
Speci�cation of Memory Models and Design of Provably

Correct Cache Coherence Protocols

Computation Structures Group Memo ���
May �� ����

Xiaowei Shen and Arvind

This paper describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology� Funding for this work is provided in part
by the Advanced Research Projects Agency of the Department of Defense under
the O�ce of Naval Research contract N���������J����� and Ft Huachuca contract
DABT	���
�C���
��

Speci�cation of Memory Models and Design of

Provably Correct Cache Coherence Protocols

Xiaowei Shen and Arvind

May �� ����

Abstract

We propose a two�phase Imperative�Directive design methodology for designing
cache coherence protocols� and use it to develop a family of protocols to implement
Sequential Consistency in a distributed system with hierarchical caches� In the Impera�
tive design phase� actions or state transitions are de�ned to ensure that the system only
exhibits behaviors that are consistent with the memory model� In the Directive design
phase one ensures liveness� i�e�� the system eventually takes the desired action� In each
design phase the protocol can be re�ned incrementally to accommodate implementa�
tion constraints� The separation of correctness and liveness concerns �and successive
re�nement� greatly simpli�es protocol design and veri�cation� The methodology is
especially suitable for designing adaptive protocols which essentially allow imperative
actions to be invoked adaptively according to program access patterns�

� Introduction

The design of cache coherence protocols plays an important role in building parallel or
distributed systems that support shared memory� Protocols can be implemented completely
in hardware or completely in software or using a combination of the both� The performance of
shared memory systems largely depends on the cache coherence protocols that are responsible
for maintaining a coherent view of replicated data in accordance with a memory model�
Over the years� the desire to achieve higher performance has resulted in more and more
sophisticated cache coherence protocols� which are di�cult to design and verify� In this paper
we present a new Imperative�Directive methodology for designing protocols and verifying
them against a memory model� The methodology is illustrated through an elaborate protocol
that implements Sequential Consistency on DSM 	Distributed Shared Memory
 systems with
hierarchy of caches�

��� Memory Models

A memory model is a contract that speci�es the memory behavior which the system im�
plementors 	architects� compiler writers� etc�
 provide to the programmers� Sequential
Consistency ��� has been the dominant memory model in parallel computing for decades�

�

but for performance reasons� both architects and compiler writers have been exploring alter�
native memory models that allow more implementation �exibility� Architects prefer weaker
instruction orderings 	see� for example� PowerPC ����
� which often give rise to relaxed
memory models such as Weak Consistency ���� Release Consistency ���� ��� and Lazy Re�
lease Consistency ����� The language and compiler community have suggested their own
relaxed memory models such as Location Consistency ��� and DAG Consistency ���� One
problem with relaxed memory models is that even experts may not agree on their precise
de�nition�

We have chosen Sequential Consistency ��� to demonstrate our methodology for design�
ing protocols� This is not because we believe Sequential Consistency is the most desirable
memory model� but rather because there is a consensus on its de�nition� The correctness of
a protocol to implement a memory model can be discussed only if there is a precise speci�
�cation of the memory model� It is important that the speci�cation be independent of any
speci�c implementation� and thus of caches� write bu�ers and interconnection networks etc�
We will present an operational but fairly abstract view of Sequential Consistency� and then
design protocols that admit exactly those behaviors that are permitted by this operational
model� Needless to say that the same technique can be applied to designing and verifying
coherence protocols for other memory models�

��� Design Methodology

In spite of the number of publications on cache coherence protocols ���� ��� ��� �� ��� it is
di�cult to discern a methodology that has guided the design of these protocols� A major
source of di�culty in protocol design is that designers often try to deal with many di�erent
issues simultaneously� Are cache states being maintained correctly� Is deadlock possible
due to reordering of messages or lack of bu�ers in the network� What is the consequence of
having write bu�ers and allowing instructions to be executed out�of�order� Answering these
questions can be di�cult in asynchronous systems with distributed control� The net result
is that protocol design is viewed as black magic� where even the designers are not totally
con�dent of their understanding of the protocol behavior�

We propose a two phase Imperative�Directive design methodology to rectify this problem�
The methodology completely separates the correctness and the liveness concerns in the design
process� Correctness ensures that the system can only exhibit behaviors that are allowed
by the memory model� The rules that specify such state transitions are called imperative

rules� The protocol designer initially focuses on developing a complete set of imperative
rules� In the second phase� the main concern is liveness� i�e�� ensuring via directive rules

that the system always takes appropriate imperative actions at appropriate times� Improper
conditions for invoking imperative rules can cause deadlocks or livelocks but cannot a�ect
the correctness of the system�

By separating the correctness and the liveness concerns� the Imperative�Directive method�
ology can dramatically simplify the design and veri�cation of cache coherence protocols�
Protocols designed using this methodology are often easy to understand� modify and reason
about� We illustrate our methodology by successively developing a family of cache coherence
protocols to implement Sequential Consistency on DSM systems with hierarchy of caches�
The �nal protocol is� to our knowledge� the �rst precise description of a provably correct

�

coherence protocol for DSM systems with multi�level caches� The methodology has proved
extremely e�ective in designing adaptive cache coherence protocols ���� because adaptability
is only about when and how to invoke imperative actions� imperative rules remain una�ected�

��� Formal Veri�cation

The veri�cation of cache coherence protocols has gained considerable attention in recent
years ��� �� ��� ���� Most methods verify certain invariants for cache coherence protocols�
and are based on state enumeration ���� ��� and symbolic model checking ��� � ���� which can
check correctness of assertions by exhaustively exploring all reachable states of the system�
For example� Stern and Dill ��� use the Mur� system to automatically check if all reachable
states satisfy certain properties which are attached to protocol speci�cations� Pong and
Dubois ���� exploit the symmetry and homogeneity of the system states by keeping track of
whether zero� one or multiple copies have been cached� This reduces the state space and
makes the veri�cation independent of the number of processors� Generally speaking� the
major di�erence among these techniques is the representation of protocol states and the
pruning method adopted in the state expansion process�

Exponential state explosion has been a serious concern for model checker approaches�
Another problem is that it is often di�cult to choose the invariants in a systematic manner
or to convince oneself that all the important invariants have been considered� While some in�
variants are obvious 	e�g�� two L� caches should not contain the same address in the exclusive
state simultaneously
� many others are motivated by the speci�c protocol implementation
instead of the memory model� Sometimes it is not even clear if the chosen invariants are
necessary or su�cient for the correctness� This means that for the same memory model�
we may have to prove very di�erent properties for di�erent implementations� In this sense�
these techniques are more like a bag of useful tools for debugging cache coherence protocols�
rather than for verifying them�

The di�culty of protocol veri�cation with current approaches can be largely attributed
to the fact that protocols are designed and veri�ed separately and sequentially� In our
approach� both the memory model and the protocol are expressed in the same formalism�
and there is a notion of when one system completely implements another system� We begin
with a baseline protocol as the operational speci�cation of the memory model� and then re�ne
the protocol successively by incorporating more and more implementation and optimization
details� Protocols are designed and veri�ed iteratively throughout the successive process�
The invariants that need to be veri�ed are usually straightforward� because the semantics
gap between the two models associated with each re�nement step is relatively small� Our
experience shows that most of the commonly known invariants systematically show up as
lemmas and can be veri�ed by case analysis on rewriting rules�

��� The Organization of the Paper

We begin with a brief introduction to our formalism� Term Rewriting Systems� and the notion
of a complete implementation with respect to a speci�cation� In Section � we give a baseline
protocol� the SC model� which will be used as the speci�cation of Sequential Consistency� We
de�ne the HC model� a directory�based coherence protocol for DSM systems with hierarchical

�

Sequential Consistency (SC)

A protocol for hierarchical caches & network (HCN)

A protocol for hierarchical caches (HC)

HCN extended with directive messages (HCN-base)

(HCN-base with buffer management)
A protocol free from deadlock & livelock

design
process

successive

specification

imperative models

imperative/directive
model

Figure �� Successive Design Process 	SC is the speci�cation of Sequential Consistency� HC
de�nes a protocol for systems with hierarchical caches� HCN is a re�ned version of HC with
message passing� and HCN�base is a HCN�based cache coherence protocol that is free from
deadlock and livelock

caches� and prove that HC is a complete implementation of SC 	Sections � � �
� Some derived
rules of HC are discussed in Section �� Then we de�ne the HCN model by re�ning HC with
message passing� and prove that HCN is a complete implementation of HC 	Sections � �
�
This is followed by a discussion of potential optimizations of HCN in Section ��

In Section �� we start with a general discussion regarding the liveness issue� and then
introduce directive messages and directive rules� We present HCN�base� a simple protocol
derived from HCN� and show that the protocol implements Sequential Consistency and guar�
antees that each processor can always make progress 	Sections �� � ��
� The design of
HCN�base is completed in Section �� with a bu�er management policy that ensures fair mes�
sage processing� Finally we present a summary and brie�y discuss our research in progress�

� The Formalism

Our formal framework is based on Term Rewriting Systems 	TRS�s
� We use TRS�s to
specify the operational behavior of memory models and cache coherence protocols� A TRS
consists of a set of terms and a set of rewriting rules� In the architectural context� the
terms represent system states and the rules specify state transitions� The general structure
of rewriting rules is as follows�

s� if p	s�

�� s�

where s� and s� are terms� and p	s�
 is an optional predicate about term s��

A rule can be used to rewrite a term if its left�hand�side pattern matches the term or one
of its subterms� and the corresponding predicate is true� If several rules are applicable� then
any one of them may be applied� If no rule is applicable� then the term cannot be rewritten
any further and is said to be in normal form� Sometimes a rewriting strategy is used to
specify which rule among the applicable rules should be applied to a term at every step�

�

We say term s� can be rewritten to term s� in one rewriting step 	s� �� s�
� if there
exist a context C�� �� and terms s�

� and s�

� such that s� � C��s�

��� and s� � C��s�

���� and s�

� can
be rewritten to s�

� according to some rewriting rule� 	A context is a term with a �hole� that
can be �lled by a term� C��s�� refers to the term in which the hole is �lled by term s
� We
say term s� can be rewritten to term s� in zero or more rewriting steps 	s� ��� s�
� if either
s� � s�� or there exists a term s� such that s� �� s� and s� ��� s��

A term s is a legal term if there exists s� � S� such that s� ��� s� Since we are only
interested in legal terms� we will drop the quali�er �legal� in our discussion�

A TRS is con�uent if� for any term s�� if s� ��� s� and s� ��� s�� then there exists a
term s� such that s� ��� s� and s� ��� s�� A TRS is strongly terminating if� for any term�
it can always be rewritten to a normal form using any rewriting strategy�

Notations� While pattern matching it is important to distinguish between variables and
constants or data�structure constructors� A variable matches any expression while a constant
or constructor matches only itself� Throughout the paper� we will follow the convention that
variables are represented by identi�ers with only lower�case letters� while constants and
constructors are represented by either identi�ers that begin with a capital letter� or special
characters such as �j�� ���� and ���� We use ��� to represent the empty term� and ��� the
wild�card term that can match any term�

��� Correctness of an Implementation

The use of TRS�s allows us to de�ne and prove when a protocol implements a memory
model correctly� The proof is based on showing that the TRS for the protocol admits only
the observable behaviors that are permitted by the memory model� We say that system B

is a complete implementation of system A if there exists a pair of mapping functions g 	B
�� A
 and f 	A �� B
� such that

�� Soundness� s�
B
��� s� �� g 	s�

A
��� g 	s�
�

�� Completeness� s�
A
��� s� �� f 	s�

B
��� f 	s�
�

�� Connection� g 	f 	s

 � s�

The soundness property states that an implementation cannot take a step that is incon�
sistent with the speci�cation� while the completeness property states that an implementation
can imitate every possible step of the speci�cation� Together these conditions can be inter�
preted as saying that the two systems can simulate each other� However� the correspondence
between the implementation and the speci�cation has not been properly con�ned with just
these two conditions� For example� consider a function that maps all implementation terms
to the same speci�cation term� The connection property rules out such unreasonable map�
ping functions� The intuition behind this property is that an implementation term contains
enough information to reconstruct the corresponding speci�cation term� It is important to
notice that the connection property is asymmetric� i�e�� f 	g 	s

 does not necessarily equal to
s� This is because an implementation term usually contains extra information that cannot
be reconstructed once it is projected to a term in the speci�cation�

�

P P P P P P

M

SYS � Sys�MEM� PG System
MEM � � �� Cell�a�v jMEM Memory
PG � � �� PROC j PG Processor Group

Figure �� The SC Model 	Initially� the memory contains a cell for each address

The notion of complete implementation is transitive� i�e�� if system C is a complete
implementation of system B� which is in turn a complete implementation of system A�
then system C is a complete implementation of system B� This implies that the proof that
a protocol is a complete implementation of a memory model can be carried out step�by�
step throughout the successive design process� Needless to say any system is a complete
implementation of itself�

Many real implementations are not complete according to the above de�nition� Any
sound system can be regarded as a partial implementation of the speci�cation� However�
some partial implementations can be pretty silly in reality� for example� an implementation
that has no rewrite rule and thus makes no transition is a partial implementation of any
speci�cation by the virtue of being sound�

� The SC Model� Speci�cation of Sequential Consis�

tency

Intuitively� a system is sequentially consistent if the result of any execution is the same
as if the operations of all the processors were executed in some sequential order� and the
operations of each individual processor appears in this sequence in the order speci�ed by
its program ���� We take a slightly di�erent approach and de�ne Sequential Consistency
operationally using a multiprocessor system based on a simple non�pipelined processor� which
has no caches or write bu�ers and which executes instructions sequentially� The system is
de�ned using a TRS called SC� All the protocols presented in this paper implement only
those behaviors that are permitted by SC�

The grammar of the SC model is given in Figure �� The system has two components� a
memory and a processor group� The memory consists of a set of memory cells� where each
memory cell has an address and a value� We assume addresses in a memory are pairwise
distinct� The processor group consists of a set of processors where each processor has a
program counter� a register �le� and a program� The processor grammar and rules are
presented in ���� and understanding them is not necessary to follow the rest of the paper as
long as we remember that instructions are executed strictly according to the program order
	the program counter holds the address of the instruction to be executed
�

�

Notations� We use ���� as meta notation in grammars to separate disjuncts 	SYS� MEM and
PG are grammar symbols
� Identi�ers such as Sys� Cell and Proc are constructors� Notation
prog�ia� refers to the instruction at instruction address ia in program prog� We use rf�r� to
represent the content of register r in register �le rf� and rf�r �� v� to represent the register �le
which is the same as rf except that register r contains value v�

We use �j� as an associative and commutative constructor 	s� j s� � s� j s� and s j � � s
�
As we shall see� it can be used as a connective for terms such as processor groups� system
groups and directories� which are intuitively associative and commutative�

The memory access rules are de�ned as follows�

SC�Load Rule

Sys�Cell�a�v� jm� Proc�ia� rf� prog� j pg� if prog�ia� � r 	� Load�r�� and a � rf�r��
�� Sys�Cell�a�v� jm� Proc�ia��� rf�r 	� v�� prog� j pg�
SC�Store Rule

Sys�Cell�a�u� jm� Proc�ia� rf� prog� j pg� if prog�ia� � Store�r�� r�� and a � rf�r��
�� Sys�Cell�a�v� jm� Proc�ia��� rf� prog� j pg� where v � rf�r��

Since the connective �j� is associative and commutative� any processor can be brought into
the leftmost position in the processor group� Thus� if two processors intend to write to the
same address� either can be allowed to proceed� Non�determinism can happen due to data
races� however� memory access atomicity is guaranteed because there is no data replication
and the Load and Store operations are performed directly on the memory�

We claim that SC de�ne an operational semantics for Sequential Consistency although it has
di�erent �avor from the traditional de�nition� It is easy to show that a total instruction order�
consistent with the program order for each individual processor� exists for all instructions�
From now on we identify the range of behaviors admitted by Sequential Consistency as
precisely the set of legal terms of SC� In the rest of the paper we will present several cache
coherence protocols to implement Sequential Consistency and show that they admit only SC
behaviors�

� The HC Model� A System with Hierarchical Caches

A typical distributed memory system consists of multi�level caches and uses di�erent imple�
mentation technologies and possibly di�erent protocols in di�erent parts of the system� In
this section� we de�ne a directory�based cache coherence protocol for a system with hierarchy
of caches and call it the HC 	Hierarchical Caches
 model� In HC� we ignore the communi�
cation latency between memory sites� and assume that coherence actions involving two or
more memory sites 	e�g�� a local read followed by a remote write
 can be performed in one
rewriting step�

The grammar of the HC model is given in Figure �� The system has two components� a
memory unit and an execution unit� The memory unit consists of an identi�er and a memory�
A memory is a set of memory cells� where each memory cell has an address� a value and a
state used for coherence maintenance� The execution unit is either a single processor� or a

P P PP

P

P

M

M MM

M
M M M M

SYS � Sys�MU� EU System
MU � hid� MEMi Memory Unit
EU � PROC �� SG Execution Unit
SG � � �� SYS j SG System Group
MEM � � �� Cell�a�v�STATE jMEM Memory � Cache
STATE � �CSTATE� HSTATE Cell�s State
CSTATE � Sh �� Ex Cell�s Cstate
HSTATE � R�DIR �� W�id Cell�s Hstate
DIR � � �� id jDIR Directory

Figure �� The HC Model 	Initially� all memories except the outermost memory are empty�
the outermost memory contains a cell for each address and the state of each cell is 	Ex�R	�

system group that consists of a set of systems� This recursive de�nition e�ectively allows
arbitrary levels of cache hierarchy� Notice that although we show each memory as one block
pictorially� in implementation addresses can be divided among multiple sites�

In the memory hierarchy� the memory at the root is called the outermost memory� and
the memories that directly interface with processors are called innermost memories or L�
caches� Every memory except the innermost and outermost behaves simultaneously as a
cache and home� that is� for its parent a memory is a cache which holds replicated data� and
for its children it is the home where all the cells that have been cached by the children reside�
Thus� we do not draw a distinction between �cache� and �memory�� and use the two words
interchangeably� Given a memory id� parent	id
 represents its parent�s identi�er� children	id

the set of identi�ers for its children� and siblings�id� the set of identi�ers for its siblings�

��� State Encoding

Each memory cell contains an address� a value and a state for coherence maintenance� The
state in each cell has two components� Cstate 	cache state
 and Hstate 	home state
� The
Cstate is the �horizontal� state that indicates whether the cell is shared 	Sh
 or exclusive
	Ex
 with respect to its sibling caches� The Hstate is the �vertical� state that records which
children have cached the data and for which purpose 	i�e�� for reading or writing
� If the
Hstate is R	dir
� shared copies are cached in the children speci�ed by the directory dir� which
is a set of memory identi�ers� If the Hstate is W	id
� the child memory id has the exclusive
copy for the address and can write into the cell�

�

cell(a1,v1,(Sh,R[ε])) ε]))cell(a2,v2,(Ex,W[
cell(a1,v1,(Sh,R[ε]))

cell(a1,v1,(Sh,R[ε]))

cell(a3,v3,(Ex,R[ε]))

P P PP

P

P
1.3.1 1.3.2 1.3.3 1.3.4

1.3

cell(a1,v1,(Sh,R[1.2.1])) cell(a2,-,(Ex,W[1.3.4]))

1.2

1.2.1

1.1 cell(a1,v1,(Sh,R[1.3.1 | 1.3.4]))

1

cell(a2,-,(Ex,W[1.3]))
cell(a1,v1,(Ex,R[1.2 | 1.3]))

Figure �� A Snapshot of Coherent States 	For example� in memory m���� the state for
address a� is 	Sh�R	m����� jm�����

� indicating that the cell is a read�only copy and its child
memories m����� and m����� have cached shared copies at the time� the state for address a� is
	Ex�W	m�����

� indicating that the cell is a read�write copy and the exclusive ownership has
been given to child memory m�����

The Hstate is always R	�
 for the cells in the innermost memories� because the innermost
memories cannot have children� Similarly the Cstate is always Ex for the cells in the out�
ermost memory� because it has no siblings� It is worth noting that 	Sh�W	id

 is an illegal
state� because a memory cannot give the write permission to any child unless it has obtained
the exclusive ownership for that address� A snapshot of hierarchical caches in coherent states
is shown in Figure ��

Inclusion Invariants� The protocol can be implemented e�ciently if� by checking a cell�s
state in a memory� it can be determined whether any further coherence actions need to
be taken for its descendant memories� To accomplish this� HC maintains two invariants�
namely shared inclusion and exclusive inclusion� The shared inclusion invariant states that�
if a memory has a shared copy� its parent must have the address with the same value� The
exclusive inclusion invariant states that� if a memory has an exclusive copy� its parent must
have the address exclusively� although the value of the cell can be out�of�date�

��� Rewriting Rules

The rewriting rules of the HC model are all imperative rules and fall naturally into three
categories� the rules for memory access operations 	i�e�� Load and Store
� the rules for caching
operations 	i�e�� moving data and�or coherence information from parents to children
� and
the rules for de�caching operations 	i�e�� moving data and�or coherence information from
children to parents
�

Memory Access Rules� Memory access operations by a processor are performed on its
L� cache� A Load instruction can execute if the data is cached in the L� cache� A Store
instruction can execute if the L� cache has cached the address with the exclusive ownership�

�

id

idk

id

idk

caching de-caching

(a) (b)

Figure �� Caching and De�Caching Operations

HC�Load Rule

Sys�hid� Cell�a�v��cs�R����� jmi� Proc�ia� rf� prog��
if prog�ia� � r 	� Load�r�� and a � rf�r��

�� Sys�hid� Cell�a�v��cs�R����� jmi� Proc�ia��� rf�r 	� v�� prog��

HC�Store Rule

Sys�hid� Cell�a�u��Ex�R����� jmi� Proc�ia� rf� prog��
if prog�ia� � Store�r�� r�� and a � rf�r��

�� Sys�hid� Cell�a�v��Ex�R����� jmi� Proc�ia��� rf� prog�� where v � rf�r��

Caching Rules� If the state of a cell in memory id is 	��R	dir

 and the directory dir shows
that child idk has not cached the data� then memory id can give a shared copy to memory
idk and record idk in the directory� If the state of a cell in memory id is 	Ex�R	�

� then it can
give an exclusive copy to child idk and change the cell�s Hstate to W	idk
� See Figure � 	a
�

Sh�Caching Rule

Sys�hid� Cell�a�v��cs�R�dir��� jmi� Sys�hidk� mki� euk� j sg� if idk �� dir

�� Sys�hid� Cell�a�v��cs�R�idkjdir��� jmi� Sys�hidk� Cell�a�v��Sh�R����� jmki� euk� j sg�
Ex�Caching Rule

Sys�hid� Cell�a�v��Ex�R����� jmi� Sys�hidk� mki� euk� j sg�
�� Sys�hid� Cell�a�v��Ex�W�idk��� jmi� Sys�hidk� Cell�a�v��Ex�R����� jmki� euk� j sg�

De�Caching Rules� If the state of a cell in memory idk is 	Ex�R	dir

� then it can write the
most up�to�date data back to the parent and change the cell�s Cstate to Sh� If the state of a
cell in memory idk is 	Sh�R	�

� then it can invalidate the cell and delete identi�er idk from
the corresponding directory in the parent� See Figure � 	b
�

Writeback Rule

Sys�hid� Cell�a�u��Ex�W�idk��� jmi� Sys�hidk� Cell�a�v��Ex�R�dir��� jmki� euk� j sg�
�� Sys�hid� Cell�a�v��Ex�R�idk��� jmi� Sys�hidk� Cell�a�v��Sh�R�dir��� jmki� euk� j sg�
Invalidate Rule

Sys�hid� Cell�a�v��cs�R�idkjdir��� jmi� Sys�hidk� Cell�a�v��Sh�R����� jmki� euk� j sg�
�� Sys�hid� Cell�a�v��cs�R�dir��� jmi� Sys�hidk� mki� euk� j sg�

��

� Veri�cation of the HC Model

We can prove that the HC model completely implements the SC model� The proof consists
of three steps�

�� Soundness� De�ne cache��ush function CF 	HC �� SC
� and show

s�
HC
��� s� �� CF	s�

SC
��� CF	s�
�

�� Completeness� De�ne cache�lift function CL 	SC �� HC
� and show

s�
SC
��� s� �� CL	s�

HC
��� CL	s�
�

�� Connection� For any SC term s� show CF	CL	s

 � s�

The CF function is easy to de�ne once we notice that we can apply the de�caching rules
repeatedly to empty all non�outermost caches and propagate all valid values to the outermost
memory� To show soundness� we prove that if s� �� s� by applying some rule � in HC� then
in SC� either CF	s�
 � CF	s�
 if � is a caching or de�caching rule� or CF	s�
 �� CF	s�
 	by
applying some memory access rule
 if � is a memory access rule�

The CL function is based on the simple observation that a SC term can be �lifted� to a
HC term by introducing empty caches in the memory hierarchy� setting the state for each
outermost memory cell to 	Ex�R	�

� and assigning memory identi�ers for all memory units�
It is easy to show that each SC rule can be simulated by a sequence of HC rules�

��� Inclusion Invariants

The HC model maintains two inclusion invariants� The shared inclusion invariant states
that� if a memory has a shared copy� the parent must have the address with the same value�
The exclusive inclusion invariant states that� if a memory has an exclusive copy� the parent
must have the address and the ownership� albeit the value of the cell can be out�of�date� It
is because of these invariants that the cache coherence protocol can determine� simply by
checking the a cell�s state� if further coherence actions need to be taken for its descendant
memories�

Lemma � �Inclusion Invariants� In any HC term Sys	hid� mi� Sys	hidk� mki� euk
 j sg
 �

� Cell	a�v�	Sh��

 � mk �� Cell	a�v�	��R	idk j �

 � m

� Cell	a�v�	Ex��

 � mk �� Cell	a���	Ex�W	idk

 � m

Proof The proof is by induction on rewriting steps� The invariants hold trivially for the
initial terms where all non�outermost memories are empty� It can be shown by checking each
rewriting rule that� if the invariants hold for a term� then they still hold after the term is
rewritten according to that rule� �

It can be shown that no memory can contain two cells that have the same address� This
is because only caching rules can create new cells 	in the child memory
� According to the
Inclusion Invariants� if a caching rule is applicable� the child memory cannot have a cell that
has the same address as the cell that is to be created�

��

��� Cache Flushing Property

Suppose we de�ne a new rewriting system RCF� which has the same grammar as HC but uses
only the de�caching rules�

De�nition � �TRS for cache �ushing� RCF � f Writeback� Invalidate g

Now we discuss some properties of the RCF system�

Lemma � RCF is strongly terminating and con�uent� i�e�� for any HC term� rewriting with
respect to RCF terminates within a �nite number of steps and always reaches the same normal
form� regardless of the order in which the rules are applied�

Proof The termination is obvious because RCF includes only the de�caching rules that can
either invalidate Sh cells or degrade Ex cells to Sh cells� but can never create cells or upgrade
Sh cells to Ex cells� The con�uence follows from the fact that the de�caching rules do not
interfere each other� �

De�nition 	 For any HC term s� NFCF	s
 is the normal form of s in RCF�

Lemma
 �Cache Flushing Property� For any HC term s� all non�outermost memories
are empty in NFCF	s
�

Proof Suppose not all non�outermost memories are empty� Consider a non�outermost mem�
ory which is not empty and whose descendant memories 	if any
 are all empty� According
to the Inclusion Invariants� either the Writeback rule or the Invalidate rule would apply� and
hence the term cannot be a normal form� �

Lemma � �Value Preservation Property� For any HC term s� if Cell	a�v�	��R	�

 is in
some cache of s� then Cell	a�v��
 is in the outermost memory of NFCF	s
�

Proof This can be shown by checking each de�caching rule�

� When Writeback applies� Cell	a�v�	Ex�R	�

 is in the child and Cell	a�u�	Ex�W	�

 is in
the parent� after the writeback� Cell	a�v�	Ex�R	�

 is in the parent memory 	i�e�� value
v is preserved
�

� When Invalidate applies� Cell	a�v�	Sh�R	�

 is in the child and Cell	a�v�	��R	�

 is in
the parent� after the invalidation� Cell	a�v�	��R	�

 is in the parent memory 	i�e�� value
v is preserved
�

By induction� if Cell	a�v�	��R	�

 is in some cache� Cell	a�v��
 will be in the outermost memory
after applying the de�caching rules repeatedly till all non�outermost caches are emptied� �

The Value Preservation Property shows that we can propagate all valid values to the out�
ermost memory by repeatedly applying the de�caching rules� This is the key idea behind
the cache��ush function used in the soundness proof� It should be noted that NFCF	s
 also
preserves all processor states including program counters� register �les and programs�

��

��� Soundness of HC

We de�ne function CF 	cache��ush
 that maps HC terms to SC terms as follows�

De�nition � �Cache��ush function� For any HC term s� CF	s
 is the projection of
NFCF	s
 on the corresponding SC term where all non�outermost memory units have been
deleted along with the coherence states of all the cells in the outermost memory and the
identi�er for the outermost memory�

Lemma �Soundness� s�
HC
��� s� �� CF	s�

SC
��� CF	s�
�

Proof The proof is by induction on rewriting steps� We give the proof for one rewriting
step� Assume s� �� s� by applying some rule � in HC� The proof is based on the case
analysis on ��

� � � RCF� Needless to say CF	s�
 � CF	s�
�

� � is Sh�Caching� Then s� �� s� by applying Invalidate� hence CF	s�
 � CF	s�
�

� � is Ex�Caching� Then s� ��� s� by applying Writeback followed by Invalidate� hence
CF	s�
 � CF	s�
�

� � is HC�Load� Let Cell	a�v�	��R	�

 be the cell in the L� cache� Then Cell	a�v
 is
preserved in both CF	s�
 and CF	s�
� and CF	s�
 di�ers from CF	s�
 only in the
program counter and the register modi�ed by the load operation� Thus CF	s�
 ��
CF	s�
 by applying SC�Load�

� � is HC�Store� Let Cell	a�u�	Ex�R	�

 and Cell	a�v�	Ex�R	�

 be the cell in the L�
cache of s� and s�� respectively� Then Cell	a�u
 and Cell	a�v
 are preserved in CF	s�

and CF	s�
� respectively� and CF	s�
 is the same as CF	s�
 except for the program
counter and the cell modi�ed by the store operation� Thus CF	s�
 �� CF	s�
 by
applying SC�Store� �

One thing that is still missing from the de�nition of CF is that we have not shown that the
function always maps legal HC terms to legal SC terms� The soundness of HC guarantees
this� noting that CF maps the initial HC term to the initial SC term�

��� Completeness of HC

We de�ne function CL 	cache�lift
 that maps SC terms to corresponding HC terms� Suppose
the memory hierarchy structure of the HC system is known� For any SC term s� CL	s
 is
de�ned by introducing empty caches in the memory hierarchy� setting the state for each
outermost memory cell to 	Ex�R	�

� and assigning memory identi�ers for all memories�

It is easy to show that each SC rule can be simulated by a sequence of HC rules� For
example� to simulate the SC�Load rule� we can apply Sh�Caching n times to propagate a
shared copy to the corresponding L� cache� then apply HC�Load to read the data from the
L� cache� and then apply Invalidate n times to purge the shared copies from the L� cache
and all caches between the L� cache and the outermost memory� Here n is the L� cache�s
depth� counting from the outermost memory whose depth is ��

��

Lemma � �Completeness� s�
SC
��� s� �� CL	s�

HC
��� CL	s�
�

It is trivial to show that CF is the inverse function of CL�

Lemma �� �Connection� For any SC term s� CF	CL	s

 � s�

This completes the proof that HC is a complete implementation of SC�

Theorem �� The HC model completely implements the SC model�

� Some Derived Rules of the HC Model

A derived rule is one that can be derived from other rules of the TRS� A derived rule can
simply be an existing rule but with more stringent predicate� or a sequential combination
of several other rules� Adding derived rules cannot a�ect the correctness of the system� but
may improve the performance by some measure�

��� Pushout

The pushout operation allows a memory to write the most up�to�date data of an exclusive
cell back to the parent memory and invalidate the cell in one rewriting step� if the cell is not
cached by any child 	i�e�� the cell�s state is 	Ex�R	�

�

Pushout Rule

Sys�hid� Cell�a�u��Ex�W�idk��� jmi� Sys�hidk� Cell�a�v��Ex�R����� jmki� euk� j sg�
�� Sys�hid� Cell�a�v��Ex�R����� jmi� Sys�hidk� mki� euk� j sg�
Obviously applying Pushout has the same e�ect as applying Writeback and Invalidate

consecutively� We can de�ne another model which is the same as HC except that the Write�

back rule is replaced by the Pushout rule� In this new model� Writeback can be treated as
a derived rule 	Pushout followed by Sh�Caching
� It can be shown that these two TRS�s are
equivalent�

��� Upgrade

The upgrade operation allows a memory to obtain the exclusive ownership for a shared cell
in one rewriting step� if its parent has the exclusive ownership and has not given the data
to any other child� Upgrade is also known as Dclaim�

Upgrade Rule

Sys�hid� Cell�a�v��Ex�R�idk��� jmi� Sys�hidk� Cell�a�v��Sh�R�dir��� jmki� euk� j sg�
�� Sys�hid� Cell�a�v��Ex�W�idk��� jmi� Sys�hidk� Cell�a�v��Ex�R�dir��� jmki� euk� j sg�
It can be shown that applying Upgrade has the same e�ect as applying Invalidate n��

times� followed by Ex�Caching� followed by Sh�Caching n times� where n is the number
of shared copies 	of the same address
 cached in the descendant memories 	n 	 �
� Here

��

the Invalidate rule is applied repeatedly to invalidate the shared copies in the descendant
memories before the shared copy in the memory itself can be invalidated� and the Sh�Caching
rule is applied repeatedly to propagate shared copies to those descendant memories in which
shared copies have just been invalidated�

��� Forward

If the state of a cell in a memory is 	Ex�R	dir

� then it can write the most up�to�date data
back to its parent and forward a shared copy to some sibling memory� Similarly� if the state
of a cell in a memory is 	Ex�R	�

� then it can invalidate the cell and forward the exclusive
copy to some sibling memory� Forward is also known as Intervention�

Sh�Forward Rule

Sys�hid� Cell�a�u��Ex�W�idk��� jmi�
Sys�hidk� Cell�a�v��Ex�R�dir��� jmki� euk� j Sys�hidj� mji� euj� j sg�

�� Sys�hid� Cell�a�v��Ex�R�idkjidj��� jmi�
Sys�hidk� Cell�a�v��Sh�R�dir��� jmki� euk� j Sys�hidj� Cell�a�v��Sh�R����� jmji� euj� j sg�

Ex�Forward Rule

Sys�hid� Cell�a�u��Ex�W�idk��� jmi�
Sys�hidk� Cell�a�v��Ex�R����� jmki� euk� j Sys�hidj� mji� euj� j sg�

�� Sys�hid� Cell�a�v��Ex�W�idj��� jmi�
Sys�hidk� mki� euk� j Sys�hidj� Cell�a�v��Ex�R����� jmji� euj� j sg�

Obviously applying Sh�Forward has the same e�ect as applying Writeback followed by
Sh�Caching� while applying Ex�Forward has the same e�ect as applying Writeback and
Invalidate followed by Ex�Caching�

For exclusive forwarding� it is unnecessary to update the cell�s value in the parent memory
with the most up�to�date data� The cell�s value cannot be used before it is overwritten later
	maybe with the same value
� Based on this� we can optimize Ex�Forward as follows�

Ex�Forward�Without�Writeback Rule

Sys�hid� Cell�a�u��Ex�W�idk��� jmi�
Sys�hidk� Cell�a�v��Ex�R����� jmki� euk� j Sys�hidj� mji� euj� j sg�

�� Sys�hid� Cell�a�u��Ex�W�idj��� jmi�
Sys�hidk� mki� euk� j Sys�hidj� Cell�a�v��Ex�R����� jmji� euj� j sg�

It is worth noting that Ex�Forward�Without�Writeback is not a derived rule� since it
allows terms that are illegal in HC� However� extending HC with this new rule cannot result
in any illegal program behavior that violates Sequential Consistency� It can be proved that
the extended system is still a complete implementation of SC�

	 The HCN Model� Re�ning HC with Message Passing

The HC model assumes that coherence actions involving two or more memory units can
be performed with one rewriting step� For example� the Ex�Caching rule states that if a
memory has a cell whose state is 	Ex�R	�

� it can send an exclusive copy to some child and

��

P
Network

Network

Network

P P P PP

M

from / to network

In Out

MU

MU MU MU MU MU

MUMU

MU

Memory Unit:

SYS � Sys�MU� EU System
MU � hid� MEM� INQ� OUTQi Memory Unit
EU � PROC �� SG Execution Unit
SG � � �� SYS j SG System Group
MEM � � �� Cell�a�v�STATE jMEM Memory � Cache
STATE � �CSTATE� HSTATE Cell�s State
CSTATE � Sh �� Ex Cell�s Cstate
HSTATE � R�DIR �� W�id Cell�s Hstate
DIR � � �� id jDIR Directory
INQ � � �� MSG� INQ Incoming Queue
OUTQ � � �� MSG�OUTQ Outgoing Queue
MSG � Msg�idsrc� iddest� CMD� a� v Protocol Message
CMD � Sh�rep �� Ex�rep �� Wb�rep �� Inv�rep Message Command

Figure �� Grammar of the HCN Model 	Initially� all non�outermost memories� and all in�
coming and outgoing message queues are empty� the outermost memory contains a cell for
each address and the state of each cell is 	Ex�R	�

the child will receive the data and cache the cell in the 	Ex�R	�

 state� All this happens
atomically with respect to other components of the system� Such rules are considered non�
local in DSM systems where memory units communicate each other via message passing and
the communication latency cannot be ignored� The caching and de�caching rules of HC are
all non�local rules� Without special hardware support� it is expensive and di�cult to ensure
the atomicity of coherence actions such as a local read followed by a remote write�

In this section� we de�ne the HCN model 	HC with Network
 by incorporating a message
passing network to HC� The grammar of HCN is given in Figure �� Each memory unit
has two new components� an incoming message queue and an outgoing message queue� The
queue constructors ��� and ��� are associative and commutative� allowing non�FIFO message
passing and non�blocking message processing� In HCN� each rewriting rule except message
passing rules can examine and�or update only the local memory unit�

��

ExSh

Ex-RepSh-Rep

Upgrade-Rep

Wb-Rep

Inv-Rep Pushout-Rep

Inv

Figure � Relationship of Cache State Transitions and Reply Messages 	Inv represents the
state that the address is not cached� Pushout�rep and Upgrade�rep are potential optimizations

��� Messages and Message Queues

In HCN� all protocol messages are imperative messages� A message has �ve �elds� source�
destination� command� address and data 	which can be �
� if the message carries no data
�
There are four types of message commands� Sh�rep� Ex�rep� Wb�rep and Inv�rep� where the
su�x ��rep� stands for �reply�� because such messages are usually� although not necessarily�
issued upon requests 	this will become clear later when request messages are introduced
�
Figure shows the cache state transition that can happen when a reply message is received
and processed�

We use outgoing queues to characterize certain properties of the network� The constructor
��� is associative and commutative� indicating any message in an outgoing queue to be
brought to the front of the queue� This e�ectively models general non�FIFO networks which
enforce no restriction on the order in which messages are delivered� With this associativity
and commutativity� messages issued from the same source can arrive at their destinations in
arbitrary order� even when the destination is also the same�

Ideally we would like to treat incoming queues as FIFOs and process incoming messages
in the order in which they are received� However� this may cause deadlock or livelock unless
messages that cannot be processed temporarily are properly bu�ered so that other messages
can be processed �rst� To avoid this complication� we assume that the constructor ��� is
associative and commutative� thus incoming messages can be processed in arbitrary order
since any message in an incoming queue can be brought to the front of the queue if necessary�

The adoption of associative and commutative queues for incoming messages allows us to
treat bu�er management as a separate issue that is transparent to imperative and directive
rules� This simpli�es the protocol design� because messages always appear to arrive in the
order in which they are to be processed� and scenarios involving message reordering become
irrelevant� Our experience shows that exposing bu�er management at early design stages
is inappropriate� since it could give rise to a bloated set of rewriting rules and dramatically
complicate the protocol veri�cation� Throughout the successive design process� bu�er man�
agement should not be considered until all imperative and directive rules are de�ned� and its
goal is purely to reorder incoming messages whenever necessary� We will revisit the bu�er
management issue in Section ���

�

��� Rewriting Rules

The derivation of HCN rules from the HC rules is quite straightforward� each caching and
de�caching rule in HC becomes a pair of rules for sending and receiving messages� and
two message passing rules are introduced for passing messages between parent and child
memories� The memory access rules remain una�ected 	they are considered local rules
because the processor and its L� cache are tightly coupled and coherence actions involving
the both appear to be atomic
�

In HCN� a caching or de�caching operation is performed in three steps� the source site
sends a message to its outgoing queue� the network transfers the message to the corresponding
destination� and the destination site receives the message from its incoming queue�

Memory Access Rules� Memory access operations by a processor are performed on its
L� cache� and the message queues are not a�ected�

HCN�Load Rule

Sys�hid� Cell�a�v��cs�R����� jm� in� outi� Proc�ia� rf� prog��
if prog�ia� � r 	� Load�r�� and a � rf�r��

�� Sys�hid� Cell�a�v��cs�R����� jm� in� outi� Proc�ia��� rf�r 	� v�� prog��

HCN�Store Rule

Sys�hid� Cell�a�u��Ex�R����� jm� in� outi� Proc�ia� rf� prog��
if prog�ia� � Store�r�� r�� and a � rf�r��

�� Sys�hid� Cell�a�v��Ex�R����� jm� in� outi� Proc�ia��� rf� prog�� where v � rf�r��

Sh�Caching Rules� If the state of a cell in memory id is 	��R	dir

� and the directory dir
shows that the data is not cached in child idk� then memory id can send a Sh�rep message to
the child to give it a shared copy� When the Sh�rep message arrives� memory idk caches the
data in the 	Sh�R	�

 state�

Send�Sh�Rep Rule

hid� Cell�a�v��cs�R�dir��� jm� in� outi if idk � children�id� and idk �� dir

�� hid� Cell�a�v��cs�R�idkjdir��� jm� in� out�Msg�id� idk�Sh�rep� a� v�i
Receive�Sh�Rep Rule

hidk� mk� Msg�id� idk�Sh�rep� a� v�� ink� outki
�� hidk� Cell�a�v��Sh�R����� jmk� ink� outki

Ex�Caching Rules� If the state of a cell in memory id is 	Ex�R	�

� then it can send an
Ex�rep message to child idk to give it an exclusive copy� When the Ex�rep message arrives�
memory idk caches the data in the 	Ex�R	�

 state�

Send�Ex�Rep Rule

hid� Cell�a�v��Ex�R����� jm� in� outi
�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk�Ex�rep� a� v�i where idk � children�id�

Receive�Ex�Rep Rule

hidk� mk� Msg�id� idk�Ex�rep� a� v� � ink� outki
�� hidk� Cell�a�v��Ex�R����� jmk� ink� outki

��

Writeback Rules� If the state of a cell in memory idk is 	Ex�R	dir

� then it can send a
Wb�rep message to its parent id to write the most up�to�date data back to the home� When
the Wb�rep message is received� memory id updates the cell�s value and changes the cell�s
Hstate from W	idk
 to R	idk
�

Send�Wb�Rep Rule

hidk� Cell�a�v��Ex�R�dir��� jmk� ink� outki
�� hidk� Cell�a�v��Sh�R�dir��� jmk� ink� outk �Msg�idk� id�Wb�rep� a� v�i where id � parent�idk�

Receive�Wb�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Wb�rep� a� v� � in� outi
�� hid� Cell�a�v��Ex�R�idk��� jm� in� outi

Invalidate Rules� If state of a cell in memory idk is 	Sh�R	�

� then it can purge the cell
and send an Inv�rep message to its parent id to notify the home of the invalidation� When
the Inv�rep message is received� memory id removes identi�er idk from the directory�

Send�Inv�Rep Rule

hidk� Cell�a�v��Sh�R����� jmk� ink� outki
�� hidk� mk� ink� outk �Msg�idk� id� Inv�rep� a���i where id � parent�idk�

Receive�Inv�Rep Rule

hid� Cell�a�v��cs�R�idkjdir��� jm� Msg�idk� id� Inv�rep� a��� � in� outi
�� hid� Cell�a�v��cs�R�dir��� jm� in� outi

Message Passing Rules� Messages passing can happen only between the memories that
have the parent�child relationship� The Message�Passing�To�Child rule transfers a message
from the parent�s outgoing queue to the child�s incoming queue� while the Message�Passing�

To�Parent rule transfers a message from the child�s outgoing queue to the parent�s incoming
queue� Since the constructor ��� is associative and commutative� messages in an outgoing
queue can be chosen to deliver in any order�

Message�Passing�To�Child Rule

Sys�hid� m� in� Msg�id� idk� cmd� a� v� � outi� Sys�hidk� mk� ink� outki� euk� j sg�
�� Sys�hid� m� in� outi� Sys�hidk� mk� ink �Msg�id� idk� cmd� a� v�� outki� euk� j sg�
Message�Passing�To�Parent Rule

Sys�hid� m� in� outi� Sys�hidk� mk� ink� Msg�idk� id� cmd� a� v� � outki� euk� j sg�
�� Sys�hid� m� in�Msg�idk� id� cmd� a� v�� outi� Sys�hidk� mk� ink� outki� euk� j sg�

Still one scenario deserves a bit more discussion� Suppose a cell in 	Ex�R	�

 state performs
a writeback operation followed by an invalidate operation� With non�FIFO message passing�
the Inv�repmessage may arrive at the parent before theWb�repmessage� If incoming messages
were required to be processed in the FIFO order� deadlock could happen because the Inv�rep
message cannot be processed before the Wb�rep message is processed� However� this will not
occur� since messages in the incoming queue can be examined in any order� which allows the
Wb�rep message to be processed �rst�

��

 Veri�cation of the HCN Model

It can be shown that the HCN model completely implements the HC model� The proof
consists of three steps�

�� Soundness� De�ne queue��ush function QF 	HCN �� HC
� and show

s�
HCN
��� s� �� QF	s�

HC
��� QF	s�
�

�� Completeness� De�ne queue�lift function QL 	HC �� HCN
� and show

s�
HC
��� s� �� QL	s�

HCN
��� QL	s�
�

�� Connection� For any HC term s� show QF	QL	s

 � s�

The QF function is de�ned based on the intuition that� in HCN� when only message
passing and message receive rules are applied� all message queues will eventually become
empty� To show soundness� we prove that if s� �� s� by applying some rule � in HCN� then
in HC� either QF	s�
 � QF	s�
 if � is a message passing or message receive rule� or QF	s�

�� QF	s�
 by applying an appropriate HC rule if � is a memory access or message send
rule�

The queue�lift function QL maps HC terms to HCN terms by simply introducing empty
incoming and outgoing queues for each memory unit� It is easy to show that each HC rule
can be simulated by a sequence of HCN rules�

	�� Inclusion Invariants

As the Inclusion Invariants for the HC model� the HCN model maintains analogous invariants�
However� the invariants are more complicated� because caching and de�caching operations
involve two memory units that can communicate only via sending and receiving messages� In
other words� a coherence action that is atomic in HC may have to be carried out in multiple
steps in HCN� For example� if the directory shows that a shared copy has been cached by a
child regarding some address� it means three possible cases� the child has the shared copy
at the time� a Sh�rep message is on the way to the child 	the child will receive the shared
copy
� or an Inv�rep message is on the way to the parent 	the child has just invalidated the
shared copy
�

In our notation� we use ��� to represent the operator that merges messages from two
queues� and ��� the operator that deletes a message from a queue� The invariants fall into
two categories� the situation when a cell is cached in a memory� and the situation when a
message is in transient in the network� The meaning of the invariants is straightforward�
For example� if a child has a shared cell� then either the parent has the address with the
same value while the directory shows that the child has a shared copy� or there is a Wb�rep
message on the way to the parent in which the Hstate indicates that an exclusive copy has
been given to the child�

Lemma �� �Inclusion Invariants� In any HCN term
Sys	hid� m� in� outi� Sys	hidk� mk� ink� outki� euk
 j sg
 �

��

Sh�Inclusion

Cell�a�v��Sh�R����� � mk ��
Cell�a�v����R�idkj���� � m

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in

or

Cell�a����Ex�W�idk��� � m

Msg�idk� id�Wb�rep� a� v� � outk � in
Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in � Msg�idk� id�Wb�rep� a� v�

Ex�Inclusion

Cell�a�v��Ex���� � mk ��
Cell�a����Ex�W�idk��� � m

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in

Sh�rep�Inclusion

Msg�id� idk�Sh�rep� a� v� � out � ink ��
a �� mk

Cell�a�v����R�idkj���� � m

Msg�id� idk� �� a� �� �� out � ink � Msg�id� idk�Sh�rep� a� v�
Msg�idk� id� �� a� �� �� outk � in

Ex�rep�Inclusion

Msg�id� idk�Ex�rep� a� v� � out � ink ��
a �� mk

Cell�a�v��Ex�W�idk��� � m

Msg�id� idk� �� a� �� �� out � ink � Msg�id� idk�Ex�rep� a� v�
Msg�idk� id� �� a� �� �� outk � in

Wb�rep�Inclusion

Msg�idk� id�Wb�rep� a� v� � out � ink ��
Cell�a�v��Sh�R����� � mk

Cell�a����Ex�W�idk��� � m

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in � Msg�idk� id�Wb�rep� a� v�

or

a �� mk

Cell�a����Ex�W�idk��� � m

Msg�idk� id� Inv�rep� a��� � outk � in

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in � Msg�idk� id�Wb�rep� a� v� � Msg�idk� id� Inv�rep� a���

��

Inv�rep�Inclusion

Msg�idk� id� Inv�rep� a��� � out � ink ��
a �� mk

Cell�a������R�idkj���� � m

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in � Msg�idk� id� Inv�rep� a���

or

a �� mk

Cell�a����Ex�W�idk��� � m

Msg�idk� id�Wb�rep� a� v� � outk � in

Msg�id� idk� �� a� �� �� out � ink
Msg�idk� id� �� a� �� �� outk � in � Msg�idk� id�Wb�rep� a� v� � Msg�idk� id� Inv�rep� a���

Proof The proof is by induction on rewriting steps� The invariants hold trivially for the
initial terms where all caches and queues are empty� It can be shown by checking each
rewriting rule that� if the invariants hold for a term� then they still hold after the term is
rewritten according to that rule� �

Based on the Inclusion Invariants� we can show that no memory can contain two cells that
have the same address� This is because only the Receive�Sh�Rep and Receive�Ex�Rep rules
can create new cells� when a Sh�rep or Ex�rep is received� the memory cannot have a cell
regarding the same address�

	�� Queue Flushing Property

Suppose we de�ne a new rewriting system RQF� which has the same grammar as HCN but
uses only a subset of the HCN rules�

De�nition �� �TRS for queue �ushing�

RQF � f Message�Passing�To�Child� Message�Passing�To�Parent�

Receive�Sh�Rep� Receive�Ex�Rep� Receive�Wb�Rep� Receive�Inv�Rep g

Now we discuss some properties of the RQF system�

Lemma �	 RQF is strongly terminating and con�uent� i�e�� for any HCN term� rewriting
with respect to RQF terminates within a �nite number of steps and always reaches the same
normal form� regardless of the order in which the rules are applied�

Proof The termination is obvious because RQF includes only the message passing and
message receive rules� The message passing rules move messages from sources to destinations�
while the message receive rules process messages extracted from incoming queues� However�
none of these rules can generate new messages� The con�uence follows from the fact that
message passing and message receive rules do not interfere each other� �

In fact RQF rules not only do not interfere each other� but also do not interfere with non�RQF
rules� This can be trivially veri�ed by checking each pair of RQF � non�RQF rules�

��

Lemma �
 RQF rules do not interfere with non�RQF rules� i�e�� if s� �� s� by applying rule
� �� RQF� and s� �� s� by applying rule � � RQF� then there exists s� such that s� �� s�
by applying � and s� �� s� by applying ��

De�nition �� For any HCN term s� NFQF	s
 is the normal form of s in RQF�

Lemma �� �Queue Flushing Property� For any HCN term s� all incoming and outgoing
message queues are empty in NFQF	s
�

Proof Suppose not all message queues are empty� If an outgoing queue is not empty�
some message passing rule would apply� if an incoming queue is not empty� according to
the Inclusion Invariants� some message receive rule would apply� Thus the term cannot be a
normal form� �

	�� Soundness of HCN

We de�ne function QF 	queue��ush
 that maps HCN terms to HC terms as follows�

De�nition � �Queue��ush function� For any HCN term s� QF	s
 is the projection of
NFQF	s
 on the corresponding HC term where all the message queues have been deleted�

The queue��ush function builds a relationship between HCN terms and HC terms� Based
on this mapping function� HC can simulate HCN in the following sense� if HCN applies a
message passing or message receive rule� then HC applies no rule 	no action is taken
� if HCN
applies a memory access or message send rule� then HC applies an appropriate rule de�ned
as follows�

the HCN rule the corresponding HC rule
HCN�Load HC�Load

HCN�Store HC�Store

Send�Sh�Rep Sh�Caching

Send�Ex�Rep Ex�Caching

Send�Wb�Rep Writeback

Send�Inv�Rep Invalidate

Lemma �� �Soundness� s�
HCN
��� s� �� QF	s�

HC
��� QF	s�
�

Proof We give the proof for one rewriting step� proof for multiple steps follows from
induction� Assume s� �� s� by applying some rule � in HCN� The proof is based on the
case analysis on ��

� � � RQF� Needless to say QF	s�
 � QF	s�
�

� � is a memory access rule� Since � cannot interfere with any RQF rule and applying
� cannot generate any new message� it can be shown by induction that NFQF	s�

�� NFQF	s�
 by applying �� Notice all message queues are empty in NFQF	s�
 and
NFQF	s�
� thus QF	NFQF	s�

 �� QF	NFQF	s�

 by applying the corresponding
memory access rule� Hence QF	s�
 �� QF	s�
� See Figure � 	a
�

��

s1 s3 s1QF()

s2QF()s2
RQF

RQF

RQF

RQF

()NF s1QF

()NF s2QF

s1 s3 s1QF()

s2QF()sns2
RQF

RQF

RQF RQF

RQF

()NF s1QF

()NF s2QF

α is a memory access rule(a)

α is a message-send rule(b)

s4

α α α

QF

QF
rule in HC

the corresponding
memory access

s4

α α α

QF

QF
rule in HC

the corresponding
caching or de-caching

Figure �� Simulate HCN in HC

� � is a message send rule� Since � cannot interfere with any RQF rules� it can be
shown by induction that there exists sn such that NFQF	s�
 �� sn by applying ��
and s� �� sn by applying RQF rules� Since applying � generates a new message� sn
��� NFQF	s�
 by applying a message passing rule followed by a message receive rule�
Notice all message queues are empty in NFQF	s�
 and NFQF	s�
� thus QF	NFQF	s�

�� QF	NFQF	s�

 by applying the corresponding caching or de�caching rule� Hence
QF	s�
 �� QF	s�
� See Figure � 	b
� �

	�� Completeness of HCN

We de�ne function QL 	queue�lift
 that maps HC terms to corresponding HCN terms� For
any HC term s� QL	s
 is de�ned by adding empty incoming and outgoing message queues
in each memory unit� Based on this mapping function� it is easy to show that each HC rule
can be simulated by a sequence of HCN rules� For example� to simulate the Sh�Caching

rule� we can apply Send�Sh�Rep� followed by Message�Passing�To�Child� and followed by
Receive�Sh�Rep� The table below gives the sequence of HCN rules for each HC rule�

the HC rule the sequence of HCN rules to simulate the HC rule
HC�Load HCN�Load

HC�Store HCN�Store

Sh�Caching Send�Sh�Rep � Message�Passing�To�Child � Receive�Sh�Rep

Ex�Caching Send�Ex�Rep � Message�Passing�To�Child � Receive�Ex�Rep

Writeback Send�Wb�Rep � Message�Passing�To�Parent � Receive�Wb�Rep

Invalidate Send�Inv�Rep � Message�Passing�To�Parent � Receive�Inv�Rep

Lemma �� �Completeness� s�
HC
��� s� �� QL	s�

HCN
��� QL	s�
�

It is trivial to show that QF is the inverse function of QL�

��

Lemma �� �Connection� For any HC term s� QF	QL	s

 � s�

This completes the proof that HCN is a complete implementation of HC�

Theorem �� The HCN model completely implements the HC model�

� Some Optimizations of the HCN Model

A memory model can be implemented with di�erent protocols� In designing cache coherence
protocols� the designer often faces various design options� While soundness and liveness
should always be guaranteed� di�erent protocols can result in di�erent performance� com�
plexity and implementation cost� In this section� we discuss some optimization techniques
for the HCN model� Although the optimization rules cannot be derived from the existing
HCN rules� they can be employed safely to optimize certain common scenarios� We can
extend HCN with one or more such optimizations while ensuring that the extended model
remains a complete implementation of HC� All the optimization rules are imperative rules�

�� Pushout

In HCN� when an exclusive cell is pushed out� the memory sends two messages to its parent� a
Wb�rep followed by an Inv�rep� The pushout optimization uses just one message� Pushout�rep�
to notify the parent of the pushout operation� The Pushout�rep message can be considered as
a combination of the Wb�rep and Inv�rep� and can be used to reduce the number of messages�
It can also simplify the protocol design� noting in HCN the Inv�rep can arrive before the
Wb�rep with non�FIFO message passing�

Send�Pushout�Rep Rule

hidk� Cell�a�v��Ex�R����� jmk� ink� outki
�� hidk� mk� ink� outk �Msg�idk� id�Pushout�rep� a� v�i where id � parent�idk�

Receive�Pushout�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Pushout�rep� a� v� � in� outi
�� hid� Cell�a�v��Ex�R����� jm� in� outi
We can extend the HCN model with the pushout rules� It is trivial to show that the

extended system is a complete implementation of HCN 	the projection function replaces
each Pushout�rep message with a Wb�rep followed by an Inv�rep
�

�� Upgrade

The motivation of the upgrade optimization is to allow a shared copy to be upgraded with
the exclusive ownership without being invalidated �rst� If the state of a cell in memory
id is 	Ex�R	idk

� then memory id can send an Upgrade�rep message to child idk� when the
Upgrade�rep message is received� memory idk changes the cell�s Cstate from Sh to Ex�

Send�Upgrade�Rep Rule

hid� Cell�a�v��Ex�R�idk��� jm� in� outi
�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk�Upgrade�rep� a���i

��

Receive�Upgrade�Rep Rule

hidk� Cell�a�v��Sh�R�dir��� jmk� Msg�id� idk�Upgrade�rep� a��� � ink� outki
�� hidk� Cell�a�v��Ex�R�dir��� jmk� ink� outki
Consider the scenario in which the shared copy in the child has just been invalidated

when the Upgrade�rep message arrives 	an Inv�rep message is on its way to the parent
�
Deadlock can happen because the Upgrade�rep and Inv�rep messages cannot be processed 	in
order for one message to be processed� the other has to be processed �rst
� To We can rely
on directive rules to deal with the dilemma� noting that deadlock in an imperative model
does not necessarily mean deadlock in the �nal protocol� For example� the deadlock cannot
happen if we can somehow ensure that the shared copy in the child cannot be invalidated
in this case� This can be achieved by using directive messages to properly coordinate the
parent and child memories�

Relying on directive rules to avoid such deadlock can put unnecessary constraints on how
directive messages must be used� and performance can also be sacri�ced� A better solution is
to provide proper rules so that the protocol can recover from a potential deadlock situation
by cancelling certain operation e�ects� For example� we can use a negative acknowledgment
to notify the parent or the child that the Upgrade�rep or Inv�rep message cannot be processed�
This technique can be adopted to eliminate deadlocks for many similar scenarios throughout
the protocol design�

Using Upgrade�neg�rep� When the Upgrade�rep message arrives� if the child does not have
the shared copy� there are two possible cases� either the shared copy has been invalidated 	an
Inv�rep is on the way to the parent
� or the shared copy has not been received yet 	a Sh�rep is
on the way to the child
� Notice that the child cannot decide which case is true based on its
local information� To prevent deadlock� the child can discard the Upgrade�rep message and
send an Upgrade�neg�rep message to the parent to report the failure of the upgrade operation�
When the Upgrade�neg�rep is received� the parent sets the cell�s Hstate to Sh 	the cell�s value
is still valid
�

Receive�Upgrade�Rep�And�Send�Upgrade�Neg�Rep Rule

hidk� mk� Msg�id� idk�Upgrade�rep� a� v� � ink� outki if a �� mk

�� hidk� mk� ink� out�Msg�idk� id�Upgrade�neg�rep� a���i
Receive�Upgrade�Neg�Rep Rule

hid� Cell�a�v��Ex�W�idk��� jm� Msg�idk� id�Upgrade�neg�rep� a��� � in� outi
�� hid� Cell�a�v��Ex�R�idk��� jm� in� outi

Using Inv�neg�rep� Instead of using the Upgrade�rep message� we can have the parent send
an Inv�neg�rep message to the child to negatively acknowledge the invalidate operation while
letting the Upgrade�rep message wait at the child� Notice that the Inv�neg�rep message carries
the data read from the cell in the parent� When the Inv�neg�rep is received� the child caches
the data in the 	Sh�R	�

 as if the invalidate operation were never performed�

Receive�Inv�Rep�And�Send�Inv�Neg�Rep Rule

hid� Cell�a�v��Ex�W�idk��� jm� Msg�idk� id� Inv�rep� a��� � in� outi
�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk� Inv�neg�rep� a� v�i

��

Receive�Inv�Neg�Rep Rule

hidk� mk� Msg�id� idk� Inv�neg�rep� a� v� � ink� outki
�� hidk� Cell�a�v��Sh�R����� jmk� ink� outki

Discussion� The rewriting rules of an imperative model can be classi�ed as two categories�
the memory access rules that perform memory access operations such as load and store�
and the coherence maintenance rules that move coherence information such as data and
ownership in the memory hierarchy� Intrinsically the imperative model is not con�uent due
to potential data access races� However� we can always make the coherence maintenance
rules con�uent by introducing extra rules if necessary to undo improper operations� The
con�uence of the coherence maintenance rules eliminates deadlock in the imperative model�
thereby providing more �exibility for the directive design phase�

�� Forward

The forward optimization accelerates the processing when a memory wants to have a shared
or exclusive copy while the most up�to�date data resides in some sibling memory� It allows
the memory that exclusively owns the data to send a copy to a sibling memory directly� If
a memory has a cell in the 	Ex�R	�

 state� it can send a Sh�fwd�rep message to a sibling
memory to give it a shared copy� if a memory has a cell in the 	Ex�R	�

 state� it can send
an Ex�fwd�rep message to a sibling memory to give it an exclusive copy�

The parent memory 	home
 should be informed when a forward operation happens so
that the cell can be updated properly� Depending on which site is responsible for notifying
the home 	the memory that receives the forwarded data� or the memory that sends the
forwarded data
� the forward optimization can be implemented in the lazy or eager manner
	see Figure �
�

Lazy home noti�cation� When a memory receives a Sh�fwd�rep or Ex�fwd�rep message
from a sibling� it sends a Sh�fwd�home�rep or Ex�fwd�home�rep message to the parent� Notice
the Sh�fwd�home�rep also contains the most up�to�date data�

Send�Sh�Fwd�Rep Rule

hidk� Cell�a�v��Ex�R�dir��� jmk� ink� outki
�� hidk� Cell�a�v��Sh�R�dir��� jmk� ink� outk �Msg�idk� idj�Sh�fwd�rep� a� v�i

where idj � siblings�idk�

Receive�Sh�Fwd�Rep�And�Send�Sh�Fwd�Home�Rep Rule

hidj� mj� Msg�idk� idj�Sh�fwd�rep� a� v� � inj� outji
�� hidj� Cell�a�v��Sh�R����� jmj� inj� outj �Msg�idj� id�Sh�fwd�home�rep� a� v�i

where id � parent�idj�

Receive�Sh�Fwd�Home�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idj� id�Sh�fwd�home�rep� a� v� � in� outi
�� hid� Cell�a�v��Ex�R�idkjidj��� jm� in� outi

Send�Ex�Fwd�Rep Rule

hidk� Cell�a�v��Ex�R����� jmk� ink� outki
�� hidk� mk� ink� outk �Msg�idk� idj�Ex�fwd�rep� a� v�i where idj � siblings�idk�

�

idk idj idkidj

Sh / Ex-
fwd-rep

Sh / Ex-
fwd-home-rep

id (home)

Sh / Ex-

fwd-rep
Sh / Ex-

fwd-home-rep

id (home)

(a) lazy home notification (b) eager home notification

Figure �� The Forward Optimization

Receive�Ex�Fwd�Rep�And�Send�Ex�Fwd�Home�Rep Rule

hidj� mj� Msg�idk� idj�Ex�fwd�rep� a� v� � inj� outji
�� hidj� Cell�a�v��Ex�R����� jmj� inj� outj �Msg�idj� id�Ex�fwd�home�rep� a���i

where id � parent�idj�

Receive�Ex�Fwd�Home�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idj� id�Ex�fwd�home�rep� a��� � in� outi
�� hid� Cell�a�u��Ex�W�idj��� jm� in� outi

Eager home noti�cation� When a memory sends a Sh�fwd�rep or a Ex�fwd�rep message to
a sibling memory� it also sends a Sh�fwd�home�rep or Ex�fwd�home�rep message to the parent
to notify the home of the forward operation� Notice that the home noti�cation messages
contain a new �eld that tells which memory receives the forwarded data�

Send�Sh�Fwd�Rep�And�Sh�Fwd�Home�Rep Rule

hidk� Cell�a�v��Ex�R�dir��� jmk� ink� outki
�� hidk� Cell�a�v��Sh�R�dir��� jmk� ink

outk �Msg�idk� idj�Sh�fwd�rep� a� v� �Msg�idk� id�Sh�fwd�home�rep� a� v� idj�i
where idj � siblings�idk� and id � parent�idk�

Receive�Sh�Fwd�Rep Rule

hidj� mj� Msg�idk� idj�Sh�fwd�rep� a� v� � inj� outji
�� hidj� Cell�a�v��Sh�R����� jmj� inj� outji where id � parent�idj�

Receive�Sh�Fwd�Home�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Sh�fwd�home�rep� a� v� idj�� in� outi
�� hid� Cell�a�v��Ex�R�idkjidj��� jm� in� outi

Send�Ex�Fwd�Rep�And�Ex�Fwd�Home�Rep Rule

hidk� Cell�a�v��Ex�R����� jmk� ink� outki
�� hidk� mk� ink� outk �Msg�idk� idj�Ex�fwd�rep� a� v� �Msg�idk� id�Ex�fwd�home�rep� a��� idj�i

where idj � siblings�idk� and id � parent�idk�

Receive�Ex�Fwd�Rep Rule

hidj� mj� Msg�idk� idj�Ex�fwd�rep� a� v� � inj� outji
�� hidj� Cell�a�v��Ex�R����� jmj� inj� outji where id � parent�idj�

��

Receive�Ex�Fwd�Home�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Ex�fwd�home�rep� a��� idj�� in� outi
�� hid� Cell�a�u��Ex�W�idj��� jm� in� outi

Discussion� With lazy noti�cation� it is guaranteed that the forwarded data has been
received when the home is noti�ed� One the other hand� eager noti�cation takes just one
message passing hop to notify the home� Given a FIFO network� lazy noti�cation is often
preferred� because eager noti�cation can prohibit us from taking advantage from the FIFO
order preserved by the message passing�

Message passing between siblings� In addition to the message passing rules that transfer
messages between the parent and the child� the forward operation also requires the following
rule that transfers messages between siblings�

Message�Passing�To�Sibling Rule

Sys�hidk� mk� ink� Msg�idk� idj� cmd� a� v� � outki� euk� j Sys�hidj� mj� inj� outji� euj�
�� Sys�hidk� mk� ink� outki� euk� j Sys�hidj� mj� inj� Msg�idk� idj� cmd� a� v�� outji� euj�

It is also worth pointing out that for eager home noti�cation� theMessage�Passing�To�Parent

rule need to be modi�ed slightly to accommodate messages that have the extra �eld�

�� Directive Messages and Directive Rules

The imperative models presented so far rely on an oracle to cause appropriate coherence
actions at appropriate times� Consider the scenario that a processor intends to execute a
Load instruction while the accessed data is not cached in the L� cache� In HCN� if the parent
has the most up�to�date data� it can send a copy to the L� cache� however� it is not clear
how it would know that the child needs the data for the particular address�

To remedy this problem� we introduce directive messages and directive rules� While
imperative messages can be used to transfer data and other coherence information between
memory sites� the intended e�ect of directive messages is to invoke desirable coherence
actions� For example� when a read cache miss happens� a directive message can be sent to
the parent to request the accessed data� when the directive message is received� the parent
can send a shared copy to the child�

Directive rules are forbidden to modify any state manipulated by imperative rules� This
guarantees that correctness cannot be compromised when directive rules are added� When
imperative and directive rules are integrated� directive messages usually act as extra pred�
icates to indicate when the imperative actions should be invoked� Improper conditions for
invoking imperative rules can cause deadlocks or livelocks but cannot a�ect the correctness
of the system� Before we delve into directive messages and directive rules� we �rst discuss
some implementation assumptions and explicate the protocol liveness�

���� Rewriting Fairness

While rewriting a term� there may exist more than one rules that can be applied� A rewriting
strategy can be used to select a rule or a group of rules from the set of applicable rules� If a

��

rule can be applied on di�erent redexes� the strategy also speci�es the redex or redexes that
can be rewritten� When TRS�s are used to describe programming languages� terms represent
expressions and rewriting rules represent computations� The goal of a rewriting strategy is
to produce the value or one of the values of an expression�

Unfortunately� there is no such obvious goal for distributed systems such as cache coher�
ence protocols� Instead� there is a notion of fair rewriting� which requires that all concurrent
components execute in a distributed fashion and hence make progress in parallel� The con�
current components of a typical DSM system may include processors� network and message
queues� memory units� and so on� Without losing generality� we make the following assump�
tions�

� Concurrent processor execution� A processor cannot be stalled inde�nitely while
it has executable instructions�

� Reliable message passing� An outgoing message is guaranteed to be delivered to
the destination in �nite time�

� Fair message processing� An incoming message is guaranteed to be processed sooner
or later if it can be processed�

While the �rst two assumptions are intuitive and can be satis�ed in most implemen�
tations� the fair message processing assumption deserves some explanation� Fair message
processing implies that messages that cannot be processed temporarily should not block
other messages from being processed� Moreover� no message should remain in an incoming
queue inde�nitely� unless it cannot be processed at all times from certain time� In other
words� when more than one messages can be processed� the selection of which message is to
be processed is fair so that any message that can be processed will be processed eventually�

These implementation assumptions manifest the necessity of rewriting fairness� A fair
rewriting strategy guarantees that each concurrent component periodically obtains an ex�
ecution opportunity as the system makes progress� If the system does not terminate� an
in�nite number of opportunities must be given to each component throughout its execution�
This fairness prevents the execution of an applicable rule from being delayed inde�nitely� If
a term contains a redex� the redex must be rewritten in �nite number of steps� unless such
rewriting becomes illegal 	noting the redex can be destroyed� and the context in which the
redex resides can be changed
�

���� Protocol Liveness

The correctness and the liveness concerns are separate issues in the Imperative�Directive
design methodology� While correctness ensures that the protocol can only exhibit behaviors
allowed by the memory model 	i�e�� bad things cannot happen
� liveness ensures that desirable
coherence actions will eventually be invoked 	i�e�� good things will happen
� The de�nition
of correctness is unambiguous given a precisely de�ned memory model� However� liveness
can have very di�erent implications for di�erent protocols�

We say a protocol enforces weak liveness� if it ensures that the system cannot enter
a deadlock situation in which no further action can be invoked� Weak liveness does not

��

eliminate potential livelocks� although in certain implementations� the probability of livelocks
may be negligible� For example� some protocols ���� �� implemented in simple hardware avoid
deadlocks by bouncing messages that cannot be processed back to their senders� In such
protocols� it is possible that messages are passed back and forth in the system while no
processor makes any progress�

If a protocol ensures that the system as a whole can always make progress� we say it
enforces moderate liveness� Moderate liveness implies that when multiple processors access
the same memory address� at least one of them will succeed eventually� However� starvation
can happen because no fairness is guaranteed among di�erent processors� For example� it is
possible that a cache miss is never serviced while memory accesses from other processors are
always satis�ed�

We say a protocol enforces strong liveness� if it ensures that each individual processor and
memory unit can always make progress� This guarantees that a cache miss on any processor
can always be serviced� and a cell in any cache can always be purged whenever necessary�
As we shall see� the HCN�base protocol we will present provides such liveness� the protocol
is free from all sorts of deadlock� livelock and starvation�

���� Directive Messages and Directive Rules

Directive messages are needed to coordinate memory sites so that appropriate coherence
actions can be invoked whenever necessary� It is usually straightforward to determine what
directive messages should be used for an imperative model� For HCN� we introduce four
directive messages� Sh�req� Ex�req� Wb�req and Inv�req� where the su�x ��req� stands for
�request�� since such messages are often used as requests to invoke desirable coherence actions�
Notice a caching request �ows from child to parent� while a de�caching request from parent
to child�

Request Request description Expected reply
Sh�req Request a shared copy from the parent Sh�rep

Ex�req Request an exclusive copy from the parent Ex�rep

Wb�req Request a child to write back the most up�to�date data Wb�rep

Inv�req Request a child to invalidate a shared copy Inv�rep

Directive rules deal with directive messages� Without a�ecting correctness� directive
messages can be generated or discarded at any time� However� directive rules are not allowed
to produce or consume any imperative message or modify any memory cell� This guarantees
that correctness cannot be compromised when directive messages and directive rules are
incorporated� In other words� we can safely extend a correct imperative model with arbitrary
directive messages and directive rules� the extended model remains a correct implementation�

Directive Generation Rules� At any time� a memory can send a Sh�req or Ex�req message
to its parent� or a Wb�req or Inv�req message to a child�

Generate�Req�To�Parent Rule

hid� m� in� outi
�� hid� m� in� out�Msg�id� idp� cmd� a���i

where idp � parent�id� and cmd � Sh�req
Ex�req

��

Generate�Req�To�Child Rule

hid� m� in� outi
�� hid� m� in� out�Msg�id� idk� cmd� a���i

where idk � children�id� and cmd � Wb�req
Inv�req

Directive Discard Rules� At any time� a directive message can be discarded from an
incoming or outgoing queue�

Discard�Incoming�Req Rule

hid� m� in�Msg��� �� cmd� �� ��� outi
�� hid� m� in� outi where cmd � Sh�req
Ex�req
Wb�req
Inv�req

Discard�Outgoing�Req Rule

hid� m� in� out�Msg��� �� cmd� �� ��i
�� hid� m� in� outi where cmd � Sh�req
Ex�req
Wb�req
Inv�req

Directive rules alone are not interesting because they allow directive messages to be
generated and discarded arbitrarily� However� it is unnecessary for a cache coherence protocol
to use all the imperative and directive rules in their raw form� To ensure both correctness
and liveness� directive and imperative rules are often integrated to give rise to derived rules�
In such derived rules� a cell�s coherence state can act as an extra predicate for desired
directive actions� while an incoming directive message can act as an extra predicate for
desired imperative actions� For example� when a memory receives a Sh�req message from a
child� if it has the most up�to�date data� it sends an Sh�rep message to the requesting site� if
the accessed address is cached but the data is stale� the memory sends a Wb�req message to
the child that has the most up�to�date data� Notice the incoming Sh�req message is used as
a predicate for specifying when the Send�Sh�Rep or Generate�Req�To�Child rule should be
invoked�

We extend the HCN model with the directive messages and directive rules� and call it
HCNr 	HCN with Requests
� Obviously HCNr is a complete implementation of HCN�

���� Transient Records

When a memory receives a directive message� it may or may not be able to process the
message at the time� An incoming message that cannot be processed should not block other
messages from being processed� This is guaranteed by allowing any message in an incoming
queue to be brought to the front end of the queue whenever necessary�

If an incoming message can be processed� then either the message can be processed to
completion� or the message must be suspended before it can be processed to completion�
Consider the scenario that a memory receives an Ex�req message from a child� If the memory
has the exclusive ownership and the most up�to�date data� it simply sends an Ex�rep message
to the requesting site� However� if the memory has the exclusive ownership but the data is
shared by a number of child memories� the Ex�req message cannot be processed to completion
before all the outstanding shared copies have been invalidated� In this case� the Ex�req
message is suspended and an Inv�reqmessage is multicast to the child memories that have the
shared copies� Later the suspended Ex�req message will be resumed when all the invalidation
requests are acknowledged�

��

For each suspended message� a transient record is created to maintain necessary infor�
mation so that the suspended message can be resumed� Since a message has to be �rst
extracted from the incoming queue before it can be processed� all useful information regard�
ing a suspended message must be maintained in its transient record� Typically a transient
record contains the command and source of the suspended message� It may also contain
information relevant to the outstanding messages caused by the suspension� noting when a
message is suspended� appropriate directive messages are often issued to invoke certain re�
mote coherence actions� When a suspended message is resumed� the corresponding transient
record is discarded�

Transient records and coherence states are conceptually orthogonal� While the coherence
state of a memory cell is used for coherence maintenance� the transient record of an address
helps enforce protocol liveness� Some bits can be saved by encoding the coherence states
and transient records together in implementation�

When a transient record exists for an address� we say the address is in a transient state�
otherwise we say the address is in a stable state� Also notice that a memory access instruction
may also need to be suspended when the instruction execution is stalled due to a cache miss�

���� A Systematic Design Procedure

Based on an imperative model� a cache coherence protocol can be developed systematically
according to the following design procedure� The protocol ensures both correctness and
liveness by integrating imperative and directive actions appropriately� With this ��step
procedure� the protocol design becomes more tractable and less error�prone� Almost all the
rewriting rules can be derived systematically�

�� De�ne directive message types� We begin by de�ning a directive message type for
each imperative message type� Later it may become necessary that a directive message
type should convey more information to help the receiving site determine the action
to be taken� By encoding such information in the message command� we e�ectively
divide the directive message type to several sub�types� On the other hand� it is also
possible that certain directive message types can be merged to one super�type� which
may reduce the number of bits needed to encode message commands� as well as the
number of rewriting rules�

�� De�ne transient record structures� A transient record contains the initiator that
caused the address to enter the transient state� When a message is suspended� the
initiator contains the source and command of the suspended message� Sometimes a
transient record also needs to include certain information regarding the outstanding
messages caused by the suspended message�

�� De�ne rules to generate original directive messages� A directive message can
be either original� or transitively generated while processing another directive message�
It is often obvious to decide when an original directive message should be issued� For
example� when a cache miss happens� a directive message is sent from the L� cache to
the parent memory to request the data�

��

�� De�ne rules to generate original imperative messages� An imperative message
can be either original� or issued as the response to some directive message� It is usually
straightforward to determine when an original imperative message should be issued�
For example� when a shared cell is replaced 	purged
 from a cache� an imperative
message is sent to the parent so that the directory can be modi�ed accordingly�

�� De�ne rules to process directive messages� Generally speaking� a memory site
processes at most one directive message for the same address at a time� Our experi�
ence shows that this restriction can dramatically simplify the protocol design without
noticeably a�ecting the performance� However� certain directive messages cannot be
blocked because otherwise deadlocks can happen� Such directive messages must be
processed in time� regardless of whether the address is in a transient state or not�

If a directive message can be processed� then either it can be processed to completion�
or it should be suspended before it can be processed to completion� When a directive
message is processed to completion� a corresponding imperative message is sent to the
requesting site� When a directive message is suspended� necessary directive messages
are issued in order to service the suspended message later�

�� De�ne rules to process imperative messages� If an imperative message can be
processed� it can always be processed to completion� When an imperative message is
processed� if a suspended message exists regarding the address� it is resumed immedi�
ately if such resumption is possible�

Notice an imperative or directive message that cannot be processed remains in the in�
coming queue� The fair message passing guarantees that the message will be processed
eventually if it can be processed�

It is important to realize that the design procedure represents an iterative design process�
As the design proceeds� we have a better understanding of the protocol behavior and may
revise some previous design decisions�

�� HCN�base� A Simple Protocol Derived from HCN

In this section� we present HCN�base� a simple cache coherence protocol that implements
Sequential Consistency and guarantees that each individual processor can always make
progress� HCN�base employs transients records to maintain information for suspended mes�
sages and instructions� The protocol is free from all sorts of deadlock� livelock and starvation
in the sense that any cache miss can be serviced in �nite time and hence no processor can
be inde�nitely stalled�

The rewriting rules of HCN�base can be systematically derived from the HCN model�
Memory access instructions can be executed in case of cache hits� When a cache miss
happens� a directive message is sent to the parent memory� When a directive message is
received and chosen to be processed� there are two possibilities� 	�
 if the directive message
can be processed to completion� an appropriate imperative message is sent to the requesting
site� 	�
 if it cannot be processed to completion� it is suspended while necessary directive

��

messages are sent to the parent or child memories to invoke certain desired coherence actions�
The suspended message is resumed when all expected imperative messages are received�

The protocol has the following properties�

� The memory hierarchy can be any tree structure with arbitrary depth�

� The message passing is non�FIFO� i�e�� messages can be received in any order�

� All coherence actions are originally driven by memory access instructions� A memory
cannot send data to a child without a caching request from the child� or invalidate a
cell or write a cell�s value back to its parent without a de�caching request from the
parent� This implies that the protocol cannot handle cache line replacement caused by
capacity or associativity con�ict�

In ���� we extend HCN�base to HCN�adpt� a fully adaptive cache coherence protocol in
which coherence actions can happen voluntarily without being requested�

� A memory site generally processes only one request message for the same address at
a time� A request message cannot be processed if the address is already in a transient
state 	unless such delay can cause deadlocks
� This restriction dramatically simpli�es
the protocol design� and its impact on performance is negligible�

The only exception is Inv�req message� which must be processed regardless of whether
the address is in a transient state or not� As we shall see� this is necessary in order to
avoid deadlocks�

The grammar of HCN�base is given in Figure ��� Compared with HCN� a new component�
the transient records� is maintained in each memory unit� A transient record contains an
address� and an initiator that caused the address to enter the transient state� When a
message is suspended� the initiator records its source and command� when an instruction is
suspended� the initiator records its instruction address and opcode�

The HCN�base rules can be classi�ed into several categories� 	�
 memory access rules that
deal with cache hits and cache misses� 	�
 child�to�parent request rules that process caching
requests� 	�
 parent�to�child request rules that process de�caching requests� 	�
 parent�to�
child reply rules that process caching replies� 	�
 child�to�parent reply rules that process
de�caching replies� and 	�
 message passing rules�

We use the following shorthand notation for message multicast�

multicast�id� �� cmd� a� v� � �
multicast�id� idkjdir� cmd� a� v� � Msg�id� idk� cmd� a� v� �multicast�id� dir� cmd� a� v�

���� Memory Access Rules

Cache�Hit Rules� Memory access operations by a processor are performed on its L� cache�
A Load instruction can read from the L� cache if the accessed address is cached� A Store

��

SYS � Sys�MU� EU System
MU � hid� MEM� INQ� OUTQ� TRECSi Memory Unit
EU � PROC �� SG Execution Unit
SG � � �� SYS j SG System Group
MEM � � �� Cell�a�v�STATE jMEM Memory � Cache
STATE � �CSTATE� HSTATE Cell�s State
CSTATE � Sh �� Ex Cell�s Cstate
HSTATE � R�DIR �� W�id Cell�s Hstate
DIR � � �� id jDIR Directory
INQ � � �� MSG� INQ Incoming Queue
OUTQ � � �� MSG�OUTQ Outgoing Queue
MSG � Msg�idsrc� iddest� CMD� a� v Protocol Message
CMD � REPLY �� REQUEST Message Command
REPLY � Sh�rep �� Ex�rep �� Wb�rep �� Inv�rep Reply Command
REQUEST � Sh�req �� Ex�req �� Wb�req �� Inv�req Request Command
TRECS � � �� Trec�a� INITIATOR j TRECS Transient Records
INITIATOR � �id�REQUEST �� �ia�Load �� �ia�Store Initiator

Figure ��� The HCN�base Model 	Initially� all non�outermost memories� all message queues�
and all transient records are empty� the outermost memory contains a cell for each address
and the state of each cell is 	Ex�R	�

instruction can write a new value to the L� cache if the accessed address is cached with the
exclusive ownership�

Read�Cache�Hit Rule
p

Sys�hid� Cell�a�v��cs�R����� jm� in� out� trecsi� Proc�ia� rf� prog��
if prog�ia� � r 	� Load�r�� and a � rf�r��

�� Sys�hid� Cell�a�v��cs�R����� jm� in� out� trecsi� Proc�ia��� rf�r 	� v�� prog��

Write�Cache�Hit Rule
p

Sys�hid� Cell�a�u��Ex�R����� jm� in� out� trecsi� Proc�ia� rf� prog��
if prog�ia� � Store�r�� r�� and a � rf�r��

�� Sys�hid� Cell�a�v��Ex�R����� jm� in� out� trecsi� Proc�ia��� rf� prog�� where v � rf�r��

Cache�Miss Rules� If a processor intends to execute a Load instruction while the accessed
address is not cached in the L� cache� the instruction is suspended and a Sh�req message is
sent to the parent to request a shared copy� Similarly� if a processor intends to execute a Store
instruction while no exclusive copy is cached in the L� cache for the accessed address� the
instruction is suspended and an Ex�req message is sent to the parent to request an exclusive
copy�

Read�Cache�Miss Rule
p

Sys�hid� m� in� out� trecsi� Proc�ia� rf� prog��
if prog�ia� � r 	� Load�r�� and rf�r�� �� m and rf�r�� �� trecs

�� Sys�hid� m� in� out�Msg�id� idp�Sh�req� a���� Trec�a� �ia�Load�� j trecsi� Proc�ia� rf� prog��
where idp � parent�id� and a � rf�r��

��

id

read

Cell(a,v,(Ex,R()))

permission

read cache hit !
ε

P

ε

permissionLoad Store

write cache hit !

id

P

id

P

Store

id

Ex-req
no Cell(a,-,(Ex,-))
write cache miss !

idp

write

Cell(a,v,(cs,R()))

p

Load

Sh-req

id
no Cell(a,-,-)
read cache miss !

P

Figure ��� Cache�hit and Cache�miss

Write�Cache�Miss Rule
p

Sys�hid� m� in� out� trecsi� Proc�ia� rf� prog��
if prog�ia� � Store�r�� r�� and Cell�rf�r������Ex���� �� m and rf�r�� �� trecs

�� Sys�hid� m� in� out�Msg�id� idp�Ex�req� a���� Trec�a� �ia�Store�� j trecsi� Proc�ia� rf� prog��
where idp � parent�id� and a � rf�r��

Discussion� When an instruction is suspended� a transient record is created for the sus�
pended instruction� This e�ectively prevents the same request to be issued more than once�
noting that the same rule cannot be applied again after the address enters a transient state�

���� Child�to�Parent Request Rules

Sh�Request Rules� When memory id receives a Sh�req message from child idk� it processes
the request as follows� provided the address is not in a transient state�

� 	Hit
 If memory id has the data and the cell�s Hstate is R	dir
� it sends a Sh�rep message
to child idk and records identi�er idk in its directory�

� 	Hit but stale data
 If memory id has the data and the cell�s state is 	Ex�W	idj

� it
suspends the request and sends a Wb�req message to child idj�

� 	Miss
 If memory id does not have the data� it suspends the request and sends a Sh�req
message to its parent�

Receive�Sh�Req�And�Send�Sh�Rep Rule
p

hid� Cell�a�v��cs�R�dir��� jm� Msg�idk� id�Sh�req� a��� � in� out� trecsi
if idk �� dir and a �� trecs

�� hid� Cell�a�v��cs�R�idkjdir��� jm� in� out�Msg�id� idk�Sh�rep� a� v�� trecsi
Receive�Sh�Req�And�Send�Wb�Req Rule

p
hid� Cell�a�v��Ex�W�idj��� jm� Msg�idk� id�Sh�req� a��� � in� out� trecsi

if idk 	� idj and a �� trecs

�� hid� Cell�a�v��Ex�W�idj��� jm� in� out�Msg�id� idj�Wb�req� a���� Trec�a� �idk�Sh�req�� j trecsi

�

id
Cell(a,v,(cs,R(dir)))

id

Sh-rep

idj

j

Sh-req

k

Cell(a,v,(Ex,W(id)))

id

Wb-reqSh-req

idk

idp

kid

Sh-req

id

Sh-req

no Cell(a,-,-)

Figure ��� Memory id receives a Sh�req message from child idk

Receive�Sh�Req�And�Send�Sh�Req Rule

hid� m� Msg�idk� id�Sh�req� a���� in� out� trecsi if a �� m and a �� trecs

�� hid� m� in� out�Msg�id� idp�Sh�req� a���� Trec�a� �idk�Sh�req�� j trecsi
where idp � parent�id�

Ex�Request Rules� When memory id receives an Ex�reqmessage from child idk� it processes
the request as follows� provided the address is not in a transient state�

� 	Hit
 If memory id has the data in the 	Ex�R	�

 state� it sends an Ex�rep message to
child idk and changes the cell�s Hstate to W	idk
�

� 	Hit but outstanding reads
 If memory id has the data and the cell�s state is 	Ex�R	dir

where dir �� �� it suspends the request and multicasts an Inv�req message to the child
memories speci�ed by directory dir�

� 	Hit but stale data
 If memory id has the data and the cell�s state is 	Ex�W	idj

� it
suspends the request and sends a Wb�req message to child idj�

Notice that an Inv�req message must be sent to memory idj sooner or later in order
to obtain the exclusive ownership� To keep the protocol simple� this message is not
issued until the Wb�rep message requested by the Wb�req message is received 	see the
Receive�Wb�Rep�And�Send�Inv�Req rule
�

� 	Miss
 If memory id does not have an exclusive copy for the accessed address� it sus�
pends the request and sends an Ex�req message to its parent�

Receive�Ex�Req�And�Send�Ex�Rep Rule
p

hid� Cell�a�v��Ex�R����� jm� Msg�idk� id�Ex�req� a��� � in� out� trecsi if a �� trecs

�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk�Ex�rep� a� v�� trecsi
Receive�Ex�Req�And�Multicast�Inv�Req Rule

p
hid� Cell�a�v��Ex�R�dir��� jm� Msg�idk� id�Ex�req� a��� � in� out� trecsi

if dir 	� � and a �� trecs

�� hid� Cell�a�v��Ex�R�dir��� jm� in� out�multicast�id� dir� Inv�req� a���� Trec�a� �idk�Ex�req�� j trecsi

��

idj

j

idkid

Cell(a,v,(Ex,W(id)))

jidk kid

id

ε

p

Cell(a,v,(Ex,R()))

kid

. . .Ex-req Ex-rep

id id

Ex-req Inv-req

Cell(a,v,(Ex,R(dir)))

id

Wb-reqEx-req Ex-req

id

Ex-req

no Cell(a,-,(Ex,-))

Figure ��� Memory id receives an Ex�req message from child idk

Receive�Ex�Req�And�Send�Wb�Req Rule
p

hid� Cell�a�v��Ex�W�idj��� jm� Msg�idk� id�Ex�req� a��� � in� out� trecsi
if idk 	� idj and a �� trecs

�� hid� Cell�a�v��Ex�W�idj��� jm� in� out�Msg�id� idj�Wb�req� a���� Trec�a� �idk�Ex�req�� j trecsi
Receive�Ex�Req�And�Send�Ex�Req Rule

hid� m� Msg�idk� id�Ex�req� a��� � in� out� trecsi
if Cell�a����Ex���� �� m and a �� trecs

�� hid� m� in� out�Msg�id� idp�Ex�req� a���� Trec�a� �idk�Ex�req�� j trecsi
where idp � parent�id�

Discussion� It is worth pointing out that certain predicates in the caching request rules are
always true� These predicates are not omitted purely for clarity reason� 	�
 when memory
id receives a Sh�req message from child idk� the cell�s Hstate cannot be R	dir
 	idk � dir
 or
W	idk
� since the child cannot have a shared or exclusive copy at the time� 	�
 when memory
id receives an Ex�req message from child idk� the cell�s Hstate cannot be W	idk
� since the
child has no exclusive copy at the time� These invariants can be easily veri�ed once we notice
that in HCN�base� a memory cannot send data to a child without �rst receiving a request
from the child� and a child cannot send the same caching request more than once�

An incoming Sh�req or Ex�req message cannot be processed if the address is already in a
transient state� For example� if memory id receives several Sh�req and Ex�req messages 	from
di�erent child memories
 regarding the same address� it selects one to process� Suppose the
accessed data is not cached� the selected request needs to be suspended before it can be
processed to completion� Other request messages cannot be processed before the suspended
message is resumed� This greatly simpli�es the protocol design while the performance is not
compromised�

���� Parent�to�Child Request Rules

Wb�Request Rules� When memory id receives a Wb�req message from parent idp� it
processes the message as follows� provided the address is not in a transient state�

� 	Hit
 If memory id has the data in the 	Ex�R	dir

 state� it sends a Wb�rep message to
parent idp and changes the cell�s Cstate to Sh�

��

ε

p

Cell(a,v,(Sh,R()))

idpid

k idid k

idp

Cell(a,v,(Ex,W(id)))

id

k

p

j

id

Wb-repWb-req

id

Cell(a,v,(Ex,R(dir)))

id

Wb-req

Wb-req

id

Inv-req Inv-rep

id

Inv-req

Cell(a,v,(Sh,R(dir)))

Inv-req. . .

Figure ��� Memory id receives a Wb�req�Inv�req message from parent idp

� 	Hit but stale data
 If memory id has the data and the cell�s state is 	Ex�W	idk

� it
suspends the request and sends a Wb�req message to child idk�

Receive�Wb�Req�And�Send�Wb�Rep Rule
p

hid� Cell�a�v��Ex�R�dir��� jm� Msg�idp� id�Wb�req� a��� � in� out� trecsi if a �� trecs

�� hid� Cell�a�v��Sh�R�dir��� jm� in� out�Msg�id� idp�Wb�rep� a� v�� trecsi
Receive�Wb�Req�And�Send�Wb�Req Rule

hid� Cell�a�v��Ex�W�idk��� jm� Msg�idp� id�Wb�req� a��� � in� out� trecsi if a �� trecs

�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk�Wb�req� a���� Trec�a� �idp�Wb�req�� j trecsi

Discussion� In HCN�base� a memory cannot write an exclusive cell�s data back to its parent
without �rst receiving a request from the parent� and the parent cannot send the same Wb�
req request more than once� This indicates that when memory id receives a Wb�req message
from its parent� the memory must have an exclusive cell for the accessed address�

An incoming Wb�req message cannot be processed if the address is already in a transient
state� Notice that the resumption of the suspended message 	which caused the address to
enter the transient state
 cannot depend on the processing of the blocked Wb�req message�
This is simply because a memory never needs to send any request message to its parent re�
garding an address that it has the exclusive ownership 	it may need to send request messages
to its child memories
� In other words� it is safe to block the Wb�req message and such delay
cannot cause deadlocks�

Inv�Request Rules� When memory id receives an Inv�req message from parent idp� it
processes the message as follows� regardless of whether the address is in a transient state �

� 	Hit
 If memory id has the data in the 	Sh�R	�

 state� it purges the cell from the
memory and sends an Inv�rep message to parent idp�

� 	Hit but outstanding reads
 If memory id has the data and the cell�s state is 	Sh�R	dir

where dir �� �� it suspends the request and multicasts an Inv�req message to the child
memories speci�ed by directory dir�

��

Receive�Inv�Req�And�Send�Inv�Rep Rule
p

hid� Cell�a�v��Sh�R����� jm� Msg�idp� id� Inv�req� a��� � in� out� trecsi if a �� trecs�������������
�� hid� m� in� out�Msg�id� idp� Inv�rep� a���� trecsi
Receive�Inv�Req�And�Multicast�Inv�Req Rule

hid� Cell�a�v��Sh�R�dir��� jm� Msg�idp� id� Inv�req� a��� � in� out� trecsi
if dir 	� � and a �� trecs���������������

�� hid� Cell�a�v��Sh�R�dir��� jm� in� out�multicast�id� dir� Inv�req� a���� Trec�a� �idp�Inv�req�� j trecsi

Discussion� In HCN�base� a memory cannot invalidate a shared cell without �rst receiving
a request from the parent� and the parent cannot send the same Inv�req more than once�
Therefore� when memory id receives an Inv�req message from its parent� the memory must
have a shared cell for the accessed address�

Notice that an Inv�req message can be processed regardless of whether the accessed ad�
dress is in a transient state or not� This is crucial to ensure the protocol liveness� Consider
the scenario that a memory receives two Ex�req messages from two child memories� Either
of the two request messages can be selected for processing� Suppose the memory has the
exclusive ownership of the address but the data is shared by the two child memories� In
order to process the selected Ex�req message� an Inv�req message is sent to both the child
memories 	see the Receive�Ex�Req�And�Multicast�Inv�Req rule
� Deadlock can happen if
the Inv�req message is blocked in either child memory� since the Ex�req message can be pro�
cessed to completion before the shared copies are invalidated� Detecting such dependences
is extremely important to eliminate all potential deadlock�

Generally speaking� there can be at most one transient record for each address at any
time� However� when an Inv�req message is processed while the address is already in a
transient state� another transient record can be created since the Inv�req message may also
need to be suspended before it can be processed to completion� In HCN�base� this is the only
case that two transient records exist for the same address�

���� Parent�to�Child Reply Rules

A caching reply message can always be processed immediately� When a caching reply is
received� the corresponding transient record must contain a suspended memory access in�
struction or caching request message 	from some child
�

Sh�Reply Rules� When memory id receives a Sh�rep message from its parent� it processes
the message as follows�

� If memory id is an L� cache� it caches the data in the 	Sh�R	�

 state� The suspended
Load instruction is resumed and executed�

� If memory id is a non�innermost memory� it caches the data in the 	Sh�R	idk

 state�
where idk is the source of the suspended Sh�req message� The suspended Sh�req is
resumed and a Sh�rep message is sent to memory idk�

��

id

Trec(a,(id ,Ex-req))

id

k

k

pidpid

Trec(a,(id ,Sh-req))

p

k

kid

pid

read
permission Trec(a,(ia,Load))

id

P

Sh-rep

Sh-rep

Sh-rep

id

permission
write

P

id

Ex-rep

Ex-rep
Trec(a,(ia,Store))

id

Ex-rep

Figure ��� Memory id receives a Sh�rep�Ex�rep message from parent idp

Receive�Sh�Rep�And�Execute�Load Rule
p

Sys�hid� m� Msg�idp� id�Sh�rep� a� v� � in� out� Trec�a� �ia�Load�� j trecsi� Proc�ia� rf� prog��
if prog�ia� � r 	� Load�r�� and a � rf�r��

�� Sys�hid� Cell�a�v��Sh�R����� jm� in� out� trecsi� Proc�ia��� rf�r 	� v�� prog��

Receive�Sh�Rep�And�Send�Sh�Rep Rule

hid� m� Msg�idp� id�Sh�rep� a� v�� in� out� Trec�a� �idk�Sh�req�� j trecsi
�� hid� Cell�a�v��Sh�R�idk��� jm� in� out�Msg�id� idk�Sh�rep� a� v�� trecsi

Ex�Reply Rules� When memory id receives an Ex�rep message from its parent� it processes
the message as follows�

� If memory id is an L� cache� it caches the data in the 	Ex�R	�

 state� The suspended
Store instruction is resumed and executed�

� If memory id is a non�innermost memory� it caches the data in the 	Ex�W	idk

 state�
where idk is the source of the suspended Ex�req message� The suspended Ex�req is
resumed and an Ex�rep message is sent to memory idk�

Receive�Ex�Rep�And�Execute�Store Rule
p

Sys�hid� m� Msg�idp� id�Ex�rep� a� u� � in� out� Trec�a� �ia�Store�� j trecsi� Proc�ia� rf� prog��
if prog�ia� � Store�r�� r�� and a � rf�r��

�� Sys�hid� Cell�a�v��Ex�R����� jm� in� out� trecsi� Proc�ia��� rf� prog�� where v � rf�r��

Receive�Ex�Rep�And�Send�Ex�Rep Rule

hid� m� Msg�idp� id�Ex�rep� a� v� � in� out� Trec�a� �idk�Ex�req�� j trecsi
�� hid� Cell�a�v��Ex�W�idk��� jm� in� out�Msg�id� idk�Ex�rep� a� v�� trecsi

Discussion� For other memory units� it is an atomic operation to process an incoming reply
message and resume the suspended instruction or request message� The atomicity is needed
to ensure the protocol liveness� We can break this atomicity by simply splitting each caching
reply rule to two separate rules� one to receive the incoming reply message and cache the
data� the other to resume the suspended instruction or request� However� it is then possible
that before the suspended instruction or request is resumed� the cached data is invalidated

��

kid

jTrec(a,(id ,Sh-req))j Trec(a,(id ,Ex-req))

j

Inv-req

idk

p

pTrec(a,(id ,Wb-req))

id

id

k

Wb-rep

id

id

Wb-rep Sh-rep

id id

Wb-rep

Wb-rep

Figure ��� Memory id receives a Wb�rep message from child idk

or written back to its parent 	because a de�caching request from the parent is received
� This
can result in livelock situations that no cache miss can be serviced in �nite time�

From the point of view of implementations� it may not be practical to enforce this atom�
icity� For modern microprocessors� we have little control when an L� cell will be accessed by
a stalled memory access instruction� or when an L� cell will be cached to an L� cache that
has been waiting for the data� Fortunately� the latency is relatively small and usually can
be neglected� For example� a stalled Load instruction is often repeatedly retried and will be
executed immediately once the data is available in the L� cache�

���� Child�to�Parent Reply Rules

As caching reply messages� a de�caching reply message can also be processed immediately�
When a de�caching reply is received� the corresponding transient record must contain a
suspended caching request 	from some child
 or de�caching request 	from the parent
�

Wb�Reply Rules� When memory id receives a Wb�rep message from child idk� it processes
the message as follows�

� If a Sh�req message is suspended� memory id updates the cell�s value and sets the
cell�s state to 	Ex�R	idkjidj

� where idj is the source of the suspended message� The
suspended Sh�req message is resumed and a Sh�rep message is sent to memory idj�

� If an Ex�req message is suspended� memory id updates the cell�s value� sets the cell�s
state to 	Ex�R	idk

� and sends an Inv�req message to memory idj� which is the source
of the suspended Ex�req message�

Notice that the suspended message cannot be resumed since the shared copy in memory
idk must be �rst invalidated� It will be resumed when the corresponding Inv�repmessage
is received 	see the Receive�Inv�Rep�And�Send�Ex�Rep rule
�

� If a Wb�req message is suspended� memory id updates the cell�s value and sets the cell�s
state to 	Sh�R	idk

� The suspended Wb�req message is resumed and a Wb�rep message
is sent to the parent�

��

k
Trec(a,(id ,Ex-req))j

k j

Cell(a,v,(Ex,R(id))

id

id
Cell(a,v,(cs,R(id | dir)))k

Inv-rep

k

kCell(a,v,(Sh,R(id))
pTrec(a,(id ,Inv-req))

idp

id

Ex-rep

kid id

Inv-rep

id

Inv-rep

Inv-rep

id

Figure �� Memory id receives an Inv�rep message from child idk

Receive�Wb�Rep�And�Send�Sh�Rep Rule
p

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Wb�rep� a� v� � in� out� Trec�a� �idj�Sh�req�� j trecsi
�� hid� Cell�a�v��Ex�R�idkjidj��� jm� in� out�Msg�id� idj�Sh�rep� a� v�� trecsi
Receive�Wb�Rep�And�Send�Inv�Req Rule

p
hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Wb�rep� a� v� � in� out� Trec�a� �idj�Ex�req�� j trecsi

�� hid� Cell�a�v��Ex�R�idk��� jm� in� out�Msg�id� idk� Inv�req� a� v�� Trec�a� �idj�Ex�req�� j trecsi
Receive�Wb�Rep�And�Send�Wb�Rep Rule

hid� Cell�a�u��Ex�W�idk��� jm� Msg�idk� id�Wb�rep� a� v� � in� out� Trec�a� �idp�Wb�req�� j trecsi
�� hid� Cell�a�v��Sh�R�idk��� jm� in� out�Msg�id� idp�Wb�rep� a� v�� trecsi

Inv�Reply Rules� When memory id receives an Inv�rep message from child idk� it processes
the message as follows�

� If the directory shows that more Inv�rep messages 	from other child memories
 are
impending� memory id simply removes identi�er idk from the directory� The suspended
message is not resumed�

� If all invalidation requests 	regarding the address
 have been acknowledged� and an
Ex�req message is suspended� memory id sets the cell�s state to 	Ex�W	idj

� where idj
is the source of the suspended message� The suspended Ex�req message is resumed and
an Ex�rep message is sent to memory idj�

� If all invalidation requests 	regarding the address
 have been acknowledged� all an Inv�
req message is suspended� memory id purges the cell from the memory� The suspended
Inv�req message is resumed and an Inv�rep message is sent to the parent�

Receive�Inv�Rep�Pending Rule
p

hid� Cell�a�v��cs�R�idkjdir��� jm� Msg�idk� id� Inv�rep� a��� � in� out� trecsi if dir 	� �
�� hid� Cell�a�v��cs�R�dir��� jm� in� out� trecsi
Receive�Inv�Rep�And�Send�Ex�Rep Rule

p
hid� Cell�a�v��Ex�R�idk��� jm� Msg�idk� id� Inv�rep� a��� � in� out� Trec�a� �idj�Ex�req�� j trecsi

�� hid� Cell�a�v��Ex�W�idj��� jm� in� out�Msg�id� idj�Ex�rep� a� v�� trecsi

��

Receive�Inv�Rep�And�Send�Inv�Rep Rule

hid� Cell�a�v��Sh�R�idk��� jm� Msg�idk� id� Inv�rep� a��� � in� out� Trec�a� �idp�Inv�req�� j trecsi
�� hid� m� in� out�Msg�id� idp� Inv�rep� a���� trecsi

���� Message Passing Rules

Message passing rules remain unchanged� Message passing can happen only between the
memories that have the parent�child relationship� Since the constructor of outgoing queues
is associative and commutative� any message in an outgoing queue can be brought to the
front of the queue� Therefore� messages can be delivered in any order� Even for messages
regarding the same address and between the same source and destination� their arrival order
can be arbitrary�

Message�Passing�To�Child Rule
p

Sys�hid� m� in� Msg�id� idk� cmd� a� v� � out� trecsi� Sys�hidk� mk� ink� outk� trecski� euk� j sg�
�� Sys�hid� m� in� out� trecsi� Sys�hidk� mk� ink �Msg�id� idk� cmd� a� v�� outk� trecski� euk� j sg�
Message�Passing�To�Parent Rule

p
Sys�hid� m� in� out� trecsi� Sys�hidk� mk� ink� Msg�idk� id� cmd� a� v� � outk� trecski� euk� j sg�

�� Sys�hid� m� in�Msg�idk� id� cmd� a� v�� out� trecsi� Sys�hidk� mk� ink� outk� trecski� euk� j sg�

�� Veri�cation of the HCN�base Protocol

The HCN�base protocol implements Sequential Consistency and guarantees that each indi�
vidual processor can always make progress� When a program is executed on a DSM system
that maintains cache coherence by employing the HCN�base protocol� the program behaves
exactly the same as if it were running on a sequentially consistent machine� Moreover� no
processor in the DSM system can be stalled inde�nitely due to cache misses�

���� Soundness of HCN�base

The soundness is obvious because all coherence actions in HCN�base are performed according
to the HCN rules� It can be shown that all HCN�base rules can be derived from the HCNr
rules� which include the HCN rules and the directive rules� The table below gives the sequence
of HCNr rules that are applied while deriving each HCN�base rule 	if a rule can be applied
more than once in the derivation� it is marked with ���
� Notice the transient records are
disregarded in the derivation because they behave as extra predicates for the imperative and
directive actions�

��

The HCN�base Rule The Sequence of HCN Rules

Read�Cache�Hit HCN�Load

Write�Cache�Hit HCN�Store

Read�Cache�Miss Generate�Req�To�Parent �Sh�req
Write�Cache�Miss Generate�Req�To�Parent �Ex�req
Receive�Sh�Req�And�Send�Sh�Rep Send�Sh�Rep � Discard�Incoming�Req

Receive�Sh�Req�And�Send�Wb�Req Generate�Req�To�Child �Wb�req � Discard�Incoming�Req

Receive�Sh�Req�And�Send�Sh�Req Generate�Req�To�Parent �Sh�req � Discard�Incoming�Req

Receive�Ex�Req�And�Send�Ex�Rep Send�Ex�Rep � Discard�Incoming�Req

Receive�Ex�Req�And�Multicast�Inv�Req Generate�Req�To�Child� �Inv�req � Discard�Incoming�Req

Receive�Ex�Req�And�Send�Wb�Req Generate�Req�To�Child �Wb�req � Discard�Incoming�Req

Receive�Ex�Req�And�Send�Ex�Req Generate�Req�To�Parent �Ex�req � Discard�Incoming�Req

Receive�Wb�Req�And�Send�Wb�Rep Send�Wb�Rep � Discard�Incoming�Req

Receive�Wb�Req�And�Send�Wb�Req Generate�Req�To�Child �Wb�req � Discard�Incoming�Req

Receive�Inv�Req�And�Send�Inv�Rep Send�Inv�Rep � Discard�Incoming�Req

Receive�Inv�Req�And�Multicast�Inv�Req Generate�Req�To�Child� �Inv�req � Discard�Incoming�Req

Receive�Sh�Rep�And�Execute�Load Receive�Sh�Rep � HCN�Load

Receive�Sh�Rep�And�Send�Sh�Rep Receive�Sh�Rep � Send�Sh�Rep

Receive�Ex�Rep�And�Execute�Store Receive�Ex�Rep � HCN�Store

Receive�Ex�Rep�And�Send�Ex�Rep Receive�Ex�Rep � Send�Ex�Rep

Receive�Wb�Rep�And�Send�Sh�Rep Receive�Wb�Rep � Send�Sh�Rep

Receive�Wb�Rep�And�Send�Inv�Req Receive�Wb�Rep � Generate�Req�To�Child �Inv�req
Receive�Wb�Rep�And�Send�Wb�Rep Receive�Wb�Rep � Send�Wb�Rep

Receive�Inv�Rep�Pending Receive�Inv�Rep

Receive�Inv�Rep�And�Send�Ex�Rep Receive�Inv�Rep � Send�Ex�Rep

Receive�Inv�Rep�And�Send�Inv�Rep Receive�Inv�Rep � Send�Inv�Rep

Message�Passing�To�Child Message�Passing�To�Child

Message�Passing�To�Parent Message�Passing�To�Parent

Lemma �� All HCN�base rules can be derived from the HCNr rules�

The HCN�base protocol is not a complete implementation of HCN� because coherence
actions that can happen in HCN are not all allowed to happen in HCN�base� While HCN
allows memory cells to be cached or de�cached at any time provided that memory coherence
is not violated� such operations can happen in HCNr only when they are necessary to service
cache misses� For example� in HCN� a memory can send a shared copy to a child if it has the
valid data� However� in HCN�base� this cannot happen unless the child has issued a request�
The child cannot issue such request unless it has received a request from one of its children�
or it is an L� cache and a cache miss happens in the L� cache�

Since all HCN�base rules can be derived from HCNr rules� HCN�base is a partial imple�
mentation of HCN� The soundness alone is su�cient to ensure that the protocol behavior
conforms to Sequential Consistency� It is worth noting that although HCN�base is just a
partial implementation of HCN and HC� it is a complete implementation of SC�

���� Liveness of HCN�base

Theorem �	 HCN�base enforces strong liveness� i�e�� a cache miss on any processor can be
serviced in �nite time�

This part will be added soon� The bu�er management section will also be rewritten�

��

from network

Inv-rep/Inv-req
Sh-rep/Ex-rep/Wb-rep/

Sh-req/Ex-req/Wb-req

(b)(a)

from network

Sh-req/Ex-req/Wb-req

Figure ��� Two Simple Bu�er Management Strategies

�� Buer Management

A rigorous proof that HCN�base is deadlock free is based on the case analysis of the relative
positions of requesters and the location of the data in the memory hierarchy� and is quite
tedious� Next we discuss two interrelated issues� incoming queue management and liveness�

Both reply and request messages may be present in an incoming queue� To avoid dead�
locks� it is essential that reply messages not be blocked by the request messages� and an
enabled request message not be blocked by other blocked requests� We did not have to pay
attention to this problem so far because we assumed that the messages in the queue could
commute with each other� Now we develop a concrete bu�er management strategy that is
fair� deadlock free and implementable�

Figure ��	a
 gives a simple bu�er management strategy involving a single FIFO queue�
In HCN�base� a reply message or an Inv�req message can be processed immediately upon
its arrival� The other request messages 	i�e� Sh�req� Ex�req or Wb�req
� if they cannot be
processed when at the head of the queue� are simply put at the end of the incoming queue�
This ensures that the memory cannot go idle as long as there is an enabled request in the
queue� This implies that if there are cache misses in the system� then within a �nite amount
of time� one of the cache misses will be serviced� However� this simple bu�er management
strategy does not ensure the liveness for each processor� In theory� it is possible that a certain
unlucky Sh�req� Ex�req or Wb�req message never gets an opportunity to be processed because
the requests from other processors always beat it� The probability of this type of starvation
may be very small in practice� A deadlock can also result if the queue cannot accommodate
all the outstanding requests� The worst case for the queue length is determined by the
number of processors and is usually not a serious issue�

Figure �� 	b
 ensures the liveness for each process by employing two bu�er queues for
incoming messages� one for reply messages and Inv�req messages� and the other for Sh�req�
Ex�req and Wb�req messages� This organization puts all the blockable requests in a separate
queue and processes them in the FIFO order� This organization guarantees fairness for all
requests�

An obvious drawback of the bu�er management described above is that a blocked request
message may unnecessarily prevent the processing of di�erent addresses� Figure �� shows the
organization used in the protocol we designed for the Start�Voyager machine� blocked request
messages for di�erent addresses are maintained in di�erent queues so that they cannot block
each other� This strategy can result in better performance� This completes the description

�

1a

na

2a from network

Wb-req
Sh-req/Ex-req/

Wb-req
Sh-req/Ex-req/

Wb-req
Sh-req/Ex-req/

Inv-rep/Inv-req
Sh-rep/Ex-rep/Wb-rep/

Figure ��� HCN�base Bu�er Management Strategy

of a realistic protocol for DSM�s with a hierarchy of caches�

�� Summary and Research�in�Progress

This paper has made the following contributions�

A new two�phase Imperative�Directive methodology for designing cache coherence protocols�

This methodology separates the correctness and the liveness concerns in the design process�
In the imperative design phase� we ignore the liveness issues and design a preliminary protocol
by giving a set of rules that can only cause state transitions that are consistent with the
memory model� In the directive design phase� we specify the precise conditions for invoking
the imperative rules by incorporating directive messages and transient records� The key
point is that improper additional conditions for invoking imperative actions cannot a�ect
the correctness of the system although they may cause deadlocks or livelocks� Protocols
designed with this methodology are often easier to understand� modify and reason about�
For example� the �nal protocol presented here in � rules is far more tractable than its ����
line implementation in C for StarT�Voyager ����

Successive re�nement of protocols to incorporate implementation issues� The HC model ig�
nored the DSM issues but made it easy to derive the rules for the HCN model� which had a
network and distributed control� Similarly� in the directive design phase� we separated the
message bu�er management issue by �rst assuming that messages in the input queue could
commute and thus avoid blocking enabled messages� The separation of bu�er management
results in protocols with better modularity�

Protocol veri�cation against a memory model� We specify both the memory model and
the protocol using the same formalism� TRS�s are well suited to describe asynchronous
computations� and allow us to formulate the correctness question precisely� The designer
has to prove three conditions 	soundness� completeness and connection
 with respect to
the memory model to show that a protocol implements the memory model correctly� Our

��

successive re�nement approach to protocol design makes these proofs much easier to develop
and understand� In fact for us the design and veri�cation process is totally intermingled�

Our approach to veri�cation is di�erent from others ��� ��� because they concentrate
on proving certain invariants� Generally� it is di�cult to determine if one has a su�cient
set of invariants to ensure that the behaviors are consistent with the memory model� In the
course of our proofs one ends up proving many similar invariants but their need is derived in
a systematic way� It is important to point out that� for sophisticated protocols� the tedious
part of the correctness proof 	e�g�� case analysis
 can be automated using a model checker
tool�

A complete protocol to implement Sequential Consistency on a DSM with a hierarchical

caches� The protocol we have presented to illustrate our methodology is a simpler version
of one of the protocols implemented on StarT�Voyager� The �nal version of the protocol
is free from deadlock� and ensures that every processor makes progress� Some potential
optimizations have been excluded from the protocol for the sake of clarity� An optimized
version of the HCN�base protocol along with all the proofs can be found in �����

Related Research�in�Progress� Needless to say� the Imperative�Directive methodology
can be applied to designing other more sophisticated cache protocols� Cachet ���� is a tool�
box containing cache�coherence primitives that can be used to build protocols on�the��y�
Cachet implements a relaxed memory model and employs two critical techniques� instant�
writes 	to reduce write latency
 and lazy��ushes 	to decrease the e�ect of false sharing
�
Cachet de�nes a set of coherence primitives for each state for both the cache and the home
memory engines� Memory consistency and protocol liveness are guaranteed regardless of
how the primitives are chosen to execute� although a smart selection can result in better
performance�

We have applied the TRS framework to modeling and veri�cation of out�of�order and
speculative microprocessors ����� We are also exploring hardware synthesis from the type
of TRS�s presented in this paper� The preliminary results based on hand compilation of
TRS rules into synthesizable Verilog look promising� Our goal is to produce an architecture
description language and a compiler that will dramatically reduce the design e�ort required
to implement complex systems�

Acknowledgment� We are thankful to Larry Rudolph� Boon Ang� Alex Caro�
Derek Chiou and Keith Randall for reading the draft of this paper� Funding for this work is
provided in part by the Advanced Research Projects Agency of the Department of Defense
under the Ft� Huachuca contract DABT������C������

References

��� A� Agarwal� R� Bianchini� D� Chaiken� K� Johnson� D� Kranz� J� Kubiatowicz� B��H� Lim� K� Mackenzie�
and D� Yeung� The MIT Alewife Machine� Architecture and Performance� In Proceedings of the ��th
International Symposium On Computer Architecture� ���
�

��� C� Amza� A� L� Cox� S� Dwarkadas� P� Keleher� H� Lu� R� Rajamony� W� Yu� and W� Zwaenepoel�
TreadMarks� Shared Memory Computing on Networks of Workstations� IEEE Computer� �����������
Feb� ���	�

��

��� B� S� Ang and D� Chiou� Start�Voyager� Hardware Engineering Speci�cation� CSG Memo ��
� Labo�
ratory for Computer Science� MIT� June �����

��� J� K� Archibald� The Cache Coherence Problem in Shared�Memory Multiprocessors� Phd thesis�
Department of Computer Science� University of Washington� Feb� �����

�
� R� D� Blumofe� M� Frigo� C� F� Joerg� C� E� Leiserson� and K� H� Randall� An Analysis of Dag�Consistent
Distributed Shared�Memory Algorithms� In Proceedings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architectures �SPAA�� pages �������� Padua� Italy� June ���	�

�	� M� Browne� E� Clarke� D� Dill� and B� Mishra� Automatic Veri�cation of Sequential Circuits Using
Temporal Logic� IEEE Transaction on Computers� pages ���
������ Dec� ���	�

��� E� Clarke� E� Emerson� and A� Sistla� Automatic Veri�cation of Finite�State Concurrent Systems
using Temporal Logic Speci�cations� ACM Transactions on Programming Languages and Systems�
���������	�� Apr� ���	�

��� M� Dubois� C� Scheurich� and F� Briggs� Memory Access Bu�ering in Multiprocessors� In Proceedings
of the ��rd International Symposium On Computer Architecture� pages �������� June ���	�

��� G��R� Gao and V� Sarkar� Location Consistency � Stepping Beyond the Barriers of Memory Coherence
and Serializability� Technical Memo ��� ACAPS Laboratory� School of Computer Science� McGill
Univerisity� Dec� �����

���� K� Gharachorloo� Memory Consistency Models for Shared�Memory Multiprocessors� Phd� thesis�
Stanford University� ���
�

���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory Consis�
tency and Event Ordering in Scalable Shared�memory Multiprocessors� In Proceedings of the ��th
International Symposium on Computer Architecture� pages �
��	� May �����

���� J� R� Goodman and P� J� Woest� The Wisconsin Multicube� A New Large�Scale Cache�Coherent
Multiprocessor� In Proceedings of the ��th International Symposium On Computer Architecture� pages
�������� May �����

���� C� Ip and D� Dill� Better Veri�cation Through Symmetry� In Proceedings of the ��th International
Symposium on Computer Hardware Description Languages and Their Applications� pages ������� Apr�
�����

���� C� Ip and D� Dill� E�cient Veri�cation of Symmetric Concurrent Systems� In International Conference
on Computer Design	 VLSI in Computers and Processors� Oct� �����

��
� P� Keleher� A� Cox� and W� Zwaenepoel� Lazy Release Consistency for Software Distributed Shared
Memory� In Proceedings of the �
th International Symposium On Computer Architecture� pages ������
May �����

��	� J� Kuskin� D� Ofelt� M� Heinrich� J� Heinlein� R� Simoni� K� Gharachorloo� J� Chapin� D� Nakahira�
J� Baxter� M� Horowitz� A� Gupta� M� Rosenblum� and J� Hennessy� The Stanford FLASH Multipro�
cessor� In Proceedings of the ��st International Symposium on Computer Architecture� pages ��������
Apr� �����

���� L� Lamport� How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs�
IEEE Transactions on Computers� C������	���	��� Sept� �����

���� D� Lenoski� J� Laudon� T� Joe� D� Nakahira� L� Stevens� A� Gupta� and J� Hennessy� The DASH
Prototype� Implementation and Performance� In Proceedings of the �
th International Symposium on
Computer Architecture� pages ������� May �����

���� C� May� E� Silha� R� Simpson� and H� Warren� editors� The PowerPC Architecture	 A Speci�cation for
A New Family of RISC Processors� Morgan Kaufmann� �����

���� K� McMillan� Symbolic Model Checking� An Approach to the State Explosion Problem� Ph�d disser�
tation� Carnegie Mellon University� May �����

���� F� Pong and M� Dubois� A New Approach for the Veri�cation of Cache Coherence Protocols� IEEE
Transactions on Parallel and Distributed Systems� 	� Aug� ���
�

���� F� Pong� A� Nowatzyk� G� Aybay� and M� Dubois� Verifying Distributed Directory�based Cache Co�
herence Protocols� S��mp� a Case Study� In EuroPar�
�� ���
�

���� X� Shen� Cachet� A Cache Coherence Primitive Toolkit �in preparation� CSG Memo ���� Laboratory
for Computer Science� MIT� Nov� �����

���� X� Shen and Arvind� Processor Models� CSG Memo ���� Laboratory for Computer Science� MIT� June
�����

��

��
� X� Shen and Arvind� Speci�cation of Memory Models and Design of Provably Correct Cache Coherence
Protocols� CSG Memo ���� Laboratory for Computer Science� MIT� June �����

��	� X� Shen and Arvind� Modeling and Veri�cation of ISA Implementations� In Proceedings of the Aus�
tralasian Computer Architecture Conference Perth Australia� Feb� �����

���� U� Stern and D� L� Dill� Automatic Veri�cation of the SCI Cache Coherence Protocol� In Correct
Hardware Design and Veri�cation Methods	 IFIP WG���� Advanced Research Working Conference
Proceedings� ���
�

��

Contents

� Introduction �
��� Memory Models �
��� Design Methodology �
��� Formal Veri�cation �
��� The Organization of the Paper �

� The Formalism 	
��� Correctness of an Implementation �

� The SC Model� Speci�cation of Sequential Consistency �

	 The HC Model� A System with Hierarchical Caches �
��� State Encoding �
��� Rewriting Rules �

 Veri�cation of the HC Model ��
��� Inclusion Invariants ��
��� Cache Flushing Property ��
��� Soundness of HC ��
��� Completeness of HC ��

� Some Derived Rules of the HC Model �	
��� Pushout ��
��� Upgrade ��
��� Forward ��

� The HCN Model� Re�ning HC with Message Passing �

�� Messages and Message Queues �
�� Rewriting Rules ��

 Veri�cation of the HCN Model ��
��� Inclusion Invariants ��
��� Queue Flushing Property ��
��� Soundness of HCN ��
��� Completeness of HCN ��

� Some Optimizations of the HCN Model �

��� Pushout ��
��� Upgrade ��
��� Forward �

�� Directive Messages and Directive Rules ��
���� Rewriting Fairness ��
���� Protocol Liveness ��

��

���� Directive Messages and Directive Rules ��
���� Transient Records ��
���� A Systematic Design Procedure ��

�� HCN�base� A Simple Protocol Derived from HCN �	
���� Memory Access Rules ��
���� Child�to�Parent Request Rules �
���� Parent�to�Child Request Rules ��
���� Parent�to�Child Reply Rules ��
���� Child�to�Parent Reply Rules ��
���� Message Passing Rules ��

�� Veri�cation of the HCN�base Protocol 	

���� Soundness of HCN�base ��
���� Liveness of HCN�base ��

�� Bu�er Management 	�

�	 Summary and Research�in�Progress 	

��

