CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Lambda-S: an implicitly parallel λ-calculus
with recursive bindings, synchronization and sid

Jan-Willem Maessen, Arvind, R.S. Nikhil, Joe Stoy
Based on paper submitted to ICFP '97

1996, November

Computation Structures Group
Memo 393

u -
e

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

As: an Implicitly Parallel A-Calculus with Letrec,
Synchronization and Side-Effects

Computation Structure Group Memo 393
November 25, 1996

Arvind MIT Lab for Computer Science

J-W. Maessen MIT Lab for Computer Science

R.S. Nikhil Digital Equipment Corp., Cambridge Research Lab
J.E. Stoy Ozford Unwversity Computing Laboratory

Submitted to ICFP 97

This research was conducted at the MIT Laboratory for Computer Science. Funding
for this project was provided in part by the Advanced Research Projects Agency of

\ the Department of Defense under Ft. Huachuca contract C-DABT63-95-C0150. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Ag: an Implicitly Parallel A-Calculus with Letrec, Synchronization
and Side-Effects

Arvind MIT Lab for Computer Science

J-W. Maessen MIT Lab for Computer Science

R.S. Nikhil Digital Equipment Corp., Cambridge Research Lab
J.E. Stoy Ozford University Computing Laboratory

November 25, 1996

Abstract

As extends the A-calculus with letrecs, barriers, and updateable memory cells with synchro-
nized operations. The calculus is designed to be useful for reasoning about compiler optimiza-
tions and, thus, allows reductions anywhere, even inside A’s. Despite the presence of side-effects,
the calculus retains fine-grained, implicit parallelism and non-strict functions; there is no global,
sequentializing store. Barriers, for sequencing, capture a robust notion of termination. Although
As was developed as a foundation for the parallel functional languages pH and Id, we believe
that barriers give it wider applicability— to sequential and explicitly parallel languages. In this
paper we describe the Ag-calculus and its properties which are based on a notion of observable
information in a term. We also describe reduction strategies to compute the maximal observable
information.

1 Introduction

The A-calculus [9] and its variants have been invaluable in capturing the essence of languages such
as Haskell [13], SML [17] and Scheme [11], providing the theoretical foundation for reasoning about
and transforming programs in these languages. In this paper we describe the Ag-calculus, another
variant, intended as the formal basis for the parallel programming languages pH [2] (an extension
of Haskell) and Id [18].

As incorporates implicit parallelism, letrecs, synchronization and side-effects. The fine-grained
parallelism evident in functional (especially non-strict) languages is exploited by default. Together
with letrec, it permits programs with dynamic cyclic dependencies, a popular technique in lazy
programs. The barrier is a control mechanism for sequencing. Side-effects are bundled with data-
oriented synchronization in two mechanisms called I-structures [8] and M-structures [10]. We believe
As meets the following goals:

e An easy-to-understand operational semantics of pH. This includes a definition of observable
values and a standard parallel reduction strategy to compute these values.

e Maximum flexibility, in order to reason about compiler optimizations. For example, it should
permit reductions inside \’s and conditionals (because this is what compilers do) even though
such reductions may not occur during execution.

The novelty of Ag lies in the way it treats barriers and side-effects. In the FP literature, introduc-
tion of side-effects is usually in the context of a sequential operational semantics (see, for example,
[12] and [16] for call-by-value languages, or state monads in Haskell [15]), and state is often mod-
eled by a single global store with sequential operations. Ag, on the other hand, introduces no such
sequentialization, nor a separate store. The “store” is distributed throughout the term and we
give small-step semantics for its manipulation. This is crucial for preserving implicit, fine-grained
parallelism. Our barrier semantics captures a robust notion of “termination”. We believe it is
powerful enough to explain call-by-value languages and sequential languages extended with concur-
rency primitives, and raw (unsynchronized) side-effects. Despite the presence of side-effects, our
calculus places no restrictions on where reductions may take place in the term.

The introduction of side-effects requires a precise definition of sharing. There is a large body of
literature dealing with sharing, such as [20], [14], [5] and [1]; these are motivated not by side-effects
but by efficiency considerations (graph reduction, optimality, etc.), and often do not address letrecs
and parallelism.

In this paper, we build up to Ag in three stages. §2 describes ¢, extending the A-calculus with
letrecs, conditionals, constants and functional data structures. The technical results of A have
already been achieved by Ariola and Blom [4]; we use this section to introduce our (somewhat
different) notation and machinery. The results are similar for the functional subset, but the Ariola
and Blom semantic model does not carry over to barriers and side-effects. §3 describes Ap, adding
sequencing barriers to A¢. §4 describes Ag, the full calculus, adding side-effects and data-oriented
synchronization. In §5 we discuss parallel reduction strategies.

In each proposition we present, we follow the convention that, unless a limitation is explicitly stated,
it holds for A¢, Ap and Ag. Due to space limits, we omit all proofs, deferring them to a companion
technical report [7] (in preparation). Furthermore, we assume that Ag terms are generated from a
statically typed language (like pH), and thus ignore reductions precluded by static type-checking.

2 MA¢: Letrecs, Constants and Functional Data Structures

Ac¢ is purely functional (no side-effects). Letrecs allow sharing of computations by binding an
expression to an identifier which may be used in a number of places—including recursively in
its own definition. While this may be viewed as merely an optimization in a purely functional
language, it is semantically essential for barriers and side-effects. Theoretically, we could work
without conditionals, constants and functional data structures, but we include them to improve
intuition.

The calculus will be presented by describing the syntax of terms, equivalence rules for ignoring
trivial syntactic differences between terms, and reduction rules.! Then, we discuss equivalence
between terms using a notion of printable observations. Finally, we discuss garbage collection, or
erasure of irrelevant terms, which other authors often include in their reduction rules.

! As usual, the “e —» e;” denotes one application of a reduction rule; “e —e;” denotes a finite sequence (zero
or more) of reductions. A redez is a term or subterm which is capable of reduction by one of the rules.

Syntax of Ao

Expressions:
E == z|EE|M.E Identifiers, applications, abstractions
| {SinE} Letrec blocks
| Cond(E,E.E) | PFy(E:, --,E) Conditionals, primitive fn of arity &
| CNg | CNg(E1, -+ Eg) Constants, constructors of arity k
Non-initial expressions:
| CNg(SEy, -- SEy) Constructor values of arity &
Statements (in blocks):
S = € Empty statements
| z=EFE Bindings
| S; S Parallel statements

The syntax of A¢ is shown above. Constants CNj include numbers and booleans; functional data
structure constructors CNy, include “cons”; primitives PF}, include arithmetic operators and pro-
jection functions (Proj;) to select components of functional data structures. Non-initial expressions
do not appear in user-written programs, but only as part of the reduction process. Arguments of
CNg() are always simple expressions (SE, defined shortly: identifiers and values); with recursive
blocks, this allows us to write cyclic data structures finitely. In a letrec block “{ S in E }”, E'is
called its return expression. We use the general term “statement” for S because A\g will later intro-
duce components that just perform side-effects. Empty statements are a technical convenience that
become useful in Ap and Ag. The left-hand side identifiers in the bindings of S must be pair-wise
distinct. The block has recursive scoping rules—any left-hand side identifier may be referred to in
any right-hand side expression, as well as in the return expression.

Syntax of Values and Simple Expressions in Ag: During reduction we need to instantiate
an identifier’s use with its definition. We cannot instantiate arbitrary expressions, as this may
replicate work and destroy sharing. We identify two subsets of A¢, Values and Identifiers, together
known as Simple Ezpressions, that are substitutable:

SE == =z | V Identifiers and values
Vv = Az.E | CN() | CNk(SEl,- i SEk)

2.1)¢ Syntactic Equivalence Rules

As in A-calculus, bound variable names are just dummy names—their exact choice does not matter.
Further, the exact textual order of statements in a parallel composition does not matter:

a-renaming;:
Az.e
{z=e;Siney }
Equivalence properties of

At.(e[t/x])
{t=e; S iney }[t/x]

”

-

€; S = S
S1 5 S = S5; 5
S1 5 (S2 5 S3) = (S1; 82) ;53

a-renaming is done in the standard way; we omit details here. We use “e[t/z]” to denote expression
e with all free occurrences of identifier z replaced by identifier t. We use e’ and S’ to denote renamed
versions of e and S. t is always an identifier which does not otherwise occur in the left-hand term
of the rule.

2.2)¢ Reduction Rules

Function Application (S-reduction):

(Az.e1) e — {t = ey iney[t/x] } (Bet)

There are two things to note about Gj;. First, es can be an arbitrary expression, not just a value—
this makes it non-strict. Second, we always preserve exactly one copy of ea—unlike traditional
B, which may copy or erase es depending on the number of uses of z in e;. Together with the
restricted instantiation rule below, this preserves sharing and side-effects, and is important for the
semantics of barriers. Fj.; produces graph structured terms, whereas traditional 8 produces trees.

Instantiation (Substitution): Given z = a in a letrec block, where a is a simple expression,
these reduction rules specify that we can replace uses of = by a:

{z=a;SinClz]} — {z=a;SinCla]} (Instl)

z =a; SC[z] — z=a; SC|a] (Inst2)

rT=a — 1z = Cld] (Inst3)
where a = C[z]

For lack of space we omit the obvious definitions of C[] and SC[] which are contexts (expressions
and statements, respectively, into which we can plug an expression). There are no restrictions—
substitutions can even occur inside A’s. The calculus thus permits infinite unfolding of cyclic terms;
we leave it to reduction strategies to control this.

Block flattening:
z={Sine} — z=¢€;5 (Flat)

Expression lifting: Each rule below “lifts out” a nested expression by giving it a name (using
a-renaming where necessary to avoid name conflicts). To prevent instantiation and lifting from
alternating forever, lifting rules are inapplicable when e is a simple expression.

{Sine} — {S;t=eint} (LiftB)
(e e2) — {t=ecintey} (LiftApl)
(e1€) — {t=eine t} (LiftAp2)
Cond(e, e1, e3) — {t=ein Cond(t, e, e2) } (LiftCond)
PF(---, e,) — {t=-ein PFg(---, t,---) } (LiftPF)
Flattening and lifting produce new juxtapositions that trigger other reductions. For example:
f={ S in Az.e }; x =1 a; (Elag) f=Xre; ; Si;5 x=1 a;

which then allows us to instantiate £ by Az.e} in the application. Note that we do not lift expressions
from A bodies, nor from the arms of a conditional. While safe in A¢, such rules would be incorrect
in Ag and Ag because they would “expose” (make observable) potential non-terminations or side-
effects that would normally be protected by those contexts.

Constants, conditionals, delta rules: As usual, we regard constants (CNy) as already evaluated,
and:

Cond(True, e;, e2) — e (CondT)

Cond(False, e, €3) — ey (CondF)

PFg(v1, - ,0) — w ©) e.g., +(n,m) — n+m
proj; (CNg(er, -+, €, -+)) — ¢ (Proj)

Constructors: Constructor terms in the initial program are reduced to constructor values:
CONg(-- e o) —> {5ty = e din ONg(-os B, -+0) } (Cons)

Here, e; need not be a simple expression. The resulting “CNy()” term has identifier arguments
and, thus, there are no lifting rules for constructors.

2.3 Comparing terms for information content

Having presented the calculus for A¢, we must now ask if there is a non-trivial notion of the
“meaning” of a term that is preserved under reduction. It is traditional here to discuss the “normal
form” of a term and reduction strategies to achieve it.2 Unfortunately, because of letrec blocks,
direct syntactic characterizations (such as normal forms) are problematic. First, terms may contain
irrelevant clutter (since ¢ does not discard argument expressions). But even if we are tempted to
use “garbage collection” rules to erase clutter, the following result suggests that letrec blocks make
syntactic comparisons futile:

Proposition 1 (Non-confluence (Ariola and Klop [6])) A¢ is not confluent.

To see this, consider this term, which represents an infinite list of alternating 1’s and 2’s:
{ x = Comns(l, y) ; y = Cons(2, x) in x }
Let us take two paths, by substituting for x and for y, respectively. The resulting terms are:

{ x = Comns(l, y) ; y = Cons(2, Cons(1, y)) in x } (M)
{ x = Cons(1l, Cons(2, x)) ; y = Cons(2, x) in x } (Ms)

From this point on, in M; the y definition will always contain y, whereas in M, the y definition will
always contain x, i.e., we can never bring these two terms together syntactically again. However,
M; and My will behave identically in all contexts.

Thus, instead of syntactic comparisions, we compare observable behavior. We first discuss the
“instantaneous print” or Print[] of a term. Then we discuss the “full print” or Print*[] of a term,
i.e., what can be observed about a term after reduction.

2.3.1 Print[]: instantaneous observable information in a term

Print[e] transforms a term into the syntax Ep. It preserves constants and constructors; replaces
applications, conditionals and nested letrecs by the symbol “L”; replaces any A-expression with the
symbol “\” (and ignores the A\-body), and so on.

To handle cyclic terms, we define printing in two stages: a Print[] function captures the graph
structure of the term, and an Unfold() function flattens graphs into trees that can be compared.
Print[] produces terms with the following syntax:

EP H= VP | { Sp in SEP }

Sp = € | z=Vp | Sp ; Sp

SEp 1= =z | Vp

Voo u= L | XA | CNg | CNi(SEp,: - SEp,)

*It is also possible to map terms to a separate space of denotational meanings (see, e.g., [19]), but for Ap and As
this is quite complicated and (for Ag) rather indirect.

Print[] simply discards A bodies, applications, conditionals, nested blocks, etc.:
Print[{ S in E }] { Printg[S] in Printsg[E] }

Print[E] = Printy[E] otherwise
Printg[e] = €
Prints[z = E]J = 1z = Printy[E]
Prints[S1; Sa] = Printg[Si] ; Printg[S2]
Printy [Az.E] = A
Printy [CNy | = CNyp
Printy [CNg(- -+, e, -=-)] = OCNg(---, Printgg[e;], --+)
Printy [E] = 1 otherwise
Printsg[z] = z
Printsg[E] = Printy[E]
Unfold,,() does a finite unfolding of outputs of Print[], producing trees with the following syntax:
Tp n= 1 | A | Q | CNO | CNk (Tpl, R Tpk)

It prints values, and follows bindings (including arguments of data structures) by keeping an en-
vironment of bindings. However, it follows bindings through the environment only up to a finite
depth n, bottoming out by printing 2. 2 is equivalent to 1, but we use it as a technical convenience
to distinguish partially-unfolded printable terms from unevaluated printable terms.

Unfold,, ({Sp in SEp}) = Unfold, (SEp) (Env Sp {Vz.z — L}) generate nodes
Unfoldn (Vp) = Vp

Unfoldj(z) p = Q

Unfold/,(z) p = Unfold,_,(p(z)) p one unfolding
Unfold;,(CNg(---, €, --+)) p = CNg(---, Unfold;,(e;) p, - -)

Unfold] (Vp) p = Vp otherwise
Env(e) p = p

Env(z =Vp) p = p{z— Vp}

Env(Sp1;Sp2) p = Env(Sp1) (Env(Sp2) p)

Because Print[[] does not unfold cyclic terms, it always terminates. When we Print[] these terms
representing an infinite list of ones:
{ x
{ x
we get Ep terms that look the same as the original E terms. When we then Unfold,,() them, we
obtain a list of n ones terminated by :

Cons(1, Cons(1, Cons(1l, ... Q)...)

Cons (1, x) in x }
Cons(1, y); y = Cons(1, x) in x }

In order to compare Tp trees, we define the following ordering:

Q = 1

1 C Tp

A C A

CNy C CNp

CNg(v1, == vj -, vp) E CNg(vg, - v) -, vg) if v; C vj

We now have a way to compare Fp terms. A term E; “contains less information” than another
term Fs if each finite unfolding of F; is less than some finite unfolding of Es; and, equivalence of
two Ep terms can be derived in the usual way from this ordering:

Epl C EP2 <~ VnEImUnfoldn (Epl) C Unfoldm(Epg)
Epi = Epy & Ep1 C Epy and Eps C Ep;

Proposition 2 (Print monotonicity) If e —»e; then Print[e] C Print[e;]
A¢ is not confluent, but two reduction paths can always be reunited so their print values match:

Proposition 3 (Print confluence in \¢) If e—» e; and e—» eq, then there exist €| and €
such that e;—» €} and e;—» €h, and Print[e}] = Print[e)]

The following theorem is very important: it assures us that we have not lost any computational
power by enforcing sharing using letrec blocks and restricted substitution.

Definition (Ag): Let A\¢ be the calculus without any restriction on instantiation, i.e., an identifier
may be instantiated by an arbitrary expression, not just a simple expression.

Proposition 4 (Fundamental theorem of graph reduction in A\¢ (Ariola and Blom [4]))

If e —» ey in Ao, then Jeg such that e —» ey in A¢, and Print[e;] T Print[es].

2.3.2 Print*: all potentially observable information in a term

Print*[] is a set of printed terms representing the maximal printable information that can be
obtained from a term or any of its reductions. We obtain Print*[e] by looking at the outcome
of every possible reduction sequence starting at e. A reduction sequence of a term e is a partial
function from natural numbers N to E. It is partially defined up to some n (with sy being e itself),
and it is a reduction sequence in that for any two adjacent defined elements s; 1, s;, the former
reduces in one step to the latter. We write st or s;l when s is defined or undefined, respectively,
at j.
Definition (Reduction Sequence):

RS(e) ={s|so=e A Visil=sjil A Vji>O0st=s5;_1— s;}
The Complete Reduction Sequences for an expression e are all reduction sequences starting at e
which are either infinte, or whose final term contains no redexes:

Definition (Complete Reduction Sequences):

CRS(e) = {s € RS(e) | Vj > 0.5\ sj1il=Ze’.s; — €)}
If we Print[] each term in a sequence, we get an ascending chain of Ep terms (monotonicity).
Intuitively, we want the least upper bound of this chain as the “final” print value. However, since
chains may be infinite and Ep terms only form a preorder, we use the domain Ep* D Ep which is
isomorphic to the ideal completion of Ep (and where the isomorphism preserves Ep), in which we
can take least upper bounds:
Definition (Print*[]): Print*[e] = { || Print[s;] | s € CRS(e) }

jew,sz

Proposition 5 (Print* determinacy in \¢) In Ao, Print*[e] has precisely one element.

Proposition 6 (Print* preservation in A\¢) In A¢, if e —» ey then Print*[e] = Print*[e;].

2.3.3 Termination

A stable term is one whose Print[] no longer changes under further reduction:
Definition (stable terms): A term e is stable if Print*[e] = { Print[e] }.

It is undecidable in general whether a term is stable; this motivates the identification of the following
classes of stable terms.

Definition (terminated terms): Terminated terms are described by the following syntax:
ET ==V | {HinSE}
H == z=V | H;H

A terminated expression contains no applications, conditionals, etc., unless they are inside a A-
abstraction or arm of a conditional.

Proposition 7 (Stability of terminated terms) If e € ET, then e is stable.

Consider the following two terms:
x=1 and { x = Cons(1,x) in x }
When we Print[] and unfold them, the former gives |, whereas the latter gives Cons(1, Cons(---,0Q)).

It is for this reason alone that we make a distinction between 1 and (2, and this motivates the
following;:

Definition (ground-printing terms): In a ground-printing term e, Unfold, (Print[e]) does not
contain | for every n larger than some m.

Note that a ground-printing term is always stable, but it may not have terminated; this is possible
because Print[] does not explore “irrelevant” computations, which may never terminate.

2.4 Garbage Collection of irrelevant terms in \¢

Our G rule does not discard argument terms, even if the formal parameter is unused. Thus, terms
may contain irrelevant clutter. Our calculus is free of GC rules, and we can study GC as a separate
topic.

Definition (garbage collection, or GC): GC is a transformation from E to E that erases part
of a term,® such that for any context C, Print*[Cle]] = Print*[C[GC[e]]]

The following is a proposed garbage collection process:*

Definition (garbage collection rule GCy):
{S¢;Sine} —{Sine} where Vz € FV(S) UFV(e): z &€ BV(Sg)

In other words, if S and e do not use any identifier defined by S¢, then S can safely be erased.
GCy can be applied anywhere (including inside A bodies).

Proposition 8 (GC of unreachable terms (in A\¢)) In Ao, GC, is a correct rule.

3The Print[] function, of course, erases irrelevant differences, but it transforms E to Ep and does not preserve
deep structure (e.g., A bodies).

4FV(e) are the free variables of e. BV (s) are the top-level bound variables of statement s, i.e., the left-hand sides
of all bindings comprising s. FV(s) are the free variables of statement s, i.e., the free variables of the right-hand
sides of all bindings comprising s, minus the variables that s itself defines (i.e., minus BV(s)).

3)Ap: adding Barriers to \¢

We now add a control mechanism called the barrier, which sequences statements in a letrec block.
Ap remains purely functional (no side-effects). Barriers get their practical motivation from control-
ling side-effects which are discussed later, but their semantic implications are evident in a purely
functional setting. Since Ap differs from A¢ in only a small way, we present it here informally.?
The new syntax is:

S = S -—— 5 Barriers

S (the pre-region) must terminate before Sy (the post-region) is visible to the rest of the term. The
sequencing involves only these two subterms. Qur static recursive scoping rule for letrec bindings
remains the same—in this respect, there is no difference between barriers and semicolons. To
a-renaming and semicolon equivalences, we add a new syntactic equivalence:

((H; S1)——-8S2) = H; (51 ---952)

(Recall, from our discussion on terminated terms, that: H ::== z =V | H ; H). This allows value
bindings to escape from pre-regions. The escaped bindings may enable other instantiations in the
surrounding context. When all such bindings escape, the barrier can be discharged:

e-—S — S (BAR1)
S-—¢ — § (BAR2)

It follows that the barrier can be discharged as soon as the pre-region has terminated:
(H---8) — (H; S)
In Print[], we add a clause that omits statements from post-regions:
Printg[S1 -—— S2] = Printg[Si]

A terminated term in Ap contains no barriers unless it is inside a A or conditional (just as it contains
no application unless it is inside such sub-terms).

All A\¢ propositions hold in Ap except for Prop. 8 (correctness of GCp). The post-region of a
barrier has no effect on the computation until the barrier is discharged:

Proposition 9 (Opacity of post-regions) If C[S1 -—- Sa] —» C'[S] --- S}] then
3 O" such that C[Si---S5] —» C"[S]-==85] —» C'[S|---S}]

i.e., it is always possible to concentrate on S; and ignore S until the barrier is discharged.
Proposition 10 (Barrier associativity) In all contexts, S1——-(S2-—-S3) = (S1-—-S2)---S3
The sole difference between A¢ and Ap is this:

Proposition 11 (Barriers constrain results) Print*[C[S1---S2]] C Print*[C[S1;S2]]

where the P;C P, means that for every p; in P;, there is a py in P, such that p;Epy. Barriers

essentially make it possible to observe non-termination. When placed before a barrier, the left-
hand term below will allow the barrier to discharge, whereas the right-hand term will not:

SHowever, it should be noted that this presentation and the semantics of barriers themselves differ from indirect
semantics given previously [3].

Expressions:

E = z|EE|X.E|{SinE } | Cond(E,E,E) (as before)

| PFi(Ei,--,Eg) | CNg | CNg(Er, -+ Ek) (as before)

| allocate() Cell allocation

| I-Fetch(E) | M-Fetch(E) I- and M-structure fetch
Non-initial expressions:

| CNg(SEi,--- SEy) (as before)

| 0 Cell identifiers
Statements (in blocks):
S = e|lz=E|S;S|5--S (as before)

| S-Store(E,E) Synchronized store
Non-initial statements:

| heap Heap allocator

| empty(0;) | error(0;) | full(0;,V) Empty, error, full cells

Figure 1: Syntax of Ag

5 {x=11in 5 }

Garbage collection of irrelevant terms in Ap: Because GCj can affect termination, which is
now observable, GCj is no longer correct for A\g. We constrain the GC rule so that only unreachable
bindings which have terminated are erased.

Definition (garbage collection rule GC,):
{B;Sine} —{Sine} whereVz € FV(S) UFV(e): z ¢ BV(B)
and B is defined by the syntax: Bu:=z=V | B ; B

Proposition 12 (GC of unreachable terminated terms) GC, is a correct rule.

4)g: adding side-effects and data-oriented synchronization

Ag is the full calculus, obtained by adding updateable memory cells that are dynamically allocated
in a heap.b Each cell can be in a full or empty state, which affects the behavior of cell operations.
Our formulation preserves small-step semantics (local rules) for fine-grain parallelism; there is no
global “store”.

The syntax of Ag is shown in Figure 1. allocate() produces a new, empty cell named by a cell
identifier 0j. S-Store, I-Fetch and M-Fetch are cell operations that depend on and affect the cell
state. Just before execution, we introduce a “heap” term as follows:

e — {heapine} (e is the entire program)
This is not a reduction rule; it just prepares the orginal program for execution.
Syntax of Values and Simple Expressions in Ag: we add cell identifiers:

V. u= Xz.E | CNg | CNg(z1, -+ zg) (as before)
| 0 Cell identifiers

SFunctional data structures in Ac could also have been explained with an explicit heap.

10

Heap Terms in \g: as before, heap terms are “quiescent” (including value statements):

H = z=V|H;H (as before)
| heap Heap allocator
| empty(0;) | error(0;) | full(0;,V) Empty, error, full cells

The syntactic equivalence rules (a-renaming, semicolons, barriers) remain unchanged.

4.1 Ag Reduction Rules

New lifting rules: Here, ¢ represents a variable which does not otherwise occur, and e &€ SE:

S-Store(e,eq) — (t = e ; S-Store(t,es)) (LiftS-Storel)
S-Store(e;,e) — (t =e€ ; S-Store(ey,t)) (LiftS-Store2)

Cell operations: allocate() creates a new memory cell, named by a new cell identifier:

(heap ; = = allocate()) — (heap ; empty(0;); = = 0;) (Alloc)
where 0; is a new cell identifier

The heap term remains unchanged; it merely enables allocation. Because there are no rules to
move the heap term into \’s, into conditionals or below barriers, allocation cannot occur in such
regions; allocation can only occur in “exposed” computations. This rule also sequentializes: only
one allocation can occur at a time. This can be trivially relaxed to a fixed degree of parallelism p by
introducing p heap terms at the start. It can even be relaxed to an unlimited degree of parallelism
by adding the reduction rule:

heap — heap ; heap

(we merely have to ensure that our standard reduction strategy does not get stuck in this rule.)
We can store a value into an empty cell, but not into a full cell:

(empty(0;); S-Store(0;, v)) — full(0j,) (S-Store)
(full(0j, v); S-Store(0;, w)) — error(0;) (S-StoreErr)
The argument terms must be a cell identifier and a value, not arbitrary expressions, i.e., a cell can

only store a value. The I-Fetch and M-Fetch rules say that a value can be extracted from a full
cell. However, they differ in the resulting state of the cell:

(full(0j, v); = = I-Fetch(0;)) — (full(Q;, v); z = v) (I-Fetch)
(full(0;, v); z = M-Fetch(0;)) — (empty(0;); z = v) (M-Fetch)

I-Fetch leaves the cell unchanged, allowing further reads. M-Fetch empties the cell, requiring
another S-Store before further reads. This captures the “I-structure” and “M-structure” syn-
chronization behavior in pH. These rules make Ag non-deterministic. Consider these two program
fragments:

empty(01) ; empty(01) ;
S-Store (01, v) ; S-Store(0y, m) ;
S-Store(0y, w) ; S-Store(0y,) ;
x = I-Fetch(0;) y = M-Fetch(03)
Since “;” permits various orderings, we can produce any of the following outcomes (respectively):
—» Error(0;); x = I-Fetch(0y) —» Error(03); y = M-Fetch(0;)
or Error(01); x = v or Full(03, m); y = n
or Error(01); x = w or Full(02, n); y = m

11

4.2 Properties of \g

Print[] and Print*[] remain unchanged. Print*[] can now contain more than one element. Print
monotonicity (Prop. 2) continues to hold, but Print confluence (Prop. 3), Print* determinacy
(Prop. 5), and Print* preservation (Prop. 6) no longer hold; performing an M-Fetch may preclude
certain reductions that would have been possible by doing that M-Fetch later. The net effect is
that the set of reachable values becomes smaller. Thus, Print* preservation (Prop. 6) must be
weakened:

Proposition 13 (Print* contraction) If e —» ey then Print*e;] C Print*[e]

All other propositions continue to hold: Stability of terminated terms (Prop. 7); Opacity of post-
regions (Prop. 9); Barrier associativity (Prop. 10); Barriers constrain results (Prop. 11), and GC,
of unreachable terminated terms (Prop. 12). A more aggressive GC rule could also eliminate
S-Store’s and full cells for which it can be shown that no matching I- or M-Fetch is possible.

4.3 I-Structure Subset of \g

Definition (I-structure subset): A; is Ag without the M-Fetch syntax and rules.

This subset is important because cells with S-Store and I-Fetch operations express the same idea
as “logic variables”, “single-assignment variables”, “communication variables”, etc. found in logic
and constraint programming languages. If a reduction sequence terminates without a store error,
then the print-result is unique:

Proposition 14 (Termination is unique (in A;)) If e —» ¢’ and €' is terminated and error-
free,
then Print*[e] = { Print[e'] }

and all reduction sequences produce a store error on a location 0; if any one of them does:

Proposition 15 (Store error confluence (in A\r)) Ife —»e; and e —»eq,
and e is Clerror(0;)], then eg —» e, where €, is C'lerror(0;)]

Thus, although A; is non-deterministic (as demonstrated in the left column of the example in
Section 4.1), it is more benign: if we consider all programs containing any error () as equivalent,
then A; can be considered to produce deterministic results (this is exactly the view taken in the
language pH).

5 Reduction Strategies for \g

A reduction strategy is a method to choose amongst many available redexes. Traditionally, a
standard reduction strategy o produces a term with at least as much information as is obtainable
from any other strategy, i.e., if e—e; in the calculus, then there is an e such that e —Z» ey
according to the standard reduction strategy o, and Print[e;] T Print[es]. This notion needs
elaboration in the presence of non-determinism. Consider the following example (let x be an empty
cell):

12

{ S-Store(x,1);

(yl1 = M-Fetch(x) --- S-Store(x,2)); (F1)

y2 = M-Fetch(x) (Fy)
in

(yi, y2) }

The two M-Fetch operations may execute in any order. If F executes first, the result of the block
will be (1,2). If F, executes first, then F; waits on an empty cell, and the result is (L,1). No
deterministic strategy can produce both outcomes. This motivates the following two variants of
standard reduction. Let Print}[] be a version of Print*[] that uses only reductions permitted by
the strategy.

Definition (Strong and Weak standard reduction): A reduction strategy o is strongly stan-
dard when Ve. Printse] = Print*[e] and weakly standard when Ve. Printi[e] C
Print*[e].

Any deterministic strategy can only hope to be weakly standard. But even such a strategy is
non-trivial. If we threw in the (irrelevant) statement “y3=1,” in the above example, it must not
get stuck in 1, and produce (L, L1); it must still produce either (1,2) or (L,1).

In this section, we develop a weakly standard parallel strategy. We first define a kernel language,
a subset of E (assuring ourselves that we have not thereby lost expressive power). Then, we limit
instantiation and reduction to the outermost parts of the term. This enforces the barrier synchro-
nization discipline and prevents infinite recursion; it also harmlessly postpones some operations
which can safely be left until they appear in an exposed context. Finally, we ensure that we choose
fairly among available instantiations, to avoid getting stuck in an infinite sequence of reductions
that are irrelevant to the observable part of a term.

The kernel language is defined by the following (compare with Fig. 1):

Kernel Terms:

E = z|SESE|X.E|{Sin SE}
| Cond(SE,E,E) | PFy(SE;, --,SE) | CNo | CNg(z1, -+ z)
| allocate() | 0; | I-Fetch(SE) | M-Fetch(SE)

S u= €e|lz=E|S;S|S--—-S
|

heap | S-Store(SE,SE) | empty(0;) | error(0;) | full(0;,V)

An initial term can be kernelized by repeated application of the “lifting” rules: LiftB, LiftApl,
LiftAp2, LiftCond, LiftPF, LiftS-Storel, LiftS-Store2, and Cons.

Proposition 16 (Kernelization confluence) kernelization is confluent up to syntactic equiva-

lence (a-renaming, properties of “;” and “~==") and is strongly normalizing (always terminates).

Proposition 17 (Kernelization is static) A kernel expression remains a kernel expression after
further reduction.

Proposition 18 (Expressivity of kernel language) If ey is the kernelized version of e, then
Print*[e] = Print*[ex].

The remaining reduction rules are called dynamic rules: Fjs, Inst2, Flat, CondT, CondF, §, Proj,
BAR1, Alloc, S-Store, S-StoreErr, I-Fetch, M-Fetch.

13

Limited contexts for instantiation and reduction: We want to perform reductions only
where computations are “exposed” (avoiding A-bodies, arms of conditionals, and post-regions) and
we want to prevent useless unfolding of cyclic data structures. We thus limit the contexts” where
an identifier may be instantiated and where reductions may occur:

Limited instantiation contexts:

Cll == [] [[]SE [Cond([],E,E) |PFg(---[] ")

SC[] == z=C[] |S8C[];S |SC[]---S |S-Store(C[], E) |S-Store(E,C[])
Limited reduction contexts:

C[] = [] |{SC[]in SE }

SC[] == [] lz=[] [S8C[];S|SC[]-—-8

Fairness: The only remaining way to get stuck in an irrelevant sequence of reductions is by
repeatedly applying recursive A-expressions. We avoid this by insuring that we instantiate only a
finite amount before turning our attention to other reductions. We decorate a A-expression with
a positive integer, decrementing it each time we instantiate it. Eventually, the decoration reaches
zero, disallowing further instantiation:

z =a; SC[z] — z =a; SC[a a # A\"y.e (Inst2a)
z = ANy.e; SClz] — z=A"Ty.e; SC[A"y.€] n>m>0 (Inst2b)

Definition (o,, the weak standard reduction strategies for \g)
1. Compute the kernel form of the initial term.
2. While the term is not a terminated term:
2.1 Decorate all A abstractions with the positive integer n > 0.
2.2 Apply the dynamic rules (with limited contexts, etc.), in any order, even in parallel,
until no longer possible.

This is a family of strategies, parameterized by n and by the choices in Step 2.2. Still, for any
n, each invocation of this step will always terminate. The choices in this step represent a kind of
non-determinism. For A¢ and Ap, this non-determinism is benign—there is still a unique outcome,
and this strategy will find it, even if n = 1 (and so it is strongly standard). However in Ag any
particular choice of n, no matter how large, can force the program’s non-determinism to be resolved
too early, thereby ruling out some outcomes. Consider this variant on our previous example:

{ £= Xj. if (j > 1) then £ (j-1)

else { (y = M-Fetch(x) --- S-Store(x,2)) (F})
in
v }
S-Store(x,1);
vyl =£f m;
y2 = M-Fetch(x) (Fy)
in

(y1, y2) }

Now f must be instantiated m times before F; executes. Again, if F} executes before Fy, the result
s (1,2), but if F, executes first, the result is (_L,1). However, if n < m, it forces us to execute Fy
first, so the only possible outcome is (L,1).

Other interesting reduction strategies: Closely related is the strategy o which non-deter-
ministically chooses the n used to annotate the A’s at each step. By choosing a sufficiently large

"Technically we need to specify, separately, contexts for plugging in an E given an E, for plugging in an S given
an E, for plugging in an E given an S, and so on. We overload things, hoping the meaning is always clear.

14

n at each step we insure that every possible outcome can be reached by some choice of reductions
within the strategy. Thus, o is strongly standard.

Suppose we ignore fairness; call this strategy og. This would have the same termination behavior
as oy, but may print less of an answer than ¢,. Consider this program:

{ K= Xx.\y.x; loop = Ax.loop x in K v (loop a) }

Neither ¢, nor oy will terminate; however, under o, we will eventually print (the value of) v,
whereas under oy we may print L forever by never reducing the K application. For programs that
do have a terminal form, oy is adequate—fairness is not necessary:

Proposition 19 (o is standard for terminating terms)
Ife —»e; and e; € ET, thene —» ey and Printfe1] C Print[es]

Recall that Ao (purely functional) is deterministic. A lazy reduction strategy focuses on “outer-
most” redexes, always picking one that is needed to produce the answer. Ariola et al. [4] show
such a strategy, and show that it is standard for Ac. We can give a parallel strategy opazy identical
to oy, except that we continue evaluation only while the term is not ground-printing (defined in
Sec. 2.3.3). The final term may still contain redexes, but further reductions will not affect the
printed value (and so termination here makes sense). Indeed, opla,y finds answers equivalent to
those found by lazy reduction.

6 Conclusion

In this paper, we have described Ag, a fine-grained parallel extension of the A-calculus with letrec,
barriers (for sequencing), and synchronized side-effects. The calculus avoids any encoding into the
reduction rules of considerations inspired by reduction strategy. This makes the calculus more
flexible and, therefore, more useful for reasoning about program transformations.

Based on the notion of observable information, we have discussed a number of important properties
of Ag and its important sub-calculi, Ac, Ap and A;. We have described parallel strong and weak
standard reduction strategies to compute the maximum information in a term. A simple variation
of our strategy subsumes traditional lazy evaluation.

Our barrier semantics capture a robust notion of termination: in (S; --- S2), we wait for all of
the dynamic computation in S;. We believe that this gives A\g wide applicability, and will allow
us to model a spectrum of languages: fine-grained implicitly parallel languages like pH and Id;
totally sequential languages (by inserting barriers everywhere); and points in between, such as
Scheme extended with futures. Barrier sequencing also makes raw (unsynchronized) side effects
manageable locally without compromising parallelism globally.

We believe that \g is a simple, flexible, and powerful calculus that will facilitate the study of
realistic parallel languages with side-effects.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. of Functional Program-
ming, 1(4):375-416, 1991.

15

[2]
[3]
[4]
[5]
[6]

9]
[10]
[11]
[12]
13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]

S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, and R. S. Nikhil. Semantics of pH: A Parallel Dialect
of Haskell. In Proc. Haskell Wkshp. (FPCA 95), La Jolla CA, USA, June 1995.

S. Aditya, Arvind, and J. Stoy. Semantics of barriers in a non-strict, implicitly-parallel language. In
Functional Programming and Computer Architecture, 1995.

Z. M. Ariola and S. Blom. Cyclic lambda calculi. Technical Report CIS-TR-96-13, Dept. of Computer
and Information Sciences, Univ. of Oregon, Eugene OR, USA, 1996.

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus.
In Proc. ACM Conf. on Principles of Programming Languages, pages 233-246, 1995.

Z. M. Ariola and J. W. Klop. Cyclic lambda graph rewriting. In Proc. Ninth Symp. on Logic in
Computer Science (LICS’94), Paris, France, pages 416-425, 1994.

Arvind, J.-W. Maessen, R. S. Nikhil, and J. E. Stoy. Ag: An implicitly parallel A-calculus with le-
trec, synchronization and side-effects. Technical report, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge MA 02139, USA, in preparation. (Full version with proofs).

Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel Computing. ACM
Trans. on Programming Languages and Systems, 11(4):598-632, October 1989.

H. P. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. North Holland, Amsterdam, 1981.

P. Barth, R. S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-strict, Functional Language
with State. In Springer Verlag LNCS 523 (Proc. Functional Programming and Computer Architecture,
Cambridge MA, USA), pages 538-568, 1991.

W. Clinger and J. Rees (eds.). Revised* Report on the Algorithmic Language Scheme. Technical report,
MIT AI Laboratory, November 2 1991.

M. Felleisen and D. P. Friedman. A syntactic theory of sequential state. Theoretical Computer Science,
69:243-287, 1989.

P. Hudak et.al. Report on the Programming Language Haskell, A Non-strict, Purely Functional Lan-
guage, Version 1.2. ACM SIGPLAN Notices, 27(5), May 1992.

J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. ACM Conf. on Principles of
Programming Languages, pages 144-154, 1993.

J. Launchbury and S. L. Peyton Jones. Lazy Functional State Threads. In Proc. ACM SIGPLAN ’9)
Conf. on Programming Language Design and Implementation, Orlando FL, USA, pages 24-35, June
22-24 1994.

I. A. Mason and C. L. Talcott. Equivalence in Functional Languages with Effects. J. of Functional
Programming, 1(3):287-327, July 1991.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge MA, USA,
990.

R. S. Nikhil. Id (Version 90.1) Language Reference Manual. Technical Report CSG Memo 284-2, MIT
Lab for Computer Science, 545 Technology Square, Cambridge MA 02139, USA, July 15 1991.

J. E. Stoy. The Semantics of Id. In A Classical Mind: Essays in Honor of C.A.R.Hoare (A.W.Roscoe,
ed.), pages 379-404. Prentice Hall, New York, 1994.

C. P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus, 1971. D.Phil. thesis, University
of Oxford.

16

