CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Message Passing Support on Star'T-Voyager

Boon Ang, Derek Chiou,
Larry Rudolph, Arvind

1996, July

Computation Structures Group
Memo 387

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Message Passing Support on StarT-Voyager

Computation Structures Group Memo 387
July 16, 1996

Boon S. Ang, Derek Chiou, Larry Rudolph and Arvind

This paper describes reserach done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for this work is provided in part
by the Advanced Research Projects Agency of the Department of Defense under
the Office of Naval Research contract N00014-92-J-1310 and Ft Huachuca contract

\ DABT63-95-C-0150. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Message Passing Support on StarT-Voyager

Boon S. Ang, Derek Chiou, Larry Rudolph and Arvind

July 16, 1996

Abstract

No single message passing mechanism can efficiently support all the different types of commu-
nication that occur naturally in most parallel or distributed programs. MIT’s StarT-Voyager, a
hybrid message passing/shared memory parallel machine, provides four message passing mecha-
nisms to achieve very high performance over a wide spectrum of communication types and sizes.
Hardware and operating system enforced protection allows direct user-level access to message
passing facilities in a multiuser environment. StarT-Voyager’s protection scheme improves upon
past designs by not requiring strictly synchronized gang-scheduling, and by supporting non-
monolithic protection domains. To minimize the development effort and cost, the machine is
designed to use unmodified commercial PowerPC 604-based SMP systems as the building block.
A Network End-point Subsystem (NES) card which plugs into one of each SMP’s processor card
slots provides the interface to Arctic, a low-latency, high-bandwidth network currently under
development at MIT. This paper describes StarT-Voyager’s message passing mechanisms and
their predicted performance.

1 Introduction

Messages of a variety of types occur naturally in parallel and distributed applications. The most
obvious variation is the amount of the data transferred in a message. The data size is likely
to be small for control messages amounting to no more than a few bytes, e.g. when conveying
a simple request or an acknowledgment. On the other hand, block data transfers on the order
of many kilobytes of data are also common, especially with coarse-grain parallel applications or
when supporting a parallel file system. Another variation concerns the location of the message
data. In general, for the smallest sized messages, the processor registers are the source and desired
destination. As message size increases, caches are the source and desired destination. For really
large messages, main memory DRAM becomes the most likely repository of source data, and the
desired destination. The most significant performance measure also varies with message size. Low
per-message processor overhead and communication latency are significant for small messages.
As message size increases, maximizing bandwidth and minimizing amortized processor overhead
become increasingly important. Thus, message size affects engineering design tradeoffs.

Cache-coherent distributed shared memory (CCDSM) protocols are examples of parallel pro-
grams that require a variety of message types. Experimental flexibility in protocol implementation
is important because protocols are still an active area of research. Consequently, many CCDSM
machines implement the protocols in software on embedded processors which communicate via mes-
sage passing. In CCDSM protocols, requests for a cache-line, invalidations and acknowledgments
are small register-based messages, containing only an address, and a message type identifier. A
cache-line data transfer from one node to another involves medium sized messages. Entire pages of
data may be migrated as program locality changes, giving rise to large messages.

While few will disagree that a spectrum of message passing sizes is needed to support general
parallel processing, most available parallel machines today provide only a single message passing
mechanism. For messages that are larger than the native message size, software has to packetize,
send and reassemble the message, thereby increasing processor overhead and latency. Messages
that are smaller than the native message size are often aggregated into larger messages in order to
amortize the overhead; such aggregation, however, increases the granularity of parallelism. Though
a single message passing mechanism can emulate message passing of all sizes, it is clear that a single
mechanism cannot do so efficiently.

This paper describes the message passing mechanisms of the MIT StarT-Voyager machine.
StarT-Voyager is designed to support efficiently a complete spectrum of message passing require-
ments by providing four message passing mechanisms — Basic, Express, Tag-On, and DMA mes-
sages. The design facilitates protected communication among multiple users and provides the
underlying support for coherent distributed shared memory[13].

The following section discusses StarT-Voyager’s architecture. This is followed by a description
of the message passing mechanisms (Section 3), and the multitasking support in StarT-Voyager
(Section 4). Next, Section 5 presents some estimated performance numbers. Section 6 revisits
StarT-Voyager’s design, discussing possible changes for multiprocessor nodes before we conclude in
Section 7.

2 Architecture Overview

The network interface in a parallel system can be located at one of four places, each at a differ-
ent distance from the processor: (i) in the processor core; (ii) on a cache interface; (iii) on the
cache-coherent memory bus; or (iv) on the I/O bus. Examples of processors with integrated net-
work interfaces include transputers[45], the iWarp systolic processor[6, 7], dataflow processors like
Monsoon[16] and the EMC-R[38], and hybrid processors such as the MIT MDP[17], M-machine[18],
and the MIT/Motorola 88110MP[36]. Currently, market forces and engineering effort dictate mi-
croprocessor design, making it extremely difficult to take this approach within a commercial micro-
processor. The MIT Alewife[1] is an example of a network interface on the L1 cache interface, and
the design for StarT-NG[12] proposed one on the L2 cache interface. The tight integration of caches
into microprocessors is making this approach inapplicable to most commercial microprocessors. In
reaction, placing the network interfaces on I/O buses, which are designed to accommodate third
party devices, is currently a popular approach. Commercial examples include machines like the
IBM SP-1[22] and SP-2[2, 40], and plug-in extensions like Myricom’s Myrinet[5] and DEC’s Mem-
ory Channel[19], while research efforts include Princeton’s SHRIMP[4] and MIT’s StarT-Jr[20].
The chief drawbacks of this approach are the difficulties encountered when implementing aggres-
sive cache-coherent distributed shared memory, and lack-luster message passing performance for
fine-grain communication. To overcome these deficiencies, StarT-Voyager’s network interface is
located on the memory bus. This approach is used in machines such as the Stanford DASH[29] and
FLASH][26], TMC CM-5[42], Cray T3D[25], Wisconsin Typhoon[37], HP-Convex Exemplar[14, 9],
Sequent NUMA-Q[39] and Utah Avalanche[41]'. These machines are further divided into two
groups: the CM-5 and T3D have interfaces that do not make use of a cache-coherent memory
bus, while the rest, including StarT-Voyager, have interfaces designed to utilize the cache-coherent
support on their memory buses.

StarT-Voyager is a parallel system constructed by connecting a collection of commercial SMPs
with a fast network which interfaces to each SMP’s coherent memory bus via a Network End-

!Several of these machines support either coherent shared memory or message passing in hardware but not both.

aP-bus! \Eg Adaptor R, -

Addr & Data! SP- &waﬂaﬂ
e 64} ! sp-bus L o .
~600 ! ! - TR !
' : I NES Core
Data Addr & I cIsSRAM I
| [Lo : (512kB) !
i L : r? :
T Vo L 20b .
! I I Addr—, * | Addr
= I N b T/ L e !
(604) | | (604) [| |
T L L 1 :
! | P 1 NESCtr| 1
! NES Core | Lo Addg | | AddrE
i Lo ctrl - cn
MemCtrl | | . . . I - 3
1|20l 20t 2 |
and ™Y I |
aP dRAM . !
Daxaélé aSRAM SSRAM _§ Data
| (32B) (32B)
1o 1 . J
<4 . 64b
Subsystem !
— Arctic Network ! 1-bus

Figure 1: A StarT-Voyager site.

point Subsystem (NES) card. Each SMP, referred to as a site, is a desktop-class, commercial,
dual-PowerPC 604 SMP. It uses a typical PC/workstation class motherboard with the usual para-
phernalia of memory controller, DIMM slots, PCI bus and bridge chip, etc., but has space for two
processor cards. Each processor card contains one 604 processor and an in-line L2 cache. This or-
ganization facilitates replacing one of the two processor cards in each SMP site with an NES card,
effectively making each site into a uniprocessor system (extensions to our design for multi-processor
SMP sites are described in Section 6). This 604 processor, referred to as the application processor,
or aP, runs a copy of AIX, augmented with a parallel layer to coordinate parallel job execution.

Each NES card is attached to the Arctic network, a Fat-tree [27] network constructed with Arctic
router chips[8]. Both the Arctic router chip and the network boards are designed and implemented
at MIT as part of the StarT project. Each Arctic router chip is a 4x4 packet-switched router with
support for variable length packets, virtual-cut-through, FIFO ordering, and two logical networks.
The Arctic network employs hardware link-level flow-control to provide a lossless packet routing
service. Each link is 16 bit-wide and runs at 80MHz to achieve 160 MBytes/sec bandwidth. With
two links, one in each direction, between each NES card and the network, each site has a peak
network communication bandwidth of 320 MBytes/sec. A fast router together with the Fat-tree
topology allows the Arctic network to provide redundancy?, the ability to exploit network locality
and very high bisection bandwidth — over 5 GBytes/sec in a 32 node machine.

Figure 1 shows the organization of a StarT-Voyager site, with details of the NES. The NES
manages several regions of memory, each providing a different functionality. The NES is designed
for both speed and flexibility. The NES Core provides dedicated control hardware and data paths
for the most common operations. Actions that are expected to occur very frequently are handled
completely in hardware and are thus very fast. An embedded processor, referred to as the service

*Multiple paths through a Fat-tree network between most pairs of source-destination sites provide redundancy
and hence fault tolerance.

processor (sP) provides flexibility and extensibility. The sP is organized with its own sub-system
comprising of off-the-shelf parts: a PowerPC 604 processor, a memory controller, and DRAM.
Design complexity is further reduced by the symmetry of the organization: from the NES Core’s
perspective, the sP-subsystem appears similar to the aP complex. The sP subsystem, however, has
additional features. The sP observes all aP memory operations to one of the NES address regions
called the sP Serviced Space, and is capable of initiating transactions on the aP-bus, controlling
any NES state, and handling all exceptional situations. These features are extremely flexible and
can be used to extend the functionality of StarT-Voyager. They will be used to implement coherent
shared memory and non-resident message queues (see Section 4). Both the aP and sP have access
to the same message passing mechanisms, but each has its own set of resources. Two banks of
dual-ported SRAM, the aSRAM and sSRAM, provide storage space for message queues.

The NESCtrl, a small ASIC, implements all the hardware control functionality. It also holds
all the control state, including the queue pointers of message queues. The I-bus, the central data
path of the NES core over which all messages flow, has a 64 bit-wide data path running at 50MHz.
This roughly matches both the bandwidth of the 60X bus which runs at the same speed and has
the same data path width, and the 320 MBytes/s aggregate bandwidth between an NES and the
Arctic network. Outgoing messages undergo destination address translation and are tagged with
a source identifier in the Transmit Unit (TxU), which also computes and appends a CRC to the
message packet. This CRC is checked at each Arctic stage, and again in the Receive Unit (RxU)
at the destination NES. The TxU is also responsible for the expansion of an Express Message
(Section 3.3) into an Arctic packet, while the RxU performs the compression. Finally, the Arctic
Interface handles low-level signaling and analog electrical conversions (TTL to ECL) between the
NES and the Arctic Network itself. The clsSRAM, which stores cache-line state bits in coherent
distributed shared memory implementations, is not involved in message passing.

We plan to build a 32-site StarT-Voyager system by the summer of 1997, and a smaller 4-site
prototype a few months earlier. The design and engineering specification of StarT-Voyager has
been completed (July 1996) and implementation, currently underway, is divided into three parts:
the Arctic network, the NES card, and the NES daughter card which encompasses the TxU, RxU
and the Arctic interface. The Arctic router chip is expected to tape out by September 1996 and
an Arctic network is being constructed for the StarT-Jr[21] system to be operational in the Fall of
1996. The NES card is made up of off-the-shelf parts except for the NESCtrl chip which is being
designed by a small team of students and staff.

3 Message Passing Mechanisms

As each of StarT-Voyager’s four message passing mechanisms has its own performance criteria,
each has its own unique design tradeoff decisions. Although the particular microprocessor and
the exact low-level implementation details ultimately dictate the performance, there are many
universal design choices. Many depend on the architecture of today’s SMPs and are unlikely to
change drastically in the near future. StarT-Voyager’s message passing design has benefited from
the Active Message work at Berkeley[44, 32, 31, 15| and Cornell[43, 10]. Their implementation
and evaluation of Active Message on various platforms illuminates the efficiency and limitations
of various message passing designs. After presenting several common design considerations in the
next section, each StarT-Voyager message type is examined individually.

3.1 Considerations when Interfacing to Commercial Microprocessors

Since memory mapping is the only way to interface the NES to most commercial microprocessors,
several characteristics of microprocessor buses must be considered when designing a message passing
interface. One is that virtually all modern microprocessor buses are optimized for cache-line burst
transfers. In the 60X bus[3], a burst transfer allows a cache-line (32-bytes) of data to be transfered
in 6 bus cycles?, as compared to the 24 bus cycles needed to do 8 uncached 4-Byte transfers®. This
difference is accentuated in StarT-Voyager by the 3:1 processor clock to bus clock ratio. Aside from
superior bus occupancy, burst transfers also use processor store-buffers more efficiently, reducing
processor stalls due to store-buffer overflow.

Given these characteristics, messages, except for the shortest ones, are more efficiently imple-
mented by mapping the message buffer space as cacheable memory. Since a cache-line can be
displaced by another cache-line wanting to use the same physical cache entry, a message passing
interface that uses cacheable message buffers must use some scheme other than a bus transaction
event for transferring control information from an application program to the NES. A simple op-
tion is to organize the message buffer space as a circular queue, and employ uncached producer
and consumer pointers for coordination. Any change in these pointers is taken as a control signal.
Another option is to use a full/empty-bit in each message buffer for coordination.

In order to increase the amount of data transmitted by each memory operation, it is possible to
use address bits to pass data from the processor to the NES[23]. Specific lower-order (to minimize
impact on TLB entry utilization) address bits are viewed as data bits by the NES while the
higher-order bits are constant to mark this special region of memory. When the NES sees memory
operations to that region of memory, it extracts the additional data from the address bits. If data
transfer to/from memory on the NES is involved, the NES must generate internal address since
the bus address used does not point to a specific memory location. The amount of data that can
be carried by address bits is small, 10 bits to fit into one 4-KByte page if accesses are restricted
to 32-bit aligned accesses, but can be useful. This technique is mostly useful for uncached accesses
rather than cached accesses, since cache-lines are large compared to the amount of data that can
be carried on the address and cache thrashing is likely to occur. An additional bonus of using
uncached bus operations is that they have a one-to-one mapping to memory operation instructions,
allowing uncached accesses to initiate NES actions.

Cacheable memory requires the maintenance of coherence between the processor and NES. In
the case of message queues, both the processor and the NES read and write the space, albeit in a
fixed orderly fashion. Coherence can be maintained either by the processor with explicit instructions
to flush specific cache-lines or by the NES issuing coherency operations on the bus, which we call
Reclaim. Both have their disadvantages. Processor-issued flush instructions, which completely
removes cache-line from cache, and clean instructions, which writes-back dirty data but keeps an
Exclusive copy, are expensive to execute, requiring anywhere between 10 to 20 processor cycles on
the 604. Having the NES maintain coherence reduces processor overhead, but adds complexity and
overall latency. Ultimately, the choice depends on whether processor overhead or latency is more
critical to an application. Some of these issues concerning cacheable network interface was studied
by Mukherjee et al.[34].

A second consideration is whether the coherent bus supports cache-to-cache transfers, where
a cache with modified data is able to supply it directly to another cache without first writing it

3This assumes a slave device that is able to accept or supply data at that rate. NES SRAM will be able to match
that speed, but not aP-DRAM.

4A few microprocessors are able to aggregate uncached memory writes to contiguous addresses into larger units
for transfer over the memory bus, but the 604 is not one of them.

back to main memory. Though the answer does not affect logical correctness of a message passing
interface design, it influences the latency, bus occupancy and main memory DRAM bandwidth
utilization of some designs. For example, if cache-to-cache transfers are supported, a message
passing interface with message buffers that ultimately reside in main memory can actually achieve
direct data transfer between the processor cache and the NES. This gives it the same direct data
transfer path as a design that places all the message buffers on the NES, while utilizing only a
small memory on the NES as a cache of message buffers which are backed up by the larger, cheaper
main memory. Unfortunately, the 604 does not support cache-to-cache transfers.

The microprocessor’s memory model also impacts the design. In particular, weak memory mod-
els found in many modern microprocessors including the PowerPC family allow memory operations
to get out-of-order. Consequently, any message-launch memory operation might get reordered so
as to appear on the bus before the corresponding message-compose memory operations appear.
All processors that have a weak memory model provide a barrier operation (sync in PowerPC
processors) which enforces ordering but unfortunately, it is generally expensive, requiring between
12 and 20 cycles on a 604.

With these characteristics of microprocessor memory system in mind, we now describe StarT-
Voyager’s four message passing mechanisms. All the message passing mechanisms are directly
accessible from user code without violating protection in a multitasking environment (see Section 4).
The different mechanisms are statically mapped into separate physical address regions. Packing
data bits into addresses is employed extensively in our design. For example we specify message
queues, and encode message destinations and payload data using address bits. Except for DMA
messages which are not explicitly received by application software, the NES automatically appends
to every out-going message a logical source identifier, which the receiver can use as the destination
for a reply. All message destinations specified by user code are logical destinations which are
translated by the NES (See Section 4 for more details on logical destination names.)

3.2 Basic Messages

StarT-Voyager’s Basic Message mechanism provides protected access to Arctic’s native packet trans-
fer service. With a 32-bit header specifying the logical destination queue and other options, and a
variable payload of between four and twenty-two 4-byte words, a Basic Message is ideal for com-
municating an RPC request, or performing a small scatter/gather transfer. Microprocessors are
optimized for communicating data to/from registers and caches.

The Basic Message interface consists of separate transmit and receive queues, each with a
cacheable message buffer region, and uncached producer and consumer pointers for exchanging
control information between the processor and the NES. The message buffer region is arranged as
a circular FIFO with the whole queue visible to application software, enabling concurrent access
to multiple messages. The producer and consumer pointers are mapped into uncached space to
reduce latency. An uncached write pointer update immediately triggers NES processing. We do
not implement cached producer and consumer pointers because of attendant design complexity and
limited benefits.

The four steps of composing a Basic Message are shown in Figure 2. The Basic Message transmit
code first checks to see if there is sufficient buffer space to send the message. The software maintains
a copy of the producer and consumer pointers (P, C in top half of figure) to minimize reading them
from the NES. This copy of the consumer pointer is updated again only when it indicates that the
queue is full. By then, space may have freed up since the pointer was last read from the NES.
The NES may move the consumer pointer at any time if it launches any messages, an event which
occurrs in our example between steps 1 and 2. If the transmit code finds that enough buffer space

1. Initial State 2. Write Buffer 3. Flush Cacheto NES Buffer 4. Update Producer Pointer

Processor Processor Processor Processor
Cache Cache Cache Cache
0+3; a+3: +3
P|C Plc ; : Plc Plc

i C [C P|C
Cached Buffer Uncached Cached Buffer Uncached Cached Buffer Uncached Cached Buffer Uncached

Pointers Pointers Pointers Pointers

NES NES NES NES

Figure 2: Sending a Basic Message

is available, the message is written into the cached buffer space, with the write effectively going to
the processor cache (step 2). Next, the processor issues clean instructions to write the modified
cache-lines to the corresponding NES buffer locations (step 3). Due to PowerPC’s weak memory
model, a barrier instruction is required after the clean instructions and before the producer pointer
is updated via an uncached write. This write (step 4) prompts the NES to launch the message, after
which the NES frees the buffer space by incrementing the consumer pointer. With NES Reclaim,
the NES issues clean bus operations to maintain coherence between the processor cache and the
NES buffers, eliminating the need for the processor to issue clean instructions (but not the sync)
in step 3. In this case, the pointer update will cause the NES to reclaim the message, then launch
it.

The interface is designed primarily for message reception by polling, although an application can
request for an interrupt upon message arrival. This choice is available to a receiver on a per receive
queue basis, or to a sender on a per message basis. When polling for messages, an application
compares the producer and consumer pointers to determine if there is any message. Messages are
read out directly from the message buffer region. Coherence maintenance is again needed so that
the application does not read a cached old message. This can be done either explicitly by the
processor with flush instructions or by NES Reclaim.

A unique aspect of the Basic Message buffer queue is its memory allocation scheme. Buffer
space in this queue is allocated in cache-line granularity and both the producer and consumer
pointers are cache-line address pointers. Allocation in smaller granularity is undesirable because of
the coherence problem caused by multiple messages sharing a cache-line. The other obvious choice
of allocating maximum-sized buffers was rejected because it does not work well with either software
prefetching of received messages, or NES Reclaim. The main problem is not knowing the size of a
message until the header is read. Therefore, both prefetching and a simple implementation of NES
Reclaim must either first read the header, and then decide how many more cache-lines of data to
read, or blindly read all three cache-lines. The former introduces latency while the latter wastes
bandwidth. With cache-line granularity allocation, every cache-line contains useful data, and data
that is fetched will either be used for the current message, or subsequent ones. Better buffer space
utilization is another benefit of this choice.

Tx Format Rx Format

Address Data0
Queue Priority Queue Priority
U1234567‘891011121314151517181920212223242526272#293031 01 23 45 6 78 9 10111213 14 15[16 17 18 19 20 21 22 23;24 25 26 272§ 29 30 31
HHHH}HHHU 4 HHHH}HHHD
Fixed field indicating queue number Logical Destination ~ general payload Reserved Logical Source general payload
Data Datal

32 33 34 35 36 37 38 39)40 41 42 43 4445 46 47 [48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 S2 33 34 35 36 37 38 39140 41 42 43 4445 46 47 48 49 S0 51 52 53 54 S5 56 57 S8 59 60 61 62 63
general payload general payload

Figure 3: Express Message Formats

3.3 Express Messages

Messages with a minimal amount of data are common in many applications for synchronization
or communicating a simple request or reply. Basic Messages, with a cached message buffer space,
is a bad match because the bandwidth of burst transfer is not needed while the overhead of co-
herence maintenance, weak memory model, and explicit handshake remain. Express Messages are
introduced in StarT-Voyager to cater to such small payloads by utilizing a single uncached access
to transfer all the data of a message and thus avoid the overheads of Basic Messages.

A major challenge of the Express Message design is to maximize the amount of data transported
by a message while keeping each compose and launch to a single, uncached memory access. The
Express Message Mechanism packs the transmit queue specifier, message destination and 5 bits of
data into the address of an uncached write. The NES automatically transforms the information
contained in the address into a message header and appends the data from the uncached write to
form an Arctic message. A diagram showing a simplified format for sending and receiving Express
Messages is given Figure 3. Additional address bits can be used to convey more information but
consumes larger (virtual and physical) address space and can also have a detrimental effect on TLB
if the information encoded into the address bits do not exhibit “good locality”. (Alternate trans-
lation mechanisms such as PowerPC’s block-address translation mechanism[33] may be employed
to mitigate this problem but depends on both processor architecture and OS support.)

Unlike Express Message transmits, address bits cannot be used to convey message data to the
processor when receiving an Express Message. To reduce the data read by a receive handler, the
NES reformats a received Express Message packet into a 64 bit value as illustrated in Figure 3.
Like an Express Message transmit, an Express Message receive can be accomplished with a 64
bit uncached read into an FPR. The data is subsequently move into GPRs via (cache) memory®.
Alternatively, two 32 bit loads into GPRs can be issued to receive the message.

Unlike Basic Messages, the addresses for accessing Express Message queues do not specify
specific queue entries. Instead, the NES provides a FIFO push/pop interface to transmit and
receive Express Messages. When a processor performs a write to enqueue the message, the NES
provides the necessary buffer address to put that message into NES SRAM. Likewise, when the
processor performs a read to receive a message; the NES provides the necessary SRAM address from
which to read the message. Speculative loads from Express Message receive regions are disabled
by setting the page attributes appropriately®. When an application attempts to receive a message
from an empty receive queue, a special Empty Express Message, whose content is programmable
by system code, is returned. If message handler information is encoded in the message, such as in

SPowerPC does not support 8 Byte load into a pair of GPRs nor direct data transfer between a FPR and a GPR.
5This involves asserting the guarded bit in PowerPC architecture.

Active Messages[44], the Empty Message can be treated as a legitimate message with a “no action”
message handler. Unlike for receiving, the use of producer and consumer pointers is required for
transmit queues to ensure that they do not overflow.

3.4 Long Message: DMA

StarT-Voyager’s DMA support is an efficient mechanism for moving contiguously located data
between the memory of one site and that of another. It resembles the usual DMA facility in that
an aP can unilaterally achieve the movement without the other site’s aP’s involvement. This is in
contrast to data movement effected through normal message passing, where matching request and
reply messages are needed. The DMA facility can be though of as a remote memory get or memory
put operation.

StarT-Voyager’s DMA facility is designed to be “light weight” so that it can be profitably em-
ployed for relatively small sized transfers. To reduce per-transfer aP overhead, the design decouples
page pinning from transfer request. The cost of the former can be amortized over several transfers
if traditional system calls are used to pin pages. Alternatively, StarT-Voyager can support system
software designs where the aP implements VMM cooperatively with the sP, allowing the latter to
effect any necessary page pinning. User code initiates DMA transfers through an interface similar
to a Basic Message transmit queue. The logical source or destination, source data location, desti-
nation data location, and length are specified in a DMA request message to the sP, which together
with the other sP involved in the transfer, performs the necessary translation and protection checks
before setting up DMA hardware to perform the transfer. An option for messages to be sent upon
completion is also available.

Hardware support consists of a DMA Source Engine, a DMA Destination Engine, and a DMA
channel. The sP’s at the source and destination sites exchange a series of messages to establish
the physical addresses of the source and destination memory locations. Then, both the source and
destination sP must perform local initialization actions before the transfer can happen completely
by the hardware. The sP at the destination site allocates a DMA channel for the transfer, and
also initializes the channel’s packet counter in its Destination Engine to the expected number of
packets”. The sP at the source site issues a command to the DMA Source Engine specifying both
the starting source and destination physical memory addresses, the amount of data to transfer, and
the DMA channel number.

Once set up this way, the Source Engine reads data from the aP’s DRAM, packetizes it along
with the destination physical memory address and the DMA channel number, and launches the
packets into the network. Upon receiving such a packet, the Destination Engine writes the data
into its aP DRAM at the specified address, and decrements the DMA channel’s counter. When
the count reaches zero, the destination sP is notified of DMA completion. The design requires no
per-packet handshake. Each sP command can request up to 4k Bytes (a page size) of data to be
transferred in this autonomous way; beyond that, the source DMA engine must be issued separate
commands for each page transfer® although several commands can be queued at the DMA Source
Engine.

"As an optimization, re-initialization of a DMA channel’s count can be done remotely from another sP via a
direct message to the Destination Engine. This removes the latency of setting up a channel in cases where repeated,
relatively small DMA transfers are common in an application.

8The channel count at the destination can span multiple pages.

3.5 Tag-On Messages

The Tag-On Message mechanism extends the Express Message mechanism to allow additional data
from NES SRAM to be appended to an out-going message. The Tag-On Message mechanism was
designed to eliminate a copy if message data was already in NES SRAM’s. It is especially useful
for implementing coherent shared memory protocol, and for multi-casting a medium sized message.
As composed by an application, a Tag-On Message looks similar to an Express Message with the
addition that several previously unused address bits now specify the SRAM location where the
additional 32 Bytes (or 64 Bytes) of message data can be found. At the destination NES, a Tag-On
Message is partitioned into two parts that are placed into two separate queues. The first part is
its header which is delivered like an Express Message, via a queue that appears to be a hardware
FIFO. The second part, made up of the data that is “tagged on”, is placed in a separate buffer
similar to a Basic Message receive queue which utilizes explicit buffer deallocation.

Tag-On Messages have the advantage of decoupling the header from the message data, allowing
them to be located in non-contiguous addresses. This is useful in coherence protocol when shipping
a cache-line of data from one site to another. Suppose the sP is responding to another site’s request
for data. In StarT-Voyager, this is achieved by the sP first issuing a command to move the data
from aP-DRAM into aSRAM, followed by a Tag-On Message that ships the data to the requester.
In addition to the cache-line of data, a Tag-On Message inherits the 37 bit payload of Express
Messages which can be used in this instance to identify the message type and the address of the
cache-line that is shipped. Cache-line data may also be brought into the NES without the sP asking
for it, for example the aP’s cache may initiated a write-back of dirty data. In such cases, Tag-On
Message’s ability to decouple message header and data allows the data to be shipped out without
further copying.

Tag-On Messages are also useful for multi-casting. To multi-cast some data, an application first
moves it into NES SRAM. Once that is done, the application can economically send it to multiple
destinations using a Tag-On Message for each one. Thus, data is moved over the system memory
bus only once at the source site, and the incremental cost for each destination is an uncached write
to indicate a Tag-On Message.

3.6 One-poll

In order to minimize the overhead of polling from multiple receive queues, StarT-Voyager introduces
a novel mechanism, called One-poll, which allows one polling action to poll simultaneously from
a number of Express Message receive queues as well as Basic Message receive queues. A single
uncached read specifies in its address the queues to poll from and obtains the highest priority
Express Message. If the highest priority non-empty queue is a Basic Message queue, a special
Express Message that includes the Basic Message queue identifier and its queue pointers is returned.
If there are no messages in any of the polled queues, a special Empty Express Message is returned.
One-poll is useful to user applications, most of which are expected to have four receive queues: high
priority Basic Message, low priority Basic Message, high priority Express and Tag-On Message, and
low priority Express and Tag-On Message. The sP has nine queues to poll. It is clear that the
one-poll mechanism will dramatically reduce polling costs.

4 Protection and Multiuser Concerns

StarT-Voyager was designed to support a multiuser, multitasking, loosely gang-scheduled environ-
ment. To achieve this goal, StarT-Voyager employs a combination of protection and translation

10

TxQ Logical Dest 0

Logical Dest 1

Logical Dest n

(site4, RxQg, source;)

(sitep, RxQs, source;)

(sitec, RxQ¢, sourcey)

(site4, RxQy, source;)

(siteg, RxQ,, source,)

(siter, RxQ), source,)

(siteg, RxQ,, source,)

(siterr, RxQy, source,)

(siter, RxQg, sourceg)

Figure 4: Destination Table: each row contains the logical destination to (site, RxQ, source)
mapping for a transmit queue.

mechanisms and provides multiple message queues at each site.

Specifically, each StarT-Voyager site has 512 pairs of transmit/receive queues. In a standard
allocation scheme each process of a parallel job is assigned its own unique set of message passing
queues’. No queue is assigned to two independent processes simultaneously. Access to a local
queue is controlled by the virtual memory mapping of the processor, i.e., only specific queues are
mapped to a process’s virtual memory space. Furthermore, a process is allowed to send messages
to other processes (i.e., enqueue messages in remote receive queues) only if it is so specified in a
predetermined Destination Table.

A message packet header must specify both the destination site and destination queue at the site.
Rather than addressing physical sites and queues, the application code uses a logical destination
specifier, which identifies an entry in the Destination Table (see Figure 4). The NES translates
logical destination specifiers to the appropriate site/queue pair. Since the translation is also a
function of the local transmit queue, only specific transmit queues can send messages to specific
receive queues'?.

The NES also attaches a source identifier to each outgoing message. The destination process
can reply to a message using the source identifier. For symmetry in translation the source identifier
must look like a logical destination specifier at the destination. Such a specifier is also kept in
the Destination Table to facilitate attaching of the source identifier (see Figure 4). The logical
destination specifiers should have the same meaning across all of the processes in a single parallel
job, allowing the passing of logical destination specifiers to other processes. The Destination Table is
configured through a separate NES address space and should be accessible only to system software.
Thus an application must be granted permission to access remote queues prior to initiating any
communication.

With this support, efficient protected multitasking can be implemented easily. A running paral-
lel job can be suspended and “swapped out” by suspending and swapping out each of its constituent
processes independently. Since each receive queue is assigned to at most one process, messages can
arrive for a process that is swapped out; swapping out a parallel process requires no global coor-
dination, though it may impact performance. Such freedom dramatically reduces the parallel job
swapping time needed by traditional MPP’s. Traditional MPP’s such as the CM-5[28] support only
a single set of network queues, forcing the queues as well as the network to be entirely swapped
out at the same time a parallel job is being swapped out.

Logical destination translation also enables processes to migrate from one site to another and

9The smallest allocation unit is two transmit and two receive queues.

10 An inverse table could be associated with each receive queue so that only messages from a specified set of sources
will be accepted. Such additional hardware would protect against untrusted OS or sP code at a source. StarT-Voyager
does not implement this additional hardware.

11

from one set of receive queues to another. Moving processes to other sites and receive queues is
useful if a parallel job must be moved to a smaller space partition, say to adapt to the failure of a
site. Several processes of the same job can be mapped to the same site, each with its own set of
message passing queues.

Other machines use a Parallel Job Identifier (PJID) which is added automatically to every
outgoing message and verified at the destination[36]. Such schemes define monolithic protection
domains in which every process can communicate with every other process in the domain. While
suitable for parallel applications, it does not offer enough flexibility in a distributed environment,
where a server application may want to communicate with a number of client applications with-
out allowing a client to communicate directly with every other client. StarT-Voyager’s logical
destination mechanism supports such non-uniform communication patterns in a protected fashion.

The large number of queues at each site are far too many to be supported directly in hardware.
Each NES supports 16 pairs of transmit and receive queues (8 Express/Tag-On and 8 Basic) directly
in hardware. The hardware queues act as a software-managed cache for the 512 pairs of transmit
and receive queues. The queues mapped to hardware queues are called resident while the others
are called non-resident. When a message packet arrives at an NES, the NESCtrl determines if the
destination queue specified in the message header is resident and if it has enough room for the
message. If both conditions are true, the NESCtrl enqueues the message accordingly . Otherwise,
the NES enqueues the message in the miss queue serviced by the sP. There are several ways to
implement non-resident queues. One method is to map the buffer space into the aP’s DRAM and
the producer-consumer pointers into sP service space. Messages can continue to be received into
and sent from non-resident queues with the sP’s assistance. The sP implements the transition of a
queue between resident and nonresident status when directed by the OS.

5 Projected Performance

This section presents estimates of resident queue performance. These numbers are hand generated,
using C code sequences which were compiled into assembly code, hand optimized and then hand
scheduled for a PowerPC 604 processor. Only one general purpose register is assumed to be always
available for message queue information such as counters and buffer addresses; otherwise, they are
assumed to be in L1 cache. Bus latency of accesses to the NES is counted and message data is
assumed to be sent from and received into processor registers for all message types except DMA.
For DMA, data at both source and destination sites is assumed to reside in main memory. NES
performance numbers are derived from a low-level simulator used by hardware designers, assuming
that aside from the measured activity, the system is quiescence. In StarT-Voyager, the aPs and sPs
will run at 150MHz, the system bus and most of the NES will run at 50MHz, and the Arctic network
will run at 40MHz. Three performance metrics are presented: processor overhead, communication
latency, and peak bandwidth.

5.1 Processor overhead

Processor overhead is the number of cycles that the sending or receiving processor spends to compose
and launch or receive a message. The number of cycles is counted from the time each routine starts
executing to the time it executes the last instruction. The processor pipeline and bus interface
buffers are assumed to be empty when each routine starts executing. The receive overhead is divided
into two parts: definite overhead, and load latency. Definite overhead is the receive overhead that
must be incurred. Load latency is the latency of reading data from the NES card which translates

12

0.50

x Load L atency
_ [] RxLoadL
5
g B Rx Definite Overhead
E B T Overhead
¥
& T
3 025 3
£
5
g
%
Q
=]
T
0
3 g3 3 g g

@ — N ™ -

o %} o S < s 5 Message Type

L%‘ 2 2 2 = ? &

[2a] [2a] s3] o [~

Figure 5: Processor overhead for the different message passing mechanisms, assuming NES Reclaim
is used to maintain message buffer coherence for Basic Messages.

into processor overhead if the data is used immediately''. This overhead can be reduced with
software prefetching, and in the very best case, contributes zero processor overhead. Figure 5
shows the processor overhead for sending and for receiving all four types of messages'?.

Processor overhead for Basic Message does not include the cost of reading the consumer pointer
of a transmit queue, or to write the consumer pointer of a receive queue because these operations can
be amortized over several messages with Basic Message’s interface design. The overhead reported
for DMA does not include that of pinning pages and indicates the processor overhead per DMA
transfer when pinned pages are used repeatedly. DMA has no receive component and thus no
corresponding overhead.

Processor overhead for Basic Messages reported above assumes NES Reclaim is used. If aP
software is maintaining coherence, the processor overhead increases significantly as shown in Fig-
ure 6. The lower processor overhead of NES Reclaim comes at a small cost of slightly increased
latency and slightly lower bandwidth, but the difference is under 10% in all cases.

5.2 Communication Latency

Communication latency measures the total time for message communication, starting from the time
the message transmit routine begins execution to the time the first word of the message is in a
register at the destination (or the memory copy is completed in the case of DMA). The reported
numbers assume no resource contention in the NES or the Arctic network. Communication latency
is divided into five parts: processor transmit, NES transmit, Arctic network, NES receive and
processor receive latencies as described in Figure 7, which also shows the latency for communicating
with messages of various types. Because the number of network hops between source and destination
sites depends on their relative locations on the Fat-tree, numbers for the two extreme cases: one
hop and nine hops (maximum number of hops for StarT-Voyager’s 32-site system) are presented.

Upipelined, out-of-order, superscalar and speculative execution can only sustain the pipeline for a very small
number of cycles, insufficient to cover the expected latency of reading from the NES.
1211 this section whenever StarT-Voyager’s performance is referenced, it should be read as “is expected to be” as

opposed to “is”.

13

0.50 [Rx Load Latency

B Rx Definite Overhead

B Tx overhead

I
N
a

Processor Overhead (us)

Processor Overhead (Processor Cycles)

Figure 6: Comparison of Basic Message processor overhead with message buffer space coherence
maintained by software (Flush), and by NES hardware (Reclaim).

1 Arctic Hop (Nearest) 9 Arctic Hops (Furthest)
900
. Latency Components:
800 First msg word read by
”””””””””””””””””””””””””””””””””” 5 software on processor
T 700 . Proc Rx
S Msg completely buffered
in msg queue
G 60 _ [0 NEesrx
3 (é Last word enters
§ 500 . destination NES
8 3 M Arctic
& 400 g Last msg word enters
= Arctic Network
oy — [NesTx
T 300 Final word of msg on
= memory bus
200 M FrocTx
Msg passing routine
starts
100
0

o R | o |
) =)
g 988838 ,0g9g8&aR
¢ o o o < § § £ o o o < § §
3 = 2 =
t 8B 88z2pF F888zFCF
Message Type

Figure 7: One-way communication latency for StarT-Voyager’s message passing mechanisms.

14

160

140

120

100

Bandwidth (MByte/s)

20

Message Type

Basic, 1CL
Basic, 2CL
Basic, 3CL
DMA (4kB)
Tagon, 1CL
Tagon, 2CL

Express

Figure 8: Comparison of peak communication bandwidth that each message passing mechanism
can deliver.

Total latency is lowest for Express Message with a 1us latency for nearest neighbor communi-
cation. Except for DMA, all message types take under 3.5 us even for messages that have to travel
the furthest distances. The DMA latency for 256-byte transfer is also shown. The number assumes
that resetting of DMA channel counter is done remotely from the sender sP. The reasonably low
DMA latency, together with the low processor overhead to initiate DMA (presented in the previous
section) makes it effective to employ DMA for relatively modest-sized transfers. When a message
has to go all the way across the network, Arctic network’s latency dominates the latency for all
non-DMA messages. With future router chips expected to have a higher degree'?, however, net-
work latency should decrease, making the other latency components which are directly dependent
on interface design more important.

5.3 Peak Bandwidth

Peak bandwidth is derived by assuming that the source and destination processors are doing nothing
but sending or receiving messages as fast as they can. Furthermore, a site is either sending or
receiving messages but not both. It takes into account resource contention between successive
invocation of the same message passing mechanism. Figure 8 shows the peak bandwidth that each
message passing mechanism can deliver.

Express Message, limited by its less efficient use of memory bus bandwidth, has the lowest
bandwidth but nevertheless achieves 20 MBytes/sec bandwidth. The highest bandwidth of over
150 MBytes/sec is achieved with the largest Basic Message. This is counter intuitive because one
would expect DMA to deliver the highest bandwidth. It is partly an artifact of the assumptions
used for generating these numbers: the data source and destination for Basic Messages is assumed
to be in the processor registers. In practice, this will not be the case unless the same data is sent
on every message, a useless activity. In contrast the bandwidth offered by DMA can be gainfully
employed. The limiting factor for Basic Messages is how fast cached message data can be transferred
over the system bus, either with processor Flush instructions, or NES Flush bus transaction. DMA

13 Arctic was initially designed as an 8x8 switch, but due to packaging limitations, it was scaled back to a 4x4
switch.

15

one-way
processor Interface nearest Send Receive Peak
Machine speed Location neighbor | Overhead | Overhead | Bandwidth
(MHz) latency (us) (us) (MByte/sec)
(us)
StarT-Voyager (raw) 150 memory bus 0.9 0.05 0.17 158
CM-5 (CMAM)[30] 33 memory bus 5.7 1.5 1.25 10
Paragon (AM)[31] 50 memory bus 8.4 2.2 1.0 145
Meiko CS-2 (AM)[15] 66 memory bus 10.8 1.7 1.6 39
T3D (FM)[24] 200 | memory bus | 10 4 NA.

‘ HP+Medusa (AM)[32] 99 ‘ graphics bus ‘ 10.15 ‘ N.A. ‘ N.A. 12
StarT-Jr (AM)[21] 120 I/O bus 27 15 | 11 7
Sparc20+ATM (AM)][11] 50 I/0O bus 33 3 14
SP-2 (AM)[11] 66 1/0 bus 25.5 1 34
Sparc20+Myrinet(AM)[15] 50 I/O bus 15.7 2.0 2.6 20
Sparc20+Myrinet(FM)[35] 50 I/O bus 25 N.A. N.A. 20

Figure 9: Message passing performance of several representative systems. StarT-Voyager’s numbers
are estimated, and are raw numbers that do not include the overhead of additional functionalities
that are present in a typical message passing library.

performance is limited by the rate at which the DMA Send Engine is reading and sending data
packets.

5.4 Comparison with Other Machines

Figure 9 provides a very rough comparison of StarT-Voyager’s message passing performance com-
pared to other machines. Aside from StarT-Voyager’s numbers, the numbers in Figure 9 are
reported by other researchers, and were measured either with Active Message (AM)[44] or Illi-
nois Fast Messages (FM)[35], both of which are very fast message passing libraries, and are taken
from many articles[30, 32, 31, 15, 11, 21, 24, 35]. It is impossible to conduct a completely fair
comparison because the machines are from different time periods, not all the measurements re-
ported are for the same message size (varies from zero to several words of payload), and some
implementations include sliding window protocols to deal with lossy network hardware which also
provides flow-control as a side benefit. Nevertheless, the table does provide some insight into how
StarT-Voyager’s performance compares with these other machines.

Processor overhead for message passing communication is very low on StarT-Voyager, and this
scales down to the smallest message with only one word of data. Among the other machines, the
lowest overhead for small message, both in terms of number of processor cycles, and wall-clock
time, is achieved on a CM-5, taking about 50 (33MHz) processor cycles (1.5us) to either send or
receive a four 4-word message. StarT-Voyager is able to better CM-5 both in processor count and
wall-clock time. With a Basic Message, the wall-clock time overhead of .17us is almost 9 times
better than CM-5’s. In terms of processor clock, which is a better comparison since CM-5 has a
relatively slow processor, StarT-Voyager’s Basic Message takes only 26 processor cycles, half that
of CM-5.

StarT-Voyager’s latency is also significantly better than other machines, only 1/6th that of CM-
5, which has the lowest latency them. Communication latencies for machines with memory bus

16

network interfaces — Meiko CS-2, Paragon and T3D, are similar, in the vicinity of 10us. I/O bus
based interfaces are slower, the fastest, achieved by Active Messages over Myrinet, has a latency
of 15us.

StarT-Voyager delivers very high message passing bandwidth, roughly an order-of-magnitude
improvement over most existing machines. Among the other machines, only Paragon achieves a
similar bandwidth of 145 MByte/sec, but requires messages of almost 4-KBytes to reach half of
that bandwidth. In contrast, StarT-Voyager achieves the peak bandwidth with packets carrying
only 88 Byte of data payload. Most of the other machines achieve peak bandwidth of only 10-20
MByte/sec, with SP-2 reaching 35MByte/sec.

6 Design Modifications for Multiprocessor Host System

When a host SMP has multiple aPs and its coherent memory bus supports cache-to-cache transfer of
data, both characteristics of emerging high-end SMPs, the StarT-Voyager design can be improved.
New issues in this environment are: (i) atomicity of concurrent accesses to a shared message queue
by multiple threads; and (ii) the need to support more resident queues because different jobs using
separate message queues may be executing on different aPs simultaneously.

Several threads executing in parallel can share a message queue only if allocation of transmit
queue buffers and received messages is done atomically. In addition, each thread should be able to
independently launch a message, or free a message buffer. StarT-Voyager’s existing Basic Message
interface does not meet these requirements. To achieve atomic allocation with that interface, a
mutex lock is needed for each queue, adding significant overhead. The design’s use of FIFO queues
requires message launch to follow the buffer allocation order for a transmit queue, and buffer
deallocation to follow the message arrival order for a receive queue. This requires coordination
between threads and introduces dependence. For example, should a thread obtain a transmit
buffer and not utilize it for a while, another thread which obtains a transmit buffer after it will not
be able to launch its message.

In contrast, the Express Message interface, which relies on a single uncached read or write to
perform a complete operation on a message queue, meets the atomicity and independence require-
ments. We can use this technique to develop a new interface for Basic Messages which associates
with each message queue two FIFOs of buffer pointers: one for pointers to free buffers, another for
pointers to full buffers. Consumers pop buffer pointers off the Full Buffer FIFO, dereferencing it to
get to the message. To free a buffer, a consumer pushes its pointer into the Free Buffer FIFO. In a
similar fashion, producers obtain buffers by popping buffer pointers off the Free Buffer FIFO. After
writing message data into the buffer space, the pointer to the buffer is pushed into the Full Buffer
FIFO. A distinguished null-pointer value is returned when popping from an empty FIFO. This de-
sign achieves both atomicity and independence. It comes at the price of: (i) an indirection to get a
send or receive buffer, (ii) more complex hardware and extra memory for the buffer pointer FIFOs,
and (iii) no opportunity for aggregating accesses to the NES. This interface can be extended to sup-
port Express Messages too by extending the transmit Full Buffer FIFO to include a small amount
of data. In order to minimize the number of bits to specify the buffer address, they are specified
as a offset from a known per-message queue base address. This combined interface allows short
sized messages to be sent with the efficiency of Express Messages, while presenting an interface for
medium sized messages that works with concurrent accesses from multiple threads. StarT-Voyager
incorporates certain elements of this interface in Tag-On Messages with the difference that NES
support for Tag-On Messages does not include a hardware FIFO to read free buffers; however, it
can be emulated by sP software.

17

To support more resident queues, one method is to scale up in a brute force manner, either
increasing the number of queues supported in each NES, or use multiple NES’s. Changes to
the micro-architecture can, however, result in better utilization of a smaller amount of SRAM.
Instead of using SRAM as straight forward queues, it is used as staging buffers for transmission
of messages, and as a cache for received messages. The final storage space for all queues is main
memory DRAM. Out-going messages are read by the NES into the staging buffers, before it is send
out into the network, while an arriving message is placed into the Received Message Cache unless
the latter is full, in which case the message is written into DRAM. Cache management policy can
be customized to the structured usage pattern by adopting strategies like deallocating data in the
Received Message Cache after it has been read and the queue buffer space freed by application
software. Destination translation tables can also be placed in DRAM, with only cached copies in
the NES. This design blurs the distinction between resident and non-resident resources. Assuming
that the coherent memory bus supports cache-to-cache transfers, the design can achieve the same
data-transfer path as the straight forward queues-in-SRAM design of StarT-Voyager. Though such
a design uses NES buffers more efficiently, it is also more complex than the current StarT-Voyager
design.

7 Conclusions

StarT-Voyager is designed to be a scalable, general-purpose parallel system which can effectively
support a mixed workload of sequential, distributed and parallel applications in a multitasking
environment. It uses unmodified commercial SMPs as building blocks to keep development cost
low, and capitalizes on the rapid performance improvement of commercial systems. StarT-Voyager
combines the best features of traditional MPPs, hybrid message passing/shared memory machines
and more recent work on NOWs, and introduces new mechanisms in areas where existing machines
have fell short.

While adopting the concept of direct user-level access to message passing hardware from MPPs
like the CM-5, StarT-Voyager goes much further in (i) providing sufficient support to cover a
wider range of communication needs efficiently, and (ii) developing a simple but flexible protection
scheme. These are traditional MPPs’ Achilles heels which have confined them to a niche mar-
ket. From NOWs, StarT-Voyager borrowed the idea of employing commercial systems as building
blocks, and the vision of a general purpose parallel system that is not only suitable for executing
parallel programs, but is also efficient for running traditional sequential and client-server distributed
applications. StarT-Voyager is much more aggressive in pushing for higher performance under this
approach, and includes hardware supported cache-coherent shared memory[13].

Although StarT-Voyager provides many mechanisms, most of them require only incremental ad-
ditions to the basic hardware. The different message types all rely on the same hardware structure
of FIFO queues with producer and consumer pointers. This is exposed to applications in the Basic
Message interface. To support Express Message, the NESCtrl chip adds a veneer of hardware that
manages the producer and consumer pointers so that the queue now appears as hardware FIFOs to
applications. The DMA engines’ ability to read and write aP DRAM are already present in order
to support cache-coherent distributed shared memory[13]. Through careful interface design and
factoring out common subcomponents, StarT-Voyager is able to offer a range of capabilities with-
out excessive hardware design complextiy. Compared to more custom machines like the Stanford
Flash[26], StarT-Voyager has far lower development costs while delivering similar functionalities.
StarT-Voyager may have lower coherent shared memory performance than Flash because its sP
is less tightly coupled to the aP memory system than Flash’s MAGIC chip which is situated at

18

the memory controller location. Nevertheless, because StarT-Voyager handles common cases com-
pletely in hardware, the sP is far less loaded than Flash’s Protocol Processor, giving StarT-Voyager
some performance edge.

Credits and Acknowledgments Boon S. Ang and Derek Chiou are the principle architects of
StarT-Voyager. Mike Ehrlich is leading the NES hardware implementation team which consists of
Andy Boughton, Chris Conley, Jack Costanza, Dan Rosenband, Handong Wu and Brad Bartley.
Andy Boughton designed Arctic and is leading the Arctic implementation team which consists of
Jack Costanza and Dan Rosenband. Larry Rudolph is heading the software team. Xiaowei Shen is
designing and implementing coherency protocols. We would like to thank Bob Greiner who worked
with us on earlier designs and taught us much about micro-architecture design.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, , and D. Yeung. The MIT Alewife Machine: Architecture and Performance. In

Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 2
- 13, 1995.

[2] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir. SP2 System
Architecture. IBM Systems Journal, 34(2):152 — 184, 1995.

[3] M. S. Allen, M. Alexander, C. Wright, and J. Chang. Designing the PowerPC 60X Bus. IEEE
Micro, pages 42 — 51, Oct. 1994.

[4] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer. In Proceedings of the
21st International Symposium on Computer Architecture, pages 142 — 153, Apr. 1994.

[5] N. J.Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su.
Myrinet — A gigabit-per-Second Local-Area Network. IEEE Micro, Feb. 1995.

[6] S.Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Peterson,
J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, , and J. Webb. iWarp: An Integrated
Solution to High-speed Parallel Computing. In Proceedings of Supercomputing ’88, Orlando,
Florida, pages 330 — 339, Nov. 1988.

[7] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore, W. Moore,
C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting Systolic and Memory
Communication in iWarp. In Proceedings of the 17th International Symposium on Computer
Architecture, pages 70 — 81, May 1990.

[8] G. A. Boughton. Arctic Routing Chip. In Proceedings of Hot Interconnects II, Stanford, CA,
pages 164 — 173, Aug. 1994.

[9] T. Brewer. A Highly Scalable System Utilizing up to 128 PA-RISC Proces-
sors. Technical report, Convex Computer Corporation, 1995. (Available from
http://www.convex.com/tech_cache/technical.html in Jul 96.).

[10] C.-C. Chang, G. Czajkowski, C. Hawblitzel, and T. von Eicken. Low-Latency Communication
on the IBM RISC System/6000 SP. In Proceedings of Supercomputing ’96, 1996. (to appear).

19

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

C.-C. Chang, G. Czajkowski, and T. von Eicken. Design and Performance of Active Messages
on the IBM SP-2. (Work at Dept of Computer Science, Cornell University, Ithaca. Available
from http://www.cs.cornell.edu/Info/Projects/CAM/ in Jul 96).

D. Chiou, B. S. Ang, R. Greiner, Arvind, J. C. Hoe, M. J. Beckerle, J. E. Hicks, and
A. Boughton. StarT-NG: Delivering Seamless Parallel Computing. In Proceedings of the
First International EURO-PAR Conference, Stockholm, Sweden, pages 101 — 116, Aug. 1995.

D. Chiou, B. S. Ang, L. Rudolph, and Arvind. Coherent Shared Memory Support on StarT-
Voyager. CSG Memo 388, MIT Laboratory for Computer Science, July 1996.

Convex Computer Corporation, Richardson, Tx. Exemplar Architecture, Nov. 1993.

D. Culler, L. T. Liu, R. Martin, and C. Yoshikawa. LogP Performance Assessment of Fast
Network Interfaces. IEEE Micro, 1996. (to appear).

D. E. Culler and G. M. Papadopoulos. The Explicit Token Store. Journal of Parallel and
Distributed Computing, 10(4):289-308, 1990.

W. J. Dally, R. Davison, J. A. S. Fiske, G. Fyler, J. S. Keen, R. A. Lethin, M. Noakes, and
P. R. Nuth. The Message-Driven Processor: A Multicomputer Processing Node with Efficient
Mechanisms. IEEE Micro, Apr. 1992.

M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and W. S. Lee.
The M-Machine Multicomputer. In Proceedings of the 28th Annual International Symposium
on Microarchitecture, Ann Arbor, Michigan, 1995.

R. B. Gillett. Memory Channel Network for PCI. IEEE Micro, pages 12 — 18, Feb. 1996.

J. C. Hoe. Network Interface for Message-Passing Parallel Computation on a Workstation
Cluster. In Proceedings of Hot Interconnects II, Stanford, CA, pages 154 — 163, Aug. 1994.

J. C. Hoe and M. Ehrlich. StarT-Jr: A Parallel System from Commodity Technology. CSG
Memo 384, MIT Laboratory for Computer Science, July 1996.

IBM. IBM Scalable POWERparallel System Reference Guide, 1993. IBM Publication Number
G325-0648-00.

C. F. Joerg and D. S. Henry. A Tightly-Coupled Processor-Network Interface. In Proceedings
of the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, Boston, MA, pages 111-122, Oct. 1992.

V. Karamcheti and A. Chien. FM: Fast Messaging on the Cray T3D. (Work at Concurrent
Systems Architecture Group, Dept of Computer Science, University of Illinois at Urbana-
Champaign. Available from http://www-csag.cs.uiuc.edu/projects/comm/fm.html in Jul 96).

R. E. Kessler and J. L. Schwarzmeier. Cray T3D: a New Dimension for Cray Research. In
Digest of Papers, COMPCON Spring 93, San Francisco, CA, pages 176 — 182, Feb. 1993.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chaplin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stan-
ford FLASH Multiprocessor. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, Chicago, II, Apr. 1994.

20

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

C. E. Leiserson. Fat-trees: Universal Networks for Hardware-efficient Supercomputing. IEEE
Transactions on Computers, C-34(10), Oct. 1985.

C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-5. In Pro-
ceedings of the 1992 ACM Symposium on Parallel Algorithms and Architectures, 1992.

D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The DASH
Prototype: Implementation and Performance. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, Gold Coast, Australia, pages 92 — 103, 1992.

L. T. Liu and D. E. Culler. Measurements of Active Messages Performance on the CM-5.
(Work at Dept of Computer Science, University of California at Berkeley. Available from
http://now.cs.berkeley.edu/Papers/papers.html in Jul 96), May 1994.

L. T. Liu and D. E. Culler. Evaluation of the Intel Paragon on Active Message Communication.
In Proceedings of Intel Supercomputer Users Group Conference, June 1995.

R. P. Martin. HPAM: An Active Message Layer for a Network of HP Workstations. In
Proceedings of Hot Interconnects II, Stanford, CA, pages 40 — 58, Aug. 1994.

C. May, E. Silha, R. Simpson, and H. Warren, editors. The PowerPC Architecture: A Specifi-
cation for a New Family of RISC Processors. Morgan Kaufman Publishers, Inc., San Francisco,
CA, second edition, May 1994.

S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent Network Interfaces for
Fine-Grain Communication. In Proceedings of the 23rd International Symposium on Computer
Architecture, May 1996.

S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations: Illinois
Fast Messages (FM) for Myrinet. In Proceedings of Supercomputing ’95, San Diego, CA, 1995.

G. M. Papadopoulos, G. A. Boughton, R. Greiner, and M. J. Beckerle. *T: Integrated Building
Blocks for Parallel Computing. In Proceedings of Supercomputing ’93, Portland, Oregon, pages
624-635, Nov. 1993.

S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-Level Shared
Memory. In Proceedings of the 21st Annual International Symposium on Computer Architec-
ture, Chicago, 1Il, pages 325 — 336, Apr. 1994.

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An Architecture of a Dataflow
Single Chip Processor. 16th Annual International Symposium on Computer Architecture, pages
46-53, 1989.

Sequent Computer Systems, Inc. Sequent’s NUMA-Q Architecture White Paper. (Available
from http://www.sequent.com/public/solution/numaq/technology/archindex.html in Jul 96,

).
C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice, P. Hochschild,

D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R. Varker. The
SP2 High-Performance Switch. IBM Systems Journal, 34(2):185 — 204, 1995.

M. R. Swanson, R. Kuramkote, L.. B. Stoller, and T. Tateyama. Message Passing Support in
the Avalanche Widget. UUCS 96-002, Department of Computer Science, University of Utah,
Mar. 1996.

21

[42]

[43]

[44]

[45]

Thinking Machines Corporation, 245 First Street, Cambridge, MA02142, USA. Connection
Machine CM-5 Technical Summary, Nov. 1993.

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network Interface for
Paralle and Distributed Computing. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, Colorado, Dec. 1995.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a Mech-
anism for Integrated Communication and Computation. In Proceedings of the 19th Annual
International Symposium on Computer Architecture Conference Proceedings, Gold Coast, Aus-
tralia, pages 256 — 266, 1992.

C. Whitby-Strevens. The Transputer. In Proceedings of the 12th Annual International Sym-
posium on Computer Architecture, pages 292 — 300, 1985.

22

