerance(m) and vice-versa. Thus, the edge (n,m) is
present in Gperge. A similar argument proves that merg-
ing nodes with the same tolerance set is also safe. Acyclic-
ity of the reduced graph follows from the monotonicity of
demand and tolerance sets. a

Theorem 15 (Correctness of Algorithm 3) Algorithm
8 correctly partitions any block.

Proof: (Sketch) Let b be the input block and f the function
being called. For simplicity, assume that the node calling
f is only non-primitive node in b (i.e., there are no nodes
to be disconnected). First, note that the partitions gen-
erated for b are also correct partitions for b1,...,bp. This
is ensured as we are taking the unions of the demand and
tolerance sets of each b;,1 < 7 < P. Next, it is possible
to give precise definitions to the primitive operators in-
troduced in by, ...,bp such that for any environment bve,
EPT[b] bve = EPT[b;] bve, for some 1 < j < P (this follows
from the safety of path semantics).

Thus, if a partitioning is incorrect, it will be incorrect
for one b; too. This contradicts that fact that we are

using a correct partitioning algorithm on b;, which is a
basic block. o

