CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

A Lambda Calculus with Letrecs and Barriers

Arvind, J.W. Maessen, R.S. Nikhil, Joe Stoy

Invited Paper at 16th FST and TCS

1996, December

Computation Structures Group
Memo 395

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

/

\

\

A Lambda Calculus with Letrecs and Barriers

Computation Structure Group Memo 395
January 10, 1997

Arvind MIT Lab for Computer Science

J-W. Maessen MIT Lab for Computer Science

R.S. Nikhil Digital Equipment Corp., Cambridge Research Lab
J.E. Stoy Ozford University Computing Laboratory

Invited Paper in 16th Foundations of Software and Theoretical Computer Science,

Hyderabad, India, Dec. 1996

This research was conducted at the MIT Laboratory for Computer Science. Funding
for this project was provided in part by the Advanced Research Projects Agency of
the Department of Defense under Ft. Huachuca contract C-DABT63-95-C0150. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Lambda Calculus with Letrecs and Barriers

Arvind MIT Lab for Computer Science

J-W. Maessen MIT Lab for Computer Science

R.S. Nikhil Digital Equipment Corp., Cambridge Research Lab
J.E. Stoy Ozford University Computing Laboratory

January 10, 1997

1 Introduction

It is often said that pure functional languages like Haskell[9] are merely “syntactic sugar” for a
version of the lambda calculus extended with constants and data structures. In fact the semantics
of these languages is more complicated than that, but an understanding of the lambda calculus is
nevertheless crucial in their study. The lambda calculus also plays an important role as a vehicle for
explaining the semantics of a much broader class of languages such as Lisp[?], ML[11], Scheme[8],
Id[12] and pHJ[2] (a parallel dialect of Haskell). The importance of a small, simple, formal system
cannot be overstated: at the very least it helps in teaching the language and building intuitions
about it; it is also an unambiguous point of appeal for reasoning about the correctness of program
equivalences.

A practically important class of program equivalences are the optimizations performed by a
compiler. The lambda calculus and its variants are used as the basis for kernel languages in
some compilers. The task of designing the required transformations and optimizations is eased by
restricting attention to a simpler and more regular language.

In this paper we will describe some extensions which make the pure lambda calculus much more
useful, both for discussing the semantic essence of “real” languages, and also as an intermediate
language for a compiler.

We will begin by a quick overview of the pure lambda calculus extended with constants. This
is followed by a discussion of inadequacy of this system to address some pragmatic aspects of even
purely functional languages (Sect. 3). In Sect. 4 we describe A, a lambda calculus with recursive
let blocks (i.e., letrecs), and discuss why it is more appropriate as a kernel language; we also discuss
the complications letrecs add. In Sect. 5, we discuss Ag which is A\j; extended with sequentializing
constructs called barriers. We then mention some more extensions we have studied, which continue
to be the target of active research.

2 The Pure)\ Calculus with Constants

We begin by looking at the pure A calculus. The calculus itself is very small, yet it is possible to
express every sequential computable function as a A-expression. This power comes from several
important notions. First, we can write anonymous (unnamed) functions. Second, the calculus is
higher-order. We can thus write functions which take functions as arguments and return functions
as results. Finally, A calculus does not limit where we are permitted to perform evaluation. As a
result, we can discuss the effects of evaluation order on the calculus.

The material in this section will be very familiar to those who have encountered the A calculus
before. This presentation highlights the aspects of A calculus which are important to later sections
and introduces some notation which will recur throughout the paper.

2.1 Syntax

The A calculus has by far the simplest syntax of any of the calculi described here (We concern
ourselves only with abstract syntax—we use parentheses freely to clarify grouping. We also freely
define syntactic categories as subsets or unions of other ones, trusting that this will cause no
confusion):

E = Identifiers

| Az.E Abstractions

| EE Applications

| cond(E,E,E) Conditionals

| PFp(E1,---,Ex) Primitive function applications, k > 1

| CNp Constants

| CNk(Ey, --,Ey) Constructor applications, k > 1
PF; == not |Proj; | Proja|--- Primitive functions of arity 1
PFy u= +|-]--- Primitive functions of arity 2
CNg == Number | Boolean Constructors of arity 1
CNg == cons|--- Constructors of arity 2

2.2 Renaming: An Equivalence Rule

In many calculi there are some choices that, though leading to syntactically different terms, do not
lead to terms that differ in any essential way. For example, in renaming a bound variable x to
avoid free-variable capture, it does not really matter whether the fresh name chosen is y or z, even
though the two choices lead to terms that are not syntactically “equal”. A calculus formalizes this
notion as « reduction®:

Ae.E — A'.E[z/2'] z' ¢ FV(E)

Here we read E[z/z'] as “substitute z’ for for every free occurrence of z in E”. Ordinarily, we assume
that terms e; and ey interconvertible using only « renaming are equivalent, and write e; = eg. A
reduction rule (to be introduced later) is applicable to a term if it is applicable to any equivalent
term.

2.3 Reduction Rules for the)\ Calculus
The most critical rule in A calculus is the 8 rule:

!
(Az.e1) e — €llea/x]
where €] is a renaming of e; to avoid free variable capture

! As usual, the notation e — e; means that e reduces to e; by a single application of a reduction rule to e or to
one of its subterms, and e —»e1 means that e reduces to e1 by a finite sequence (zero or more) of such steps. A
term or subterm which is capable of reduction by one of the rules is called a redez.

Any expression to which the § rule can be applied is referred to as a § redex. Note that redexes
can occur anywhere in a A expression; for example, in Az.((Ay.(Az.z) y) =) = both the underlined

subexpressions are § redexes.
¢ rules specify the behavior of each primitive function. They are all of the form:

PFi(v1,--y05) — v ()
Obviously we cannot list all the ¢ rules here, but an example is:

+(n, m) — p where n, m and p represent numbers and p =n +m

This rule should be read as saying: the term consisting of “+” applied to two numerical constants
may be rewritten as the constant that represents the sum of those two numbers.
Projection functions select fields of constructed values:

proj;j(CNg(er, -+, e)) —> e 1<53<k (Proj)
Cond rules specify the behavior of conditional expressions:

cond(True, e;, e3) — e (CondT)
cond(False, e, e3) — e9 (CondF)

2.4 Recursion

One thing A calculus lacks is direct provision for recursion. For example, we cannot write the
factorial function directly, as we might in an ordinary programming language:

fact = Mn.cond(n=0, 1, nx(fact (n—1)))

The problem is that fact isn’t well defined on the right hand side of the above equation. Instead,
we have to abstract away the recursive call to fact:

fact = fact’ fact
fact’ = MAf.An.cond(n=0, 1, nx(f (n—1)))

Now the fact function we desire is the fixed point of fact’, so we can write fact using the fixed-
point combinator Y:

fact = Y fact’

Y = M.(QAz.f (z z))(Az.f (z x))

2.5 Confluence and Equivalence

Because A expressions can contain many redexes, the most obvious question to be asked is: Is the
A calculus confluent? That is, if we reduce different redexes, can we eventually bring the resulting
terms back together? The Church-Rosser Theorem says that we can:

The X calculus is confluent: If e;—»e9 and e;—» e3, then there exists an e4 such that
ea—» ey and e3—» ey4.

Unfortunately, confluence does not guarantee that we will always reach e4 when we reduce further;
it merely states that it is possible to do so. Subterms may be infinitely reducible, distracting us
from useful reduction elsewhere.

2.5.1 Normal Forms of A\ Expressions

In functional languages like the A calculus, a program itself represents the “answer” or “output” of
computation. The process of reduction gradually transforms the initial program into a form that
more manifestly represents an answer (e.g., the reduction of “2+3” to “5”). Note that the answer
may even be infinite, such as an infinite list of actions for the operating system to perform. At some
intermediate point of computation, it is possible that the answer has thus far been only partially
manifested.

There are actually many possible definitions of “answer” even for the pure A calculus. The most
obvious definition is normal form—mno further redexes exist anywhere in the expression. Because of
confluence, we know that the normal form of any expression is unique (otherwise further reductions
could be performed to bring the distinct terms together!). In addition, a normal-order reduction
(where the leftmost outermost redex is reduced at every step) is guaranteed to find the normal
form of a term if it exists.

However, many terms do not have a normal form at alll One infamous example is the term €2,
which reduces to itself:

Q=Mzz) Ae.xz) —(Azzz) Az z) —. ..

Thus, while normal form seems to provide a convenient notion of equality, it leaves open the question
of how to treat terms which do not possess a normal form.

More commonly used is weak head normal form (WHNF), which can be defined syntactically
(using the category A for “answer”) as follows:

A =V Values

| P Irreducible expressions
V = M\x.E Abstractions

| CNj Constants

| CNg(Er, -- Ex) Constructed values, k > 1
P = =z Free variables

| PE Applications of irreducibles

Values, V, play a prominent role in the reduction rules of our later calculi.
Unfortunately, weak head normal forms are not unique. For example, the following terms have
the same normal form but are both already in WHNEF:

Az.(Ay Azy) T x and Az.(Ay.y)

We thus still need to define equivalence between terms.

3 Problems with the)\ Calculus

There are a number of problems with the A calculus that prevent it from closely mirroring the
operation of an actual programming language implementation—even a purely functional language
such as Haskell. While the existence of the Y combinator is mathematically fascinating, fixed
points do not provide a simple encapsulation of recursion. For example, we would like to be able
to declare mutually recursive functions and data structures in such a way that their definitions are
clear and readable; the need to re-shape such definitions as fixed points plays havoc with such an
endeavor.

More problematic is that the A calculus handles sharing very poorly indeed. The problem is in
B reduction itself. In the application (Az.e1) eo the traditional 8 rule makes copies of the argument
expression eg for each occurrence of the formal parameter z.

In an effort to solve this problem, several researchers have added let blocks to the language and
replaced the (8 rule with Gg[4, 10, 1, 3]:

(Az.e1) ea — {2’ = eg in e[z /2] } (Ba)
where z' is a variable which does not otherwise occur.

A central feature of the B¢ rule is that it performs no substitution at all; instead we add new
rules for instantiating the values of variables. These new rules can be designed so that sharing of
subexpressions is preserved. This also means that the Gg rule never discards the argument. This
will affect the semantics of barriers and side-effects. In short, the (g rule preserves the “graph
structure” of the term, with shared subterms, instead of the “tree structure” of the traditional A
calculus, with replicated subterms. This is why we use the subscript G, for “graph.” In the next
section we will use the 8¢ rule as the core of a new calculus, Ajg;.

The idea of sharing subexpressions to make normal-order reduction efficient was first tackled
by Wadsworth in his D.Phil. Thesis as far back as 1971 [13]. In his seminal work, which came to
be known as graph reduction, he used an explicit graph notation instead of a textual term notation.
Since the source language was standard A-calculus, there was no issue of recursive or cyclic terms—
the sharing he obtained was just a way to avoid duplicating the function argument when the formal
parameter was used multiple times in the A body. Since then several different let-block extensions
to the A calculus have been presented in the literature to model sharing. Recently, Launchbury
reformulated Wadsworth’s system without using a graph notation by introducing “let” expressions
into the term syntax [10]. Again, since the source language was standard A calculus, there was no
issue of recursive or cyclic terms. Launchbury did not separate calculus from strategy—he directly
gave a set of rules to implement lazy evaluation.

In [3], Ariola et al. presented a calculus which did allow the definition of cyclic terms, but it
was restricted to disallow substitution of a let-bound identifier in the right-hand side of its own
binding, thus side-stepping a full treatment of cyclic terms. This work also did not address data
structures.

In [1], Abadi et al. also presented a calculus that dealt with cyclic terms, but it deviated quite
far from traditional A-calculus in that it used de Bruijn notation, introduced environments and a
calculus of environments, etc.

The most recent work by Ariola [5] is the first to introduce a calculus of recursive let-expressions.
Our)\ is essentially the same as Ariola’s system, with some small differences in the details of the
rules of the calculus.

4 MAjr a A Calculus with Letrec Blocks

Alet extends the A calculus with “letrec blocks”, allowing us to define shared recursive bindings by
binding an expression to an identifier and then using that identifier in a number of places. Our
plan of action for this section is as follows. First we present the Aje; calculus, i.e., the syntax of Ay
terms and the reduction rules that allow us to transform terms and perform “computation”. We
then define a notion of printing, which captures the “important” information in a term. Finally, we
discuss how we might define a standard reduction strategy which evaluates let bindings in parallel.

4.1 Syntax

Aiet augments the syntax of A calculus with letrec blocks:

E n= as before
| {SinE} Letrec blocks

S n= € Empty statements
| z=FE Bindings
| S; S Parallel

The S in a Letrec block is a composition of parallel statements, at the leaves of which are bindings
and empty statements. The identifiers on the left-hand sides of all these bindings must be pair-wise
distinct. The empty statement is used only as a technical convenience in Ajy; it will become useful
in Ag. We refer to the final expression in a block as the return ezpression of the block.

Alet has “letrec” scope rules—any identifier on the left-hand side of any binding in a block may
be referred to in any right-hand side, as well as in the return expression of the block. In other
words, the collection of bindings in a block should be regarded as simultaneous, recursive bindings.

In A\ we ensure that constructors are evaluated exactly once, after which they become “values”
and are written using an underline. The complete syntactic category of expressions therefore
contains these terms too:

E = .-
| CNg(Er, --,Ex) Constructor values, k > 1
Note, however, that the underlined versions of constructors never occur in unevaluated \j; terms.

For the rest of this section, we will simply appeal to the reader’s intuition on the distinction between
constructors with and without underlines.

4.1.1 Values and Simple Expressions

In our calculi, as in the A calculus, we need to substitute various uses of an identifier with the
identifier’s definition. This is called instantiation. The way this operation is defined can have an
impact on sharing. Suppose we have the following term:

(€] { x=(f a);
(2) y = x5
in
w }
Suppose we substitute the use of x on line (2) by its definition from line (1):
(¢D) { x=(f a);
(2) y = (f a);
in
v}

We now have two copies of “f a,” which may be an arbitrarily complicated computation, i.e., we
have replicated the computation, instead of sharing it. In versions of the calculus that include
barriers and side-effects, this sharing is required and not merely an issue of efficiency.

Thus, our instantiation rules must be very careful about which expressions can be substituted.
To maintain sharing, we identify two subsets of Aj; terms that are substitutable—wvalues and
identifiers, collectively known as simple expressions:

SE ::= =z Identifiers
| Vv Values

4.2)\ Equivalence Rules

The first two equivalence rules are analogous to « renaming; they express the idea that the particular
choice of a name for a bound variable is not important:

Az.e = A'.(e[z'/z])
{SC[z=¢€lgineg} = {SC[z'=c¢€]siney }z'/x]
where z’ does not otherwise occur in the program.

The second set of rules states that the grouping of statements combined with semicolons is unim-
portant, as is the presence or absence of empty statements.

S1;5 S = S; 8
S15(S2;83) = (815 852); 83
€y S = S

Recall that we regard a reduction rule to be applicable to a term if it is applicable to any equivalent
term.

4.3)\;: Reduction Rules

We are now ready to look at the reduction rules themselves. They can be divided into several
groups:
(1) instantiation;
(2) function application;
(3) lifting;
(4) ¢ rules, conditionals, and data structures.

4.3.1 Instantiation (Substitution)

Given a statement that binds an identifier £ to a simple expression a, the following rules permit a
use of z to be replaced by a. Note that in all these rules a is a simple expression, and the z is free
in C[z].

{z=a;SinC[z] } — {z=4a;SinCld} (Instl)
(z = a; SC[z]) — (z = a; SCla)) (Inst2)
T=a — z = Cla] (Inst3)

where a = C|[z]

The context C]] in which instantiation takes place is an expression with a hole (written as []):

C[] n=] | Az.C[]
| CllE | ECf]
| {SinC[]} | {SC[]inE}
| PFg(...,C[],...)
| ONg(..., C[],-..)
Ny o))

In this definition, SC|] is a statement context for an expression; that is, a statement with a hole
in place of one of the subexpressions in it. It is defined as follows:

SC[] == z=C[] | 8C[]; 8

4.3.2 Function Application (5 Reduction)

As mentioned before, a A expression can be applied to an argument using the (g rule:

(Az.e1) ea — {2’ = eg in e1[z' /2] } (Ba)
where 2z’ is a variable which does not otherwise occur.

4.3.3 Expression Lifting

The following rules “lift” expressions that are nested in certain ways. In all these rules “{S’ in
e'}” represents an a-renaming of “{S in e}” to avoid name conflicts with the surrounding scope,
and the t’s represent variables which do not otherwise occur. The side conditions e ¢ SE prevent
infinite reduction.

{eine} — e (Lift0)
z={Sine} — z=¢€ ;5 (Lift1)
{Sine} — {S;t=eint} e¢ SE (Lift2)
(e e2) — {t=-¢ein (t e2) } e ¢ SE (Lift3)
(e1 e) — {t=ein(er t) } e ¢ SE (Lift4)
cond(e, e, e2) — {t=-ein cond(t, e, e) } e & SE (Lift5)
PFE, (- e, --+) — {t=ein PF(--- t, --) } e¢SE (Lift6)
The utility of these rules may be seen by considering the following example:
{ f = { Sl in /\ar.el }; (1)
x=1f a; (2)
in
{ Sy in Az.e2 } e3 } (3

Without Liftl, we would not be able to substitute Az.e; for £ in line 2. Similarly, without Lift2,
Lift3 and Lift1, we would not be able to apply Az.es to es.

4.3.4 § Rules, Conditionals, and Data Structures

A rule needs to be added to turn a nonunderlined constructor into the equivalent underlined con-
structor.

CNg(er, - ex) —{ t1 = e1; -+ ; tp = ep in CNi(t1, ---, tx) }

The § and conditional rules from the A calculus carry over unmodified to ;.

4.4 (Non-)Confluence

The following theorem by Ariola and Klop [6] states that the introduction of let blocks has destroyed
confluence:

Proposition 1 (Ariola and Klop) M\, is not confluent.

To see this, consider the following program:

Term0:

{ odd = An. cond(n = 0, False, even(n-1));
An. cond(n = 0, True, odd(n-1));

even
in

)

Suppose we substitute odd at its use in even. Term(becomes:

Terml:
{ odd = An. cond(n = 0, False, even(n-1));
even = An. cond(n = 0, True, cond((n-1)=0, False, even((n-1)-1)));
in
-}
Suppose, instead, we substitute even at its use in odd. Term(becomes:
Term?2:

{ odd = An. cond(n = 0, False, cond((n-1)=0, True, odd((n-1)-1)));
An. cond(n = 0, True, odd(n-1));

even
in
.}
At this point, we can see that it will never be possible to reduce Term1 and Term2 to the same
term. For example, in Term1, if we substitute even into the odd definition, the odd definition will
still contain a call to the even function; this remains true no matter how may times we repeat this
substitution. In Term2, on the other hand, the odd definition has a call to the odd function, and if
we subtitute for odd this remains true.
This lack of confluence is true even if we permit unrestricted instantiation, i.e., if we allowed
an identifier to be substituted by the expression that it is bound to even though it may not be a
simple expression. Let us call this calculus Ag. Note that this calculus no longer preserves sharing
of computations.

Proposition 2 (Ariola and Klop)) is not confluent.

4.5 Printable Values and the Print[] Function

We now wish to approach the question whether the calculus defined by these rules makes sense; that
is to say, whether there is a consistent notion of equality which is preserved under transformation of
a term according to the rules. We accordingly wish to develop a notion of the observable information
contained in a term.

Trying to distinguish terms by comparing their syntax is problematic, even in the pure A
calculus. However, the problem gets harder when let blocks are an integral part of the syntax.
Consider the following two terms:

{z=5inb} (M1)
{z=3y=2in5} (M2)

M1 and M2 behave essentially the same in all contexts and thus should be equal but are syntactically
very different. It is common to introduce one or more “garbage collection” rules in the calculus to
attempt to remove the irrelevant clutter (see, for example,[3]. But even this is inadequate: as the
(non-)confluence results of Ariola and Klop ([6]) show, there are pairs of terms which ought to be
considered equal which can never reduce to compatible syntactic forms.

We therefore introduce the concept of a “printable value”. This is a rudimentary notion of
value—for example, in Aj; all A abstractions are represented by the single symbol “\”. It is
nevertheless all we need; we consider two terms as semantically distinct if they have different print-
values, of course; but we also consider them to be distinct, even if they have the same print value,
when there is some context that will have different print-values depending on which of these two
terms is inserted.

PV n= 1
| A
| CNp
| CNg(PVy, ---, PVy)

We also impose an ordering on printable values:

1 cC PV

A C A

CNy C CNp

%(Ub"', vj e, Ulc) C %(Ula“',i};"'a Uk) if’UjE’U;- k>1

In other words, L is strictly “less” than everything else, and the ordering on constructed terms is
defined recursively based on a pair-wise ordering of corresponding arguments. There is no mutual
ordering between A-expressions, constants and constructed terms, or between constructed terms
with distinct constructors.

Print[] is really implemented by the Print’[] function that carries along with it a second ar-
gument, the environment, that remembers all identifier bindings in the surrounding scope. This
environment argument is a collection of bindings z = v.

Print[e] = Print'[e] empty_environment

where
Print’[z] env = Print'[v] env if [t =v] € env
Print’[Az.€] env = A
Print’[{ S in a }] env = Print'[a] env’
where ¢ € SE and env’' = Extend[S] env
Print/[CNy] env = CNj
Print/[CNg(ai, -+, ax)] env. = OCNi(Print'[a;] env, £k>1
Print/[ax] env)
otherwise = 1

Print/[] uses the auxiliary Extend[] function which augments an environment with all the bindings
in a block’s statement provided that the identifiers are bound to values (we assume that « renaming
has been used to prevent name clashes among bindings in the environment).

Extend [z =v] env = env + [z =]
Extend [(S1 ; S2) Jenv = Extend [S;] (Extend [Sy] env)
Extend [---] env = env otherwise

Note that being able to print a non-L value from a term does not mean that the term has
terminated, or even that it will ever terminate. For example, given this term:
{ loop = Ax.loop x;
bot = loop (Ay.y);
in
(Az.z) }
we can print its value (A), but the term as a whole will never terminate.
The following two properties of printing are about “monotonicity”. The first captures the idea
that as we continually reduce a term, its information content continually increases, i.e., printing a
value following one or more reductions will only produce a “more defined” value.

10

Proposition 3 If e —» ey then Print[e] C Print[e;]

The second expresses the notion of equality that we wanted: if one expression reduces to another
then they are print-equivalent.

Proposition 4 If e —» ey then Print*[e] = Print*[e1]

Note, as a corollary, that if e is convertible to e; (that is, by applying rules in either direction),
then Print*[e] = Print*[e;].

4.6 The Power of the)\,; Calculus

Our instantiation rules permit instantiation of an identifier only when it is bound to a simple expres-
sion. The following theorm by Ariola et al. [5] assures us that we have not lost any computational
power due to this restriction on substitution:

Proposition 5 (Fundamental theorem of graph reduction): If e —» ey in Ao, then Jeq such that
e —» e in Agt, and Printle1] T Print[es].

4.7 Reduction Strategies and Standard Reduction

When we actually sit down and perform reductions on a program, we would like to make sure we
get at least as much information as one could get from any other choice of reductions:

Definition: A standard reduction strateqy o ensures that, if e —»e; as a result of
some sequence of reduction rules, then 3 ey such that e —=%» ey according to the rules
of strategy o, and Print[e; |EPrint[es].

Briefly, we can devise a parallel standard reduction strategy for Aj; in three stages. First,
we manipulate the program to put it into kernel form—a canonical form which enables us to
ignore several of the lifting rules during the remainder of reduction. We then choose redexes in
a fair manner, making sure that we never reduce inside the body of a A or in the branches of a
conditional. Finally, we stop when we run out of candidate redexes in permitted contexts.

5 Ap: Adding Barriers to)\

In this section, we describe Ap, which extends A\j; with a local sequencing mechanism called a
barrier, which sequences statements in a let block. Ap remains a purely functional language (i.e.,
it has no side-effects). The barrier’s sole effect is that a program may be less defined than the
corresponding program that has the barriers erased, i.e., the presence of barriers may prevent
termination, or may even prevent printing a non-| value. The barrier gets its practical motivation
from controlling side-effects like M-structures; however, all the semantic subtlety of barriers can be
studied in this simpler, purely functional setting.

In Sections 5.1, 5.2, and 5.3, we present the Ap calculus, i.e., the syntax of Ap terms and the
reduction rules. In Sect. 5.4, we briefly define the notion of printing for Ag. Finally, in Sect. 5.5
we provide some commentary on Ap.

11

5.1 Syntax
Ap extends the syntax of A\j.; with a new type statement called a Barrier:

S = .. as before
| S--—-8 Barriers (sequential)

The Barrier represents sequencing: the statement before the barrier is executed to completion
before the statement after the barrier; we refer to these statements as the pre-region and the post-
region of the barrier, respectively. The barrier is a local sequencing construct, and only involves
the two statements that are its subterms. A program can contain any number of barriers.

Our previous static recursive scoping rule for identifiers remains the same—in this respect, there
is no difference between barriers and semicolons.

5.1.1 Values and Simple Expressions

Values and Simple Expressions remain the same in Ag as in Ajg.
Statements which bind names to actual values are treated specially by the barrier rules. We
refer to them as “value statments”, H:

H = z=V | H;H

5.1.2 Contexts and Renaming

Expression contexts remain the same in Ag as in Aj;. Statement contexts for expresssions extend
those in \;,; with new clauses for barriers:

SC[] == ...
| SC[]-—-S | S--—-5C]]
5.2 \Ap Equivalence Rules

The a-renaming and semicolon equivalence rules remain the same in Ap as in ;. We add a new
rule for barriers:

(H 5 Sl) - SQ = H 5 (Sl - SQ)

This rule allows value bindings to escape from the pre-regions of barriers. The escaped bindings
may enable other instantiations in the surrounding context. When all such bindings can escape,
the barrier can discharge—see Sect. 5.3.1 below.

5.3 A Reduction Rules

The existing reduction rules remain the same. We add a new group of rules for barriers.

5.3.1 Barrier Rules for \p

The following rules say that a barrier can be “discharged” (eliminated) once the pre- or post-region
is empty (the first rule is the most common in practice).

e-—S — S (BAR1)
S-—¢ — § (BAR2)

12

The following proposition regarding barriers states that once all the statements in the pre-region
of a barrier have terminated, the barrier can be discharged immediately:

Proposition 6 In any context, the following reduction is always correct:

(H---8)— (H; 9)

5.4 Printable Values, and the Print[] Function

Printable values, and their ordering, remain the same in Ag as in \j;.
In the Print[] function, we add one clause to the Extend[] helper function for barrier terms:

Extend [(S -—- S2) J env. = Extend [S1] env

Note that it omits identifiers from the post-region.
All the Print and Print* propositions of A\ (in Sect. 4.5) remain unchanged.

5.4.1 Stable Terms and Terminated Terms

As we continually reduce a term, we may reach a stage where, even though we may continue
reducing it (perhaps forever), the result of applying Print[] to the term will no longer change.
We say that the term has reached a stable state, and we capture this formally in the following
definition:

Definition: A term e is stable if Print*[e] = { a | a C Print[e] }

When reduction stops the term may still contain “computations” (such as applications) that
are unable to make progress simply because of a deadlock condition. We would like to define the
category of “terminated terms” that have not stopped for this reason, i.e., terms that have stopped
cleanly and properly:

Definition: Terminated terms are described by the following syntax:
ET ==V | {HinSE}

A terminated expression contains no applications, unless they are inside A abstractions. Note,
however, the body of any A expression can be an arbitrary expression. Terminated terms are
stable:

Proposition 7 Ife € ET, then e is stable.

Further reductions may still be possible within A-bodies, but this cannot affect what is printed.
Another interesting class of terms are those terms whose printed values contain no L.

Definition: A ground-printing term is a term e such that Print[e] terminates, and the
printed value does not contain 1.

The printed value value may be an arbitrarily deep data structure, and this condition requires that
none of the leaves are L. Note that a ground-printing term is always stable, but it may not have
terminated; this is possible because Print[] does not explore “irrelevant” computations, which may
not have terminated and which, indeed, may even loop forever.

13

5.5 Discussion of \p

The interaction between our (¢ rule for function application and the barrier rules is subtle. Perhaps
the most surprising consequence is that:

Ar.e # {t=einz.t} even if e is only a free variable (#).

The inequality is not surprising in eager languages such as SML and Scheme—if e were a non-
terminating computation, the left-hand side would terminate and the right-hand side would not.
However, if e was merely a free variable (say, z), then the two sides would be equal in SML and
Scheme, but they are still not equal in Ap.

Consider the following term (where L is any non-terminating term):

(K= Xx.1;
b=_1;
(x1=KbD
S))
Even though K discards its argument, the barrier will not discharge, as demonstrated by the

following sequence of reductions (for comparison, we also show what would happen with the tradi-
tional g rule):

(K= Xx.0y.7) ;

b= 1 ;
(x1=KbD
S))
— (K=Xx.0y.y) ;
b=_1;
(x1=(Ox.(Ay.y)) b
S))
— [using Ba] [using traditional 8]
(K= Xx.0y.y) ; (K= Xx.(y.y) ;
b=_1; b= 1 ;
(x1={x=bin Qy.y) } (x1 = Qy.y)
S)) S))
— (K=Xx.0y.y) ; (K=Xx.0y.y) ;
b=1; b=1;
(x1=Qy.y ; (x1=(Qy.y) ;
X’ =b S))
S))
— (K=Xx.0y.y) ; (K=Xx.0y.y) ;
b= 1 ; b= _1;
x1 = Qy.y) ; x1 = Qy.y) ;
(x> =0 S)
S))

14

AletBM
AletC AletT AB

)‘let

Figure 1: A taxonomy of calculi used to study pH semantics

The last term (on the left) is stuck: since b never becomes a value, the barrier never discharges.
This behaviour is fundamentally related to our B¢ rule which does not discard the argument b even
though the function itself does not use the argument. In contrast, using the traditional 8 rule (on
the right), the barrier does discharge.

The addition of barriers allows us to observe the termination of any term in the calculus. For
example, the following two terms are indistinguishable in Aj:

{z=5inb} and {z=_1Linb}

The following context will distinguish them in Ag:

z=3)
in

% }

It should be clear from this example that equality in A\je; does not imply equality in Ap.

6 Conclusion

Ap is just one example of a useful extension of pure A;; which enables us to study issues of
termination in the absence of other complications. pH, the parallel dialect of Haskell that we are
designing, also has I-structures[7] and M-structures, which add implicitly synchronized mutable
storage to the language. In Figure 1 we show various extensions we have formulated and studied,
culminating in Ag, which is intended to capture all the essential semantic properties of pH itself. Ag
is also playing the desired role in the pH compiler: each rule for code generation and optimization
is written in terms of Ag constructs.

15

References

[1]

2]

[10]

[11]

[12]

[13]

M. Abadi, L. Cardelli, P.-L.. Curien, and J.-J. Lévy. Explicit substitutions. J. of Functional
Programming, 1(4):375-416, 1991.

Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and Rishiyur S. Nikhil. Se-
mantics of pH: A Parallel Dialect of Haskell. In Proc. Haskell Wkshp. (FPCA 95), La Jolla
CA, USA, June 1995.

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. In Proc. ACM Conf. on Principles of Programming Languages, pages 233-246, 1995.

Zena M. Ariola and Arvind. A Syntactic Approach to Program Transformations. In Proc.
Symp. on Partial Evaluation and Semantics Based Program Manipulation, Yale University,
New Haven CT, USA, June 1991. Also CSG Memo 322, MIT Lab for Computer Science.

Zena M. Ariola and Stefan Blom. Lambda calculus plus letrec: graphs as terms and terms
as graphs. Technical Report DRAFT, Dept. of Computer and Information Sciences, Univ. of
Oregon, FEugene OR, USA, October 1996.

Zena, M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Technical Report
CIS-TR-96-04, Dept. of Computer and Information Sciences, Univ. of Oregon, Eugene OR,
USA, 1996.

Arvind, Rishiyur Sivaswami Nikhil, and Keshav Kumar Pingali. I-Structures: Data Structures
for Parallel Computing. ACM Trans. on Programming Languages and Systems, 11(4):598-632,
October 1989.

William Clinger and Jonathan Rees (eds.). Revised* Report on the Algorithmic Language
Scheme. Technical report, MIT AI Laboratory, November 2 1991.

Paul Hudak et.al. Report on the Programming Language Haskell, A Non-strict, Purely Func-
tional Language, Version 1.2. ACM SIGPLAN Notices, 27(5), May 1992.

John Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. ACM Conf. on Principles
of Programming Languages, pages 144-154, 1993.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge MA, USA, 990.

Rishiyur Sivaswami Nikhil. Id (Version 90.1) Language Reference Manual. Technical Report
CSG Memo 284-2, MIT Lab for Computer Science, 545 Technology Square, Cambridge MA
02139, USA, July 15 1991.

Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus, 1971. D.Phil.
thesis, University of Oxford.

16

