

CSAIL
Massachusetts Institute of Technology

A Methodology for Designing Correct
Cache Coherence for DSM Systems

Xiaowei Shen, Arvind

1997, June

Computation Structures Group
Memo 398a

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory

A Methodology for Designing Correct Cache Coherence

Protocols for DSM Systems

Computation Structures Group Memo 398 (A)

Xiaowei Shen and Arvind

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

xwshen, arvind@lcs.mit.edu

This paper describes research done at the Laboratory for Computer Science of the

Massachusetts Institute of Technology. Funding for this work is provided in part

by the Advanced Research Projects Agency of the Department of Defense under

the O�ce of Naval Research contract N00014-92-J-1310 and Ft Huachuca contract

DABT63-95-C-0150.

A Methodology for Designing Correct Cache

Coherence Protocols for DSM Systems

Xiaowei Shen and Arvind

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

xwshen, arvind@lcs.mit.edu

Abstract

We propose a two-phase Imperative-Directive design methodology for designing

cache coherence protocols, and use it to develop a family of protocols to implement

Sequential Consistency in a distributed system with hierarchical caches. In the Imper-

ative design phase, actions or state transitions are de�ned to ensure that the system

only exhibits behaviors that are consistent with the memory model. In the Directive

design phase one ensures liveness, i.e., the system eventually takes the desired action.

In each design phase the protocol can be re�ned incrementally to accommodate im-

plementation constraints. The separation of correctness and liveness concerns (and

successive re�nement) greatly simpli�es protocol design and veri�cation. The method-

ology is especially suitable for designing \adaptive" protocols because these essentially

entail multiple directives for each imperative action.

1 Introduction

The design of cache coherence protocols plays an important role in building parallel or

distributed systems that support shared memory. Protocols can be implemented completely

in hardware or completely in software or using a combination of the both. The performance of

shared memory systems largely depends on the cache coherence protocols that are responsible

for maintaining a coherent view of replicated data in accordance with a memory model.

Over the years, the desire to achieve higher performance has resulted in more and more

sophisticated cache coherence protocols, which are di�cult to design and verify. In this paper

we present a new Imperative-Directive methodology for designing protocols and verifying

1

them against a memory model. The methodology is illustrated through an elaborate protocol

to implement Sequential Consistency on a DSM with hierarchy of caches.

1.1 Memory Models

A memory model is a contract that speci�es the memory behavior which the system im-

plementors (architects, compiler writers, etc.) provide to the programmers. Sequential

Consistency [17] has been the dominant memory model in parallel computing for decades,

but for performance reasons, both architects and compiler writers have been exploring alter-

native memory models that allow more implementation exibility. Architects prefer weaker

instruction orderings (see, for example, PowerPC [19]), which often give rise to relaxed mem-

ory models such as Weak Consistency [8], Release Consistency [10, 11] and Lazy Release

Consistency [15]. The language and compiler community have suggested their own relaxed

memory models, such as, Location Consistency [9] and DAG Consistency [5]. One problem

with relaxed memory models is that even experts don't agree on their precise de�nition.

We have chosen Sequential Consistency [17] to demonstrate our methodology for design-

ing protocols. This is not because we believe Sequential Consistency is the most desirable

memory model, but rather because there is a consensus on its de�nition. The correctness of

a protocol to implement a memory model can be discussed only if there is a precise speci-

�cation of the memory model. It is important that the speci�cation be independent of any

speci�c implementation, and thus of caches, write bu�ers and interconnection networks etc.

We will present an operational but fairly abstract view of Sequential Consistency, and then

design protocols that admit exactly those behaviors that are permitted by this operational

model.

1.2 Formal Veri�cation

The veri�cation of cache coherence protocols has gained considerable attention in recent

years [4, 22]. Most methods verify certain invariants for cache coherence protocols, and are

based on state enumeration [13, 14] and symbolic model checking [6, 7, 20], which can check

correctness of assertions by exhaustively exploring all reachable states of the system. For

example, Stern and Dill [27] use the Mur' system to automatically check if all reachable

2

states satisfy certain properties which are attached to protocol speci�cations. Pong and

Dubois [21] exploit the symmetry and homogeneity of the system states by keeping track of

whether zero, one or multiple copies have been cached. This reduces the state space and

makes the veri�cation independent of the number of processors. Generally speaking, the

major di�erence among these techniques is the representation of protocol states and the

pruning method adopted in the state expansion process.

The biggest problem with the current approaches is that it is often di�cult to choose the

invariants in a systematic manner or to convince oneself that all the important invariants have

been considered. While some invariants are obvious (e.g., two L1 caches should not contain

the same address in the exclusive state simultaneously), many others are motivated by the

speci�c protocol implementation instead of the memory model. Sometimes it is not even

clear if the chosen invariants are necessary or su�cient for the correctness. This means that

for the same memory model, we may have to prove very di�erent properties for di�erent

implementations. In this sense, these techniques are more like a bag of useful tools for

debugging cache coherence protocols, rather than for verifying them. In our approach, both

the memory model and the protocol are expressed in the same formalism, and there is a notion

of when one system completely implements another system. While proving that a protocol

implements the memory model, most of the commonly known invariants systematically show

up as lemmas.

1.3 Design Methodology

In spite of the number of publications on cache coherence protocols [12, 26, 18, 16, 1, 2],

it is di�cult to discern a methodology that has guided the design of these protocols. A

major source of di�culty in protocol design is that designers often try to deal with many

di�erent issues simultaneously. Is the cache state being maintained correctly? Is there a

deadlock due to reordering of messages or lack of bu�ers in the network? Is it possible

that a processor's request may never be satis�ed? Answering these questions can be very

di�cult in asynchronous systems with distributed control. The net result is that protocol

design is viewed as black magic, where even the designers are not totally con�dent of their

understanding of the protocol behavior.

3

We propose a two phase Imperative-Directive design methodology to rectify this problem.

The methodology completely separates the correctness and the liveness concerns in the design

process. Correctness concern is ensuring that the system can only exhibit behaviors that

are allowed by the memory model. The rules that specify such state transitions are called

imperative rules. The protocol designer initially focuses on developing a complete set of

imperative rules. In the second phase of the design process, the main concern is liveness,

i.e., ensuring via directive rules that the system takes the appropriate imperative action.

Improper conditions for invoking imperative rules can cause deadlocks or livelocks but cannot

a�ect the correctness of the system.

By separating the correctness and the liveness concerns, the Imperative-Directive method-

ology can dramatically simplify the design and veri�cation of cache coherence protocols in

distributed systems. As we shall show, within each phase of design, we will successively re�ne

the protocol by injecting more and more implementation concerns. Protocols designed using

this methodology are often easy to understand, modify and reason about. The methodology

has proved extremely e�ective in designing adaptive cache coherence protocols [23] because

adaptability is only about directives; imperative rules remain una�ected. We illustrate our

methodology by successively developing a family of cache coherence protocols to implement

Sequential Consistency on a distributed shared memory system with a hierarchy of caches

(see Figure 1). The �nal protocol we present (HCN-base), is to our knowledge, the �rst pre-

cise and complete description of a correct and livelock-free protocol for DSM systems with

multi-level caches.

The Organization of the Paper: We begin by giving a brief introduction to our formalism,

Term Rewriting Systems (TRS's), and de�ne the notion of a correct implementation of a

speci�cation (Section 2). Next we give a TRS, the SCmodel, to de�ne Sequential Consistency

operationally based on a simple multiprocessor system without caches (Section 3). We then

de�ne the HC model, a directory-based cache coherence protocol for multiprocessor systems

with hierarchical caches (Section 4). The HC model is re�ned with message passing in the

HCN model (Section 5). Both HC and HCN use only imperative actions. After a general

discussion of directive messages and other implementation issues (Section 6), we present

HCN-base, a complete cache coherence protocol based on HCN (Section 7). The design of

4

Sequential Consistency (SC)

A protocol for hierarchical caches & network (HCN)

A protocol for hierarchical caches (HC)

HCN extended with directive messages (HCN-base)

(HCN-base with buffer management)

Design
Process

A protocol free from deadlock & livelock

specification

imperative models

model
imperative/directive

Figure 1: Design Process: Models to be Discussed (SC is the speci�cation of Sequential

Consistency, HC de�nes a protocol for systems with hierarchical caches, HCN is a re�ned

version of HC with message passing, and HCN-base is a HCN-based cache coherence protocol

that is free from deadlock and livelock)

HCN-base is completed by giving a bu�er management policy to ensure fairness of message

processing (Section 8). Finally we present a summary and briey discuss research in progress

(Section 9).

The length restrictions do not allow us to present the complete proofs. However, we

discuss the outline of each proof; reference [24] is a version of this paper with full proofs.

2 The Formalism

Our formal framework is based on Term Rewriting Systems (TRS's). We use TRS's to

specify the operational behavior of memory models and cache coherence protocols. A TRS

consists of a set of terms and a set of rewriting rules. In the architectural context, the

terms represent system states and the rules specify state transitions. The general structure

of rewriting rules is as follows:

s1 if p (s1)

�! s2

where s1 and s2 are terms, and p is a predicate.

A rule can be used to rewrite a term if its left-hand-side pattern matches the term or one of

its subterms, and the corresponding predicate is true. If several rules are applicable, then any

one of them may be applied. If no rule applies to a term then the term remains unchanged.

Sometimes a rewriting strategy is used to specify which rule among the applicable rules

5

should be applied to a term at every step. We say term s1 can be rewritten to term s2 in

zero or more rewriting steps (s1 �!! s2), if either s1 = s2, or there exists a term s
0 such

that s1 �! s
0 and s

0
�!! s2.

Notations: While pattern matching it is important to distinguish between variables and

constants or data-structure constructors. A variable matches any expression while a constant

or constructor matches only itself. Throughout the paper, we will follow the convention that

variables are represented by identi�ers with only lower case letters, while constants and

constructors are represented by either identi�ers that begin with a capital letter, or special

characters such as `j', `�', and `
'. We use `�' to represent the empty term, and `-' to

represent the wild-card term that can match any term.

2.1 Correctness of an Implementation

The use of TRS's allows us to de�ne and prove when a protocol implements a memory

model correctly. The proof is based on showing that the TRS for the protocol admits only

the observable behaviors that are permitted by the memory model. We say that TRS B is

a complete implementation of TRS A if there exists a pair of mapping functions g (B 7! A)

and f (A 7! B), such that

1. Soundness: s1
B
�!! s2 =) g (s1)

A
�!! g (s2);

2. Completeness: s1
A
�!! s2 =) f (s1)

B
�!! f (s2);

3. Connection: g (f (s)) = s.

The soundness property states that an implementation cannot take a step that is incon-

sistent with the speci�cation, while the completeness property states that an implementation

can imitate every possible step of the speci�cation. Together these conditions can be inter-

preted as saying that the two systems can simulate each other. However, the correspondence

between the implementation and the speci�cation has not been properly con�ned with just

these two conditions. For example, consider a function that maps all implementation terms

to the same speci�cation term. The connection property rules out such unreasonable map-

ping functions. The intuition behind this property is that an implementation term contains

enough information to reconstruct the corresponding speci�cation term. It is important to

notice that the connection property is asymmetric, i.e., f (g (s)) does not necessarily equal to

6

s. This is because an implementation term usually contains extra information that cannot

be reconstructed once it is projected to a term in the speci�cation.

Many real implementations are not complete according to the above de�nition. Any

sound system can be regarded as a partial implementation of the speci�cation. However,

some partial implementations can be pretty silly in reality: for example, an implementation

that has no rewrite rule and thus makes no transition is a partial implementation of any

speci�cation by the virtue of being sound.

3 The SCModel: Operational Semantics of Sequential

Consistency

Intuitively, a system is sequentially consistent if the result of any execution is the same as if

the operations of all the processors were executed in some sequential order, and the operations

of each individual processor appears in this sequence in the order speci�ed by its program [17].

We take a slightly di�erent approach and de�ne Sequential Consistency operationally using

a multiprocessor system based on a simple non-pipelined processor, which has no caches

or write bu�ers and which executes instructions sequentially. There is no question of data

replication in such a system. The system is de�ned using a TRS called SC. All the protocols

presented in this paper implement only those behaviors that are permitted by SC.

The grammar of the SC model is given in Figure 2. (Notation: We use `[]' as meta

notation in grammars to separate disjuncts; identi�ers Sys, Cell, Proc etc. as constructors).

The system has two components, a memory and a processor group. The memory consists of a

set of memory cells, where each memory cell has an address and a value. We assume addresses

in a memory are pairwise distinct. The processor group consists of a set of processors where

each processor has a program counter, a register �le, and a program. The program counter

holds the address of the instruction to be executed.

Notations: The connective `j' is associative and commutative. Notation prog[ia] refers to

the instruction at instruction address ia in program prog. We use rf[r] to represent the content

of register r in register �le rf, and rf[r := v] the register �le that di�ers from rf only in the

content of register r.

7

P P P P P P

M

SYS � Sys(MEM, PG) System

MEM � � [] Cell(a,v) jMEM Memory

PG � � [] PROC j PG Processor Group

Figure 2: The SC Model (Initially, the memory contains a cell for each address)

The processor rules are presented elsewhere [24] and understanding them is not necessary

to follow the rest of the paper as long as we remember that instructions are executed strictly

according to the program order. Due to lack of space we omit the processor rules except for

the memory access operations de�ned below:

SC-Load Rule

Sys(Cell(a,v) jm, Proc(ia, rf, prog) j pg) if prog[ia] = r := Load(r1) and a = rf[r1]

�! Sys(Cell(a,v) jm, Proc(ia+1, rf[r := v], prog) j pg)

SC-Store Rule

Sys(Cell(a,u) jm, Proc(ia, rf, prog) j pg) if prog[ia] = Store(r1, r2) and a = rf[r1]

�! Sys(Cell(a,v) jm, Proc(ia+1, rf, prog) j pg) where v = rf[r2]

Since connective `j' is associative and commutative, any processor can be brought into the

leftmost position. Thus, if two processors intend to execute a Store instruction to the same

address, either can be allowed to proceed. However, memory access atomicity is guaranteed

because the Load and Store operations are performed directly on the memory and there is

no data replication.

We claim that SC is an operational semantics for Sequential Consistency although it has

di�erent avor from the traditional de�nition. It is easy to show that a total instruction order,

consistent with the program order for each individual processor, exists for all instructions.

From now on we identify the range of behaviors admitted by Sequential Consistency as

precisely the set of legal terms of SC. In the rest of the paper we will de�ne several cache

coherence protocols to implement Sequential Consistency and show that they admit only SC

behaviors.

8

P P PP

P

P

M

M MM

M
M M M M

SYS � Sys(MU, EU) System

MU � hid, MEMi Memory Unit

EU � PROC [] SG Execution Unit

SG � � [] SYS j SG System Group

MEM � � [] Cell(a,v,STATE) jMEM Memory & Cache

STATE � (CSTATE, HSTATE) Cell's State

CSTATE � Sh [] Ex Cell's Cstate

HSTATE � R(DIR) [] W(id) Cell's Hstate

DIR � � [] id jDIR Directory

Figure 3: The HC Model (Initially, all memories except the outermost memory are empty;

the outermost memory contains a cell for each address and the initial state of each cell is

(Ex,R(�)))

4 The HC Model: A System with Hierarchical Caches

A typical distributed memory system contains a hierarchy of caches and uses di�erent imple-

mentation technology and possibly di�erent protocols in di�erent parts of the system. We

begin by ignoring some implementation issues associated with the communication among

memory sites. In the HC model, we assume that a memory can atomically read and update

its parent or child memories. We de�ne a directory-based cache coherence protocol for such

a system and call it the HC (Hierarchical Cache) model.

The grammar of the HC model is given in Figure 3. The system has two components,

a memory unit and an execution unit. The memory unit consists of a set of memory cells

and an identi�er. The execution unit is either a single processor, or a system group that

consists of a set of systems. This recursive de�nition e�ectively allows arbitrary levels of

cache hierarchy. Notice that although we show each memory as one block pictorially, in

implementation addresses can be divided among multiple sites.

9

In the memory hierarchy, the memory at the root is called the outermost memory, and

the memories that directly interface with processors are called innermost memories or L1

caches. Every memory except the innermost and outermost behaves simultaneously as a

cache and home, that is, for its parent a memory is a cache which holds replicated data,

and for its children it is the home where all the cells that have been cached by the children

reside. Thus, we do not draw a distinction between \cache" and \memory", and use the two

words interchangeably. Given a memory id, parent(id) represents its parent's identi�er and

children(id) the set of identi�ers for its children.

4.1 Cache State Encoding

Each memory cell contains an address, a value and a state for coherence maintenance. The

state in each cell has two components, Cstate (cache state) and Hstate (home state). The

Cstate is the \horizontal" state that indicates whether the cell is shared (Sh) or exclusive

(Ex) with respect to its sibling caches. The Hstate is the \vertical" state that records which

children have cached the data and for which purpose (i.e., for reading or writing). If the

Hstate is R(dir), shared copies are cached in the children speci�ed by the directory dir, which

is a set of memory identi�ers. If the Hstate is W(id), the child memory id has the exclusive

copy for the address and can write into the cell. The Hstate is always R(�) for the cells in

the innermost memories, because the innermost memories cannot have children. Similarly

the Cstate is always Ex for the cells in the outermost memory, because it has no siblings. It

is worth noting that (Sh,W(id)) is an illegal state, because a memory cannot give the write

permission to any child unless it has obtained the exclusive ownership for that address.

Inclusion Invariants: The protocol design process is simpli�ed if by checking a cell's

state in a memory, it can be determined whether any further coherence actions need to

be taken for its descendant memories. To accomplish this, HC maintains two invariants,

namely shared inclusion and exclusive inclusion. The shared inclusion invariant states that,

if a memory has a shared copy, its parent must have the address with the same value. The

exclusive inclusion invariant states that, if a memory has an exclusive copy, its parent must

have the address exclusively, although the value of the cell can be out-of-date.

10

4.2 HC Rewriting Rules

All rewriting rules of the HC model are imperative rules and fall naturally into three cate-

gories: the rules for memory access operations, the rules for caching operations (i.e., moving

data or ownership from parents to children), and the rules for de-caching operations (i.e.,

propagating information from children to parents).

Memory Access Rules: Memory access operations by the processor are always performed

on its L1 cache. A Load instruction can execute if the data has been cached in L1. A Store

instruction can execute if the address has been cached with the exclusive ownership in L1.

HC-Load Rule

Sys(hid, Cell(a,v,(cs,R(�))) jmi, Proc(ia, rf, prog))

if prog[ia] = r := Load(r1) and a = rf[r1]

�! Sys(hid, Cell(a,v,(cs,R(�))) jmi, Proc(ia+1, rf[r := v], prog))

HC-Store Rule

Sys(hid, Cell(a,u,(Ex,R(�))) jmi, Proc(ia, rf, prog))

if prog[ia] = Store(r1, r2) and a = rf[r1]

�! Sys(hid, Cell(a,v,(Ex,R(�))) jmi, Proc(ia+1, rf, prog)) where v = rf[r2]

Caching Rules: If the state of a cell in memory id is (Sh,R(dir)) or (Ex,R(dir)) and the

directory shows that child idk has not cached the data, then the parent (id) can give a shared

copy to idk, and record idk in the directory. If the state of a cell in memory id is (Ex,R(�))

then it can give an exclusive copy to child idk, and change the cell's Hstate to W(idk) (see

Figure 4 (a)).

Sh-Caching Rule

Sys(hid, Cell(a,v,(cs,R(dir))) jmi, Sys(hidk, mki, euk) j sg) if idk =2 dir

�! Sys(hid, Cell(a,v,(cs,R(idkjdir))) jmi, Sys(hidk, Cell(a,v,(Sh,R(�))) jmki, euk) j sg)

Ex-Caching Rule

Sys(hid, Cell(a,v,(Ex,R(�))) jmi, Sys(hidk, mki, euk) j sg)
�! Sys(hid, Cell(a,v,(Ex,W(idk))) jmi, Sys(hidk, Cell(a,v,(Ex,R(�))) jmki, euk) j sg)

De-Caching Rules: If the state of a cell in memory idk is (Ex,R(dir)) then it can write the

most up-to-date data back to the parent (id), and change the cell's Cstate from Ex to Sh.

If the state of a cell in memory idk is (Sh,R(�)) then it can invalidate (purge) the cell, and

delete idk from the directory of the corresponding cell in the parent (see Figure 4 (b)).

Writeback Rule

Sys(hid, Cell(a,u,(Ex,W(idk))) jmi, Sys(hidk, Cell(a,v,(Ex,R(dir))) jmki, euk) j sg)
�! Sys(hid, Cell(a,v,(Ex,R(idk))) jmi, Sys(hidk, Cell(a,v,(Sh,R(dir))) jmki, euk) j sg)

11

id

idk

id

idk

caching de-caching

(a) (b)

Figure 4: Caching and De-Caching Operations

Invalidate Rule

Sys(hid, Cell(a,v,(cs,R(idkjdir))) jmi, Sys(hidk, Cell(a,v,(Sh,R(�))) jmki, euk) j sg)
�! Sys(hid, Cell(a,v,(cs,R(dir))) jmi, Sys(hidk, mki, euk) j sg)

4.3 Correctness of HC w.r.t. SC

We can prove that the HC model completely implements the SC model. The proof consists

of three steps:

1. Soundness: De�ne a cache-ush function CF (HC 7! SC), and show

s1
HC
�!! s2 =) CF(s1)

SC
�!! CF(s2);

2. Completeness: De�ne a cache-lift function CL (SC 7! HC), and show

s1
SC
�!! s2 =) CL(s1)

HC
�!! CL(s2);

3. Connection: For any SC term s, show CF(CL(s)) = s.

The CF function is easy to de�ne once we notice that if the de-caching rules are applied

repeatedly, all non-outermost memories eventually become empty. This follows from the

Inclusion Invariants which can be proved by induction on rewriting steps. To show soundness,

assume that s1 �! s2 by applying rule � in HC. It can be shown by case analysis on � that

either CF(s1) = CF(s2) if � is a caching or de-caching rule; or CF(s1) �! CF(s2) by

applying the corresponding rule in SC if � is a memory access rule.

The CL function simply introduces empty caches to build any memory hierarchy and sets

the state of each cell (Ex,R(�)) in the outermost memory. It is easy to show that each SC

rule can be simulated by a sequence of HC rules. Given these mappings, it is trivial to show

that CF is the inverse function of CL. (For the full proof, see [24]).

12

4.4 Some Optimizations as Derived Rules

A derived rule is one that can be derived from other rules of the TRS. A derived rule can

simply be an existing rule but with more stringent predicate, or a sequential combination of

several other rules. Adding derived rules cannot a�ect the expressive power or the correctness

of the system, but may improve the performance by some measure.

Pushout: The pushout operation allows a memory to write the most up-to-date data of an

exclusive cell back to the parent memory and purge the cell in one rewriting step, if the cell

is not cached by any of its children (i.e., the cell is in the (Ex,R(�)) state).

Pushout Rule

Sys(hid, Cell(a,u,(Ex,W(idk))) jmi, Sys(hidk, Cell(a,v,(Ex,R(�))) jmki, euk) j sg)
�! Sys(hid, Cell(a,v,(Ex,R(�))) jmi, Sys(hidk, mki, euk) j sg)

Obviously applying the Pushout rule has the same e�ect as applying Writeback followed by

Invalidate. It is possible to de�ne another HC model in which the Writeback rule is replaced

by the Pushout rule. In this new system the Writeback rule can be treated as a derived rule

(Pushout followed by Sh-Caching). It can be shown that these two TRS's are equivalent.

Upgrade: The upgrade operation allows a memory to obtain the exclusive ownership for a

shared cell in one rewriting step, if its parent has the exclusive ownership and has not given

the data to any other child (i.e., the cell is in the (Ex,R(idk)) state). Upgrade is also known

as Dclaim.

Upgrade Rule

Sys(hid, Cell(a,v,(Ex,R(idk))) jmi, Sys(hidk, Cell(a,v,(Sh,R(dir))) jmki, euk) j sg)
�! Sys(hid, Cell(a,v,(Ex,W(idk))) jmi, Sys(hidk, Cell(a,v,(Ex,R(dir))) jmki, euk) j sg)

It can be shown that applying the Upgrade rule has the same e�ect as applying Invalidate

zero or more times, followed by Ex-Caching, followed by Sh-Caching zero or more times.

Forward: If the state of a cell in a memory is (Ex,R(dir)) then it can write the most up-to-

date data back to its parent, while at the same time, forward a read-only copy to a sibling

memory. Similarly, if the state of a cell in a memory is (Ex,R(�)), then it can invalidate

the cell and forward the exclusive copy to a sibling memory. Forward is also known as

Intervention.

13

P
Network

Network

Network

P P P PP

M

from / to network

In Out

MU

MU MU MU MU MU

MUMU

MU

Memory Unit:

SYS � Sys(MU, EU) System

MU � hid, MEM, INQ, OUTQi Memory Unit

EU � PROC [] SG Execution Unit

SG � � [] SYS j SG System Group

MEM � � [] Cell(a,v,STATE) jMEM Memory & Cache

STATE � (CSTATE, HSTATE) Cell's State

CSTATE � Sh [] Ex Cell's Cstate

HSTATE � R(DIR) [] W(id) Cell's Hstate

DIR � � [] id jDIR Directory

INQ � � [] MSG� INQ Incoming Queue

OUTQ � � [] MSG
OUTQ Outgoing Queue

MSG � Msg(idsrc, iddest, CMD, a, v) Protocol Message

CMD � Sh-rep [] Ex-rep [] Wb-rep [] Inv-rep Message Command

Figure 5: Grammar of the HCN Model (Initially, all non-outermost memories, and all in-

coming and outgoing message queues are empty; the outermost memory contains a cell in

the (Ex,R(�)) state for each address)

Sh-Forward Rule

Sys(hid, Cell(a,u,(Ex,W(idk))) jmi,
Sys(hidk, Cell(a,v,(Ex,R(dir))) jmki, euk) j Sys(hidj, mji, euj) j sg)

�! Sys(hid, Cell(a,v,(Ex,R(idkjidj))) jmi,
Sys(hidk, Cell(a,v,(Sh,R(dir))) jmki, euk) j Sys(hidj, Cell(a,v,(Sh,R(�))) jmji, euj) j sg)

Ex-Forward Rule

Sys(hid, Cell(a,u,(Ex,W(idk))) jmi,
Sys(hidk, Cell(a,v,(Ex,R(�))) jmki, euk) j Sys(hidj, mji, euj) j sg)

�! Sys(hid, Cell(a,v,(Ex,W(idj))) jmi,
Sys(hidk, mki, euk) j Sys(hidj, Cell(a,v,(Ex,R(�))) jmji, euj) j sg)

It can be shown that applying the Sh-Forward rule has the same e�ect as applying

Writeback followed by Sh-Caching, while applying the Ex-Forward rule has the same e�ect

as applying Writeback and Invalidate followed by Ex-Caching.

14

5 The HCN Model: Re�ning HC with Message Passing

The HC model assumes that coherence actions involving more than one memory can be

performed with one rewriting step. For example, according to the Ex-Caching rule, if a

memory has a cell in the (Ex,R(�)) state, then it can send an exclusive copy to a child, while

in the same rewriting step, the child can receive the data, and cache it in the (Ex,R(�)) state.

In distributed systems such rules are considered non-local, and without special hardware

support, ensuring the atomicity of a local read followed by a remote write is di�cult.

In this section, we derive a local version for HC rules. We de�ne the HCN model (HC with

Network) by introducing a message passing network and restricting each rule to examine and

update the local memory. The grammar of HCN is given in Figure 5. As can be seen, the

memory unit has two new components, an incoming message queue and an outgoing message

queues built using the constructors � and
, respectively.

5.1 Protocol Messages and Queues

A protocol message has �ve �elds: the source and destination memory identi�ers, the message

command, the address and data value. For messages that carry no data, the data �eld is

marked empty (?). There are four types of message commands (Sh-rep, Ex-rep, Wb-rep and

Inv-rep) and their impact on cache state of the receiving cell is shown in Figure 6. (The su�x

\rep" stands for reply; why these commands are called replies will become clear later when

we discuss requests or directives).

The constructor `
' of the outgoing queue is associative and commutative, because we

do not want messages to di�erent destinations to block each other. Commutativity of `
'

essentially allows us to model any type of non-FIFO network.

For the incoming queue, ideally we would like to process messages in the order in which

they are received. However, this may cause deadlocks or livelocks unless messages that cannot

be processed temporarily are properly bu�ered so that other messages can be processed.

Protocol design can be simpli�ed by considering the bu�er management as a separate issue.

This can be achieved simply by assuming that the constructor `�' of the incoming queue

is associative and commutative, which essentially allows us to process any message in the

15

ExSh

Inv

Ex-RepSh-Rep

Upgrade-Rep

Wb-Rep

Inv-Rep Pushout-Rep

Figure 6: State Transitions Caused by Imperative Messages (Inv represents the state that the

address is not cached in the memory; Pushout-rep and Upgrade-rep are potential optimizations

for the HCN model)

incoming queue. We will proceed with the design of the HCN rules under this assumption,

and later revisit the bu�er management issue.

In HCN, all messages are imperative messages that are needed to make the protocol

functionally correct. Imperative messages are also called reply messages because usually,

though not necessarily, they are used to respond to directive messages as will be discussed

in the next two sections.

5.2 HCN Rewriting Rules

The derivation of HCN rules from the HC rules is remarkably simple: HC memory access

rules remain una�ected; each caching and de-caching rule in HC becomes a pair of rules for

sending and receiving imperative messages; and two new rules for passing messages between

parents and children are introduced. As will be seen, a caching or de-caching operation in

HCN can be performed in three steps: (i) the source site places a message in the outgoing

message queue; (ii) the network transfers the message from the source to the corresponding

destination; (iii) the destination site extracts the message from its incoming queue and

executes appropriate operations.

Memory Access Rules: Both Load and Store operations are performed on L1 caches, and

the incoming and outgoing queues are not a�ected.

16

HCN-Load Rule

Sys(hid, Cell(a,v,(cs,R(�))) jm, in, outi, Proc(ia, rf, prog))

if prog[ia] = r := Load(r1) and a = rf[r1]

�! Sys(hid, Cell(a,v,(cs,R(�))) jm, in, outi, Proc(ia+1, rf[r := v], prog))

HCN-Store Rule

Sys(hid, Cell(a,u,(Ex,R(�))) jm, in, outi, Proc(ia, rf, prog))

if prog[ia] = Store(r1, r2) and a = rf[r1]

�! Sys(hid, Cell(a,v,(Ex,R(�))) jm, in, outi, Proc(ia+1, rf, prog)) where v = rf[r2]

Caching Rules: If the state of a cell in memory id is (Sh,R(dir)) or (Ex,R(dir)), and the

directory shows that the data is not cached in some child (say idk), then memory id can send

a Sh-rep message with a read-only copy to the child, and record idk in the directory. When

the Sh-rep message arrives at the destination, memory idk caches the data and sets its state

as (Sh,R(�)) state.

Send-Sh-Rep Rule

hid, Cell(a,v,(cs,R(dir))) jm, in, outi if idk 2 children(id) and idk =2 dir

�! hid, Cell(a,v,(cs,R(idkjdir))) jm, in, out
Msg(id, idk,Sh-rep, a, v)i

Receive-Sh-Rep Rule

hidk, mk, Msg(id, idk,Sh-rep, a, v)� ink, outki
�! hidk, Cell(a,v,(Sh,R(�))) jmk, ink, outki

Similarly, if the state of a cell in memory id is (Ex,R(�)) then it can send an Ex-repmessage

with a read-write copy to some child (say idk), and then change the Hstate to W(idk). When

the Ex-rep message arrives at the destination, memory idk caches the data and sets its state

as (Ex,R(�)).

Send-Ex-Rep Rule

hid, Cell(a,v,(Ex,R(�))) jm, in, outi
�! hid, Cell(a,v,(Ex,W(idk))) jm, in, out
Msg(id, idk,Ex-rep, a, v)i where idk 2 children(id)

Receive-Ex-Rep Rule

hidk, mk, Msg(id, idk,Ex-rep, a, v) � ink, outki
�! hidk, Cell(a,v,(Ex,R(�))) jmk, ink, outki

De-Caching Rules: If the state of a cell in memory idk is (Ex,R(dir)) then it can send a

Wb-rep message with the most up-to-date data to its parent (say id), and change the Cstate

of the cell to Sh. When the Wb-rep message is received, memory id updates the memory

with the most up-to-date data, and changes the cell's Cstate from W(idk) to R(idk) because

the child has given up the write permission.

Send-Wb-Rep Rule

hidk, Cell(a,v,(Ex,R(dir))) jmk, ink, outki
�! hidk, Cell(a,v,(Sh,R(dir))) jmk, ink, outk
Msg(idk, id,Wb-rep, a, v)i where id = parent(idk)

17

Receive-Wb-Rep Rule

hid, Cell(a,u,(Ex,W(idk))) jm, Msg(idk, id,Wb-rep, a, v) � in, outi
�! hid, Cell(a,v,(Ex,R(idk))) jm, in, outi

If state of a cell in memory idk is (Sh,R(�)) then it can invalidate the cell and send an

Inv-rep message to notify its parent (say id). When the Inv-rep message is received, memory

id removes idk from the directory because the cached data in the child has been invalidated.

Send-Inv-Rep Rule

hidk, Cell(a,v,(Sh,R(�))) jmk, ink, outki
�! hidk, mk, ink, outk
Msg(idk, id, Inv-rep, a,?)i where id = parent(idk)

Receive-Inv-Rep Rule

hid, Cell(a,v,(cs,R(idkjdir))) jm, Msg(idk, id, Inv-rep, a,?) � in, outi
�! hid, Cell(a,v,(cs,R(dir))) jm, in, outi

Message-Passing Rules: Messages passing can happen only between the memories that

have parent-child relationship. The Message-Passing-To-Child rule delivers a message from

the outgoing queue of parent id to the incoming queue of child idk; while theMessage-Passing-

To-Parent rule delivers a message from the child's outgoing queue to the parent's incoming

queue.

Message-Passing-To-Child Rule

Sys(hid, m, in, Msg(id, idk, cmd, a, v)
 outi, Sys(hidk, mk, ink, outki, euk) j sg)
�! Sys(hid, m, in, outi, Sys(hidk, mk, ink �Msg(id, idk, cmd, a, v), outki, euk) j sg)

Message-Passing-To-Parent Rule

Sys(hid, m, in, outi, Sys(hidk, mk, ink, Msg(idk, id, cmd, a, v)
 outki, euk) j sg)
�! Sys(hid, m, in�Msg(idk, id, cmd, a, v), outi, Sys(hidk, mk, ink, outki, euk) j sg)

Discussion: Notice because of the associativity and commutativity of � and
, both mes-

sage send and receive are non-FIFO and non-blocking. Still one scenario deserves a bit more

discussion. Suppose a cell in (Ex,R(�)) state performs a writeback operation followed by an

invalidate operation. With non-FIFO message passing, the Inv-rep message may arrive at

the parent memory before the Wb-rep message. If messages in the input queue were required

to be processed in the FIFO order, a deadlock could happen because no rule can apply to

the Inv-rep message before the Wb-rep message is processed �rst. However, since messages

in the incoming queue can be examined in any order, this deadlock will not occur.

5.3 Correctness of HCN w.r.t. HC

It can be shown that the HCN model completely implements the HC model. The proof, as

before, consists of three steps:

18

1. Soundness: De�ne the queue-ush function QF (HCN 7! HC), and show

s1
HCN
�!! s2 =) QF(s1)

HC
�!! QF(s2);

2. Completeness: De�ne the queue-lift function QL (HC 7! HCN), and show

s1
HC
�!! s2 =) QL(s1)

HCN
�!! QL(s2);

3. Connection: For any HC term s, show QF(QL(s)) = s.

Analogous to the cache-ush function in the proof of HC discussed earlier, we de�ne the

queue-ush function QF to map HCN terms to HC terms. The idea behind the the QF

function is that, in HCN, when only message-passing and message-receive rules are applied,

all the incoming and outgoing message queues eventually become empty. The detailed proof

of this fact is tedious because inclusion invariants are more complicated: for example, if the

directory shows that a cell has been cached by a child, it only means that either the child

has the cell or a message regarding that cell is on the way to the child or is on the way to

the parent from the child.

To show soundness, assume that s1 �! s2 by applying rule � in HCN. It can be shown by

case analysis on � that either QF(s1) = QF(s2), if � is a message-passing or message-receive

rule; or QF(s1) �!! QF(s2) by applying a sequence of rules in HC, if � is a message-send

rule.

The queue-lift function QL maps HC terms to HCN terms by simply introducing empty

incoming and outgoing queues for each memory. The proofs of completeness and connection

are straightforward. (For more details, see [24]).

6 The Directive Design Phase

The protocols presented so far, that is HC and HCN, rely on an oracle to select the rules to

be applied to invoke desirable coherence actions. Consider the case when a processor wants

to execute a Load operation but its L1 cache does not contain the accessed address. With

HCN rules it is possible to bring the desired cell into the L1 cache from the parent, however,

it is not clear how the parent memory would know which processor is looking for which

particular address. To remedy this problem we introduce the notion of directive messages

which are requests to invoke imperative actions. Before we explain directive messages, we

�rst explicate some general implementation assumptions.

19

6.1 General Implementation Issues

For a TRS, one needs to specify a rewriting strategy for selecting a rule or a group of rules

from the set of rules that are applicable to a term. When TRS's are used in a programming

language context, terms represent expressions, and the goal of any rewriting strategy is

to produce the value of an expression. Unfortunately, there is no such goal when a TRS

represents a protocol or an architecture. But, there is a notion of \making progress" and

one should ensure that the strategy is such that every distributed unit (processor, memory

unit, etc.) does make progress.

A common strategy to guarantee progress for everyone is not to delay the execution of an

applicable rule inde�nitely. Such a strategy is known as a fair strategy. As we will explain,

a fair strategy may not necessarily be e�cient or easy to implement. We begin by making

the following assumptions about any implementation:

� Concurrent execution: processors and memory units are running in a distributed

fashion (i.e., no central control);

� Reliable message passing: a message is guaranteed to be delivered to the destination

in �nite time once it is enqueued in the outgoing queue;

� Fair message processing: a message in the incoming queue must be processed even-

tually if it can be processed.

The �rst two conditions are easily satis�ed in most distributed systems. The third con-

dition requires appropriate bu�er management for incoming messages to guarantee that a

message that cannot be processed temporarily will not block other messages from being

processed. We will defer the discussion of the bu�er management until Section 8. Here we

assume that the messages in the incoming queue can commute with each other to achieve

fair processing.

We now show that a fair strategy may not be desirable for the application of some rule.

Consider the case of a memory holding a cell in the exclusive state. If the cell has not been

passed to any children, then according to HC or HCN rules, the memory can give the cell

to any one of its children, regardless of whether they need it or not. This may be wasteful

but is not dangerous because the child can always return the cell. It will be more desirable

20

if the caching rules are applied only when requested by a child. If we don't rely on fairness

then there must be directives to apply certain imperative rules.

6.2 Directive Messages and Transient Records

The intended e�ect of a directive message is to cause the receiver to take some imperative

action, such as issuing certain imperative message. Thus we can introduce request commands

for some imperative rules (i.e., caching and de-caching rules) of HCN. The caching directives

ow from children to parents while the de-caching directives ow from parents to children.

Several issues arise immediately regarding directives:

1. We need to decide under what conditions a directive message should be issued. Further-

more, we may want a mechanism to avoid sending the same request repeatedly.

2. When a directive message is being processed, it is possible that the message needs to

be suspended to issue more directives and to service their responses. Therefore, we must

determine the information that should be maintained to resume a suspended message.

3. When a message cannot be processed temporarily, we need to decide how to handle this

message (bu�ering, retrying, etc.) so that it cannot block other messages that can be

processed.

The usual way to avoid repeated sending of the same request is to introduce new tempo-

rary states to remember that a request has been issued already. A transient record can be

used to record all the necessary information regarding a suspended message (or instruction)

and the outstanding requests. When a transient record for an address exists, we say the

address is in a transient state. The speci�c information maintained in the transient record

is dependent on the details of the protocol design.

The Imperative-Directive methodology forbids directive messages to directly a�ect the

states manipulated by the imperative rules. The only way that a directive rule can update

those states is by invoking some imperative rules. When a directive message is combined with

an imperative rule to form a new rule, the directive message acts like an extra predicate in

the imperative rule. This restriction guarantees soundness of the new rules. However, extra

predicates can cause deadlocks or livelocks, and we will discuss these issues after presenting

a complete protocol in the next section.

21

7 HCN-base: A Protocol Based on HCN

In this section, we present HCN-base, a complete protocol based on the HCN model, which

uses directive messages and is free from deadlocks and livelocks. The design of the HCN-base

protocol has been guided by the following properties:

1. Every coherence action is originally driven by some memory access operation in a proces-

sor: Directive messages can be issued only in cases of cache misses, or while processing

other directive messages. A memory cannot send data to a child without receiving a

caching request from the child. Similarly, a memory cannot write the most up-to-date

data back to its parent or invalidate a shared copy without receiving a de-caching request

from the parent.

Notice this property implies that HCN-base cannot deal with cache line replacement (e.g.,

due to capacity or associative conict). Elsewhere [24] we have extended HCN-base to an

adaptive protocol that provides much more exibility without compromising the liveness

property. The adaptive protocol not only handles cache line replacement and allows

adaptive features including prefetching, but is also tuned with various optimizations

such as Pushout and Upgrade.

2. A memory only process one request message for the same address at any time: Except for

an invalidation request, a request message for an address is not processed if the address

is in a transient state. This restriction simpli�es the protocol design, and our experience

shows that its impact on performance is negligible.

3. An invalidation request must be processed even if the address in the transient state to

avoid deadlocks.

4. No request is ever sent more than once, and no message is ever discarded without being

processed.

We make no assumption about the cache hierarchy depth or the message passing order.

HCN-base is free from deadlock in the sense that a request message is guaranteed to be

serviced within �nite time, and no processor can be stalled forever due to a cache miss.

The grammar of HCN-base is given in Figure 7. Four directive messages, Sh-req, Ex-req,

Wb-req and Inv-req, are introduced. (\req" stands for request in these messages). Compared

22

SYS � Sys(MU, EU) System

MU � hid, MEM, INQ, OUTQ, TRECSi Memory Unit

EU � PROC [] SG Execution Unit

SG � � [] SYS j SG System Group

MEM � � [] Cell(a,v,STATE) jMEM Memory & Cache

STATE � (CSTATE, HSTATE) Cell's State

CSTATE � Sh [] Ex Cell's Cstate

HSTATE � R(DIR) [] W(id) Cell's Hstate

DIR � � [] id jDIR Directory

INQ � � [] MSG� INQ Incoming Queue

OUTQ � � [] MSG
OUTQ Outgoing Queue

MSG � Msg(idsrc, iddest, CMD, a, v) Protocol Message

CMD � REPLY [] REQUEST Message Command

REPLY � Sh-rep [] Ex-rep [] Wb-rep [] Inv-rep Reply Command

REQUEST � Sh-req [] Ex-req [] Wb-req [] Inv-req Request Command

TRECS � � [] Trec(a, INITIATOR) j TRECS Transient Records

INITIATOR � (id,REQUEST) [] (ia,Load) [] (ia,Store) Initiator

Figure 7: The HCN-base Protocol (Initially, all non-outermost memories, all incoming and

outgoing message queues, and all transient records are empty; the outermost memory con-

tains a cell in the (Ex,R(�)) state for each address)

with the HCN model, an additional component, the transient records (Trecs), is maintained

at each memory unit. A transient record contains the identity of the initiator that caused

the address to enter the transient state: if it is a Load or Store instruction, the program

counter is recorded; if it is a request message, the message source and the request command

are recorded.

In order to process some types of requests, multiple actions at a memory may need to be

taken. This, in turn, may require remembering several things about the suspended request.

It turns out that for the protocol presented here, generally one transient record per address is

su�cient. However, if an invalidation request for a transient address needs to be processed

then two records for the same address may exist concurrently. We will use the following

notation for compactness:

multicast(id, �, cmd, a, v) � �

multicast(id, idkjdir, cmd, a, v) � Msg(id, idk, cmd, a, v)
multicast(id, dir, cmd, a, v)

Now we present the rewrite rules for the HCN-base protocol. These rules have been derived

systematically from the HCN rules and the assumptions discussed above. The reader will

�nd that (1) the processor cache hit-rules and message passing rules remain the same as in

23

Cell(a,v,(Ex,R()))

p

εεCell(a,v,(cs,R()))

pid id

idid id

P

id

P

Load permission
read

permission
writeStore

P

Load

Sh-req
no Cell(a,-,(Ex,-))no Cell(a,-,-)

Store

Ex-req

P

read cache hit ! write cache hit ! read cache miss ! write cache miss !

Figure 8: Cache Hit and Cache-Miss Processing

HCN; (2) a new rule for each HCN send rule is derived by adding the corresponding request

message in the incoming queue (The request message acts as a predicate); (3) another similar

rule is derived for each HCN send rule because the request may be in a transient record; (4)

each HCN receive rule is extended to resume a suspended request; (5) new rules are added

for propagating requests.

7.1 Memory Access Rules

Cache-Hit Rules: In case of a cache hit, a Load can read the data from the L1 cache, and

a Store can write a new value to the L1 cache provided the cell is in the Ex state.

Read-Cache-Hit Rule

Sys(hid, Cell(a,v,(cs,R(�))) jm, in, out, trecsi, Proc(ia, rf, prog))

if prog[ia] = r := Load(r1) and a = rf[r1]

�! Sys(hid, Cell(a,v,(cs,R(�))) jm, in, out, trecsi, Proc(ia+1, rf[r := v], prog))

Write-Cache-Hit Rule

Sys(hid, Cell(a,u,(Ex,R(�))) jm, in, out, trecsi, Proc(ia, rf, prog))

if prog[ia] = Store(r1, r2) and a = rf[r1]

�! Sys(hid, Cell(a,v,(Ex,R(�))) jm, in, out, trecsi, Proc(ia+1, rf, prog)) where v = rf[r2]

Cache-Miss Rules: In case of a cache miss, unless the address is already in a transient

state, a Sh-req or an Ex-req message is sent to the parent and a transient record for that

address is created.

Read-Cache-Miss Rule

Sys(hid, m, in, out, trecsi, Proc(ia, rf, prog))

if prog[ia] = r := Load(r1) and rf[r1] =2 m and rf[r1] =2 trecs

�! Sys(hid, m, in, out
Msg(id, idp,Sh-req, a,?), Trec(a, (ia,Load)) j trecsi, Proc(ia, rf, prog))

where idp = parent(id) and a = rf[r1]

24

j

j

k id

Cell(a,v,(Ex,W(id)))

Sh-req Wb-req

id

k

id

idp

no Cell(a,-,-)

Sh-req

Sh-req

idk idid

id

Sh-req Sh-rep

Cell(a,v,(cs,R(dir)))

Figure 9: Sh-req Processing (memory id receives a Sh-req message)

Write-Cache-Miss Rule

Sys(hid, m, in, out, trecsi, Proc(ia, rf, prog))

if prog[ia] = Store(r1, r2) and Cell(rf[r1],-,(Ex,-)) =2 m and rf[r1] =2 trecs

�! Sys(hid, m, in, out
Msg(id, idp,Ex-req, a,?), Trec(a, (ia,Store)) j trecsi, Proc(ia, rf, prog))

where idp = parent(id) and a = rf[r1]

7.2 Child-to-Parent Request Rules

Sh-Request Rules: When memory id receives a Sh-req message from child memory idk,

it processes the request unless the accessed address is in a transient state, in which case it

simply lets the message sit in the input queue but without blocking other incoming messages

(commutativity of � ensures this non blockage). The following three cases arise:

� Hit: If id has the data and the cell's Hstate is R(dir), it sends a Sh-rep message to memory

idk, and records the child's identi�er in its directory.

� Hit but stale data: If id has the data but the cell's state is (Ex,W(idj)), it suspends the

Sh-req message in its temporary bu�er, and sends aWb-req message to child idj to request

the most up-to-date data.

� Miss: If id does not have the data, it suspends the Sh-req message, and sends a Sh-req

message to its parent.

Receive-Sh-Req-And-Send-Sh-Rep Rule

hid, Cell(a,v,(cs,R(dir))) jm, Msg(idk, id,Sh-req, a,?) � in, out, trecsi
if idk =2 dir and a =2 trecs

�! hid, Cell(a,v,(cs,R(idkjdir))) jm, in, out
Msg(id, idk,Sh-rep, a, v), trecsi

25

Ex-repEx-req

Cell(a,v,(Ex,R()))

j

ε

id

kk id

Cell(a,v,(Ex,W(id)))

k jid id idkid

idp

j no Cell(a,-,(Ex,-))

Ex-req

Ex-req

id

id

Ex-req . . .

id

Cell(a,v,(Ex,R(dir)))

Inv-req Ex-req

id

Wb-req

Figure 10: Ex-req Processing (memory id receives a Ex-req message)

Receive-Sh-Req-And-Send-Wb-Req Rule

hid, Cell(a,v,(Ex,W(idj))) jm, Msg(idk, id,Sh-req, a,?) � in, out, trecsi
if idk 6= idj and a =2 trecs

�! hid, Cell(a,v,(Ex,W(idj))) jm, in, out
Msg(id, idj,Wb-req, a,?), Trec(a, (idk,Sh-req)) j trecsi

Receive-Sh-Req-And-Send-Sh-Req Rule

hid, m, Msg(idk, id,Sh-req, a,?)� in, out, trecsi if a =2 m and a =2 trecs

�! hid, m, in, out
Msg(id, idp,Sh-req, a,?), Trec(a, (idk,Sh-req)) j trecsi
where idp = parent(id)

Ex-Request Rules: When memory id receives an Ex-req message from child memory idk,

it processes the message as follows, provided the accessed address is not in a transient state:

� Hit: If id has the data in the (Ex,R(�)) state, it sends an Ex-rep message to idk and changes

the cell's state to (Ex,W(idk)).

� Hit but outstanding reads: If id has the data in the (Ex,R(dir)) state, it multicasts Inv-req

messages to memories speci�ed by directory dir and creates a transient record for the

address.

� Hit but stale data: If id has the data in the (Ex,W(idj)) state, it sends a Wb-req message

to child idj to request the most up-to-date data, and creates a transient record for the

address. Notice that we could also issue the Inv-req command at the this time. We keep

the protocol simple by issuing an Inv-req only after the response to Wb-req has been

received (see Wb-Reply Rules in Section 7.5).

� Miss or lack of exclusivity: If id has not cached the data, or the data is not in the Ex

state, it sends an Ex-req message to its parent memory, and creates a transient record for

the address.

26

Receive-Ex-Req-And-Send-Ex-Rep Rule

hid, Cell(a,v,(Ex,R(�))) jm, Msg(idk, id,Ex-req, a,?) � in, out, trecsi if a =2 trecs

�! hid, Cell(a,v,(Ex,W(idk))) jm, in, out
Msg(id, idk,Ex-rep, a, v), trecsi

Receive-Ex-Req-And-Multicast-Inv-Req Rule

hid, Cell(a,v,(Ex,R(dir))) jm, Msg(idk, id,Ex-req, a,?) � in, out, trecsi
if dir 6= � and a =2 trecs

�! hid, Cell(a,v,(Ex,R(dir))) jm, in, out
multicast(id, dir, Inv-req, a,?), Trec(a, (idk,Ex-req)) j trecsi

Receive-Ex-Req-And-Send-Wb-Req Rule

hid, Cell(a,v,(Ex,W(idj))) jm, Msg(idk, id,Ex-req, a,?) � in, out, trecsi
if idk 6= idj and a =2 trecs

�! hid, Cell(a,v,(Ex,W(idj))) jm, in, out
Msg(id, idj,Wb-req, a,?), Trec(a, (idk,Ex-req)) j trecsi

Receive-Ex-Req-And-Send-Ex-Req Rule

hid, m, Msg(idk, id,Ex-req, a,?) � in, out, trecsi
if Cell(a,-,(Ex,-)) =2 m and a =2 trecs

�! hid, m, in, out
Msg(id, idp,Ex-req, a,?), Trec(a, (idk,Ex-req)) j trecsi
where idp = parent(id)

Discussion: It is worth noting that the Sh-req message cannot be processed if the accessed

address is in a transient state. There are two reasons for this. First, it e�ectively prevents

multiple requests to be issued for the same coherence action. For example, if memory id

receives more than one Sh-req message at the same time (from di�erent child memories),

and the accessed data is not cached, then only one Sh-req message will be issued to parent

memory idp. Second, it ensures that Sh-req and Ex-req messages are processed in some fair

order. Without this fairness a suspended Ex-req may never be processed. As we shall see

later, the same issue arises for Inv-req messages.

7.3 Parent-to-Child Request Rules

Wb-Request Rules: When memory id receives a Wb-req message from parent memory idp,

it processes the message as follows, provided the accessed address is not in a transient state:

� Hit: If id has the data in the (Ex,R(dir)) state, it sends a Wb-rep message to the parent

with the most up-to-date data, and changes the cell's Cstate to Sh.

� Hit but stale data: If id has cached the data in the (Ex,W(idk)) state, it sends a Wb-

req message to child memory idk to request for the most up-to-date data and creates a

transient record for the address.

Receive-Wb-Req-And-Send-Wb-Rep Rule

hid, Cell(a,v,(Ex,R(dir))) jm, Msg(idp, id,Wb-req, a,?) � in, out, trecsi if a =2 trecs

�! hid, Cell(a,v,(Sh,R(dir))) jm, in, out
Msg(id, idp,Wb-rep, a, v), trecsi

27

idp

id

p

Cell(a,v,(Ex,R(dir)))

Wb-req Wb-rep

k

id

k

id

idp

Cell(a,v,(Ex,W(id))) Cell(a,v,(Sh,R()))

id

Inv-req Inv-rep

idk

Wb-req

idp

idj

Wb-req

id

ε

id

. . . Inv-req

Cell(a,v,(Sh,R(dir)))

Inv-req

Figure 11: Wb-req and Inv-req Processing (memory id receives a Wb-req / Inv-req message)

Receive-Wb-Req-And-Send-Wb-Req Rule

hid, Cell(a,v,(Ex,W(idk))) jm, Msg(idp, id,Wb-req, a,?) � in, out, trecsi if a =2 trecs

�! hid, Cell(a,v,(Ex,W(idk))) jm, in, out
Msg(id, idk,Wb-req, a,?), Trec(a, (idp,Wb-req)) j trecsi

Discussion: Notice that it is safe to block a Wb-req message at any memory if it is in

a transient state, because that memory can get out of the transient state without sending

requests to the parent. That is, a cache does not need to communicates with its parent if it

already has a cell in the Ex state.

Inv-Request Rules: When memory id receives an Inv-req message from parent memory

idp, it processes the message as follows:

� Hit: If id has the data in the (Sh,R(�)) state, it invalidates (purges) the cell and sends an

Inv-rep message to the parent to acknowledge the invalidation.

� Hit but outstanding reads: If id has the data in the (Sh,R(dir)) state and dir 6= �, it

multicasts Inv-req messages to memories speci�ed by directory dir, and creates a transient

record for the address.

Receive-Inv-Req-And-Send-Inv-Rep Rule

hid, Cell(a,v,(Sh,R(�))) jm, Msg(idp, id, Inv-req, a,?) � in, out, trecsi
�! hid, m, in, out
Msg(id, idp, Inv-rep, a,?), trecsi

Receive-Inv-Req-And-Multicast-Inv-Req Rule

hid, Cell(a,v,(Sh,R(dir))) jm, Msg(idp, id, Inv-req, a,?) � in, out, trecsi if dir 6= �

�! hid, Cell(a,v,(Sh,R(dir))) jm, in, out
multicast(id, dir, Inv-req, a,?), Trec(a, (idp,Inv-req)) j trecsi

Discussion: Notice that an Inv-req message can be processed while the accessed address is

in a transient state. This fact is critical to avoid deadlocks. The only reason why Inv-req may

not be satis�ed or propagated immediately is if the cell is in the Ex state. But then it must

28

idp

kid

id

Trec(a,(id ,Sh-req))

pp

k

id p

k

k

id

Trec(a,(id ,Ex-req))

id

idid

Sh-rep

Sh-rep

id

P

permission Trec(a,(ia,Store))

Ex-rep

id

Trec(a,(ia,Load))

P

Sh-rep

permission
read write

Ex-rep

Ex-rep

Figure 12: Sh-rep and Ex-rep Processing (memory id receives a Sh-rep / Ex-rep message)

be the case that it has overtaken a Wb-req in the network. Once the Wb-req is executed,

Inv-req can be executed. An Inv-req request at an L1 can be processed to completion without

further propagation. It can be shown by induction that any memory (not necessarily the

innermost one) can process an Inv-req request to completion in a �nite number of steps.

7.4 Parent-to-Child Reply Rules

A reply message (Sh-rep or Ex-rep) can be processed immediately. It updates the cache

according to the message, processes the suspended request, and deletes the transient record

for the address. In the L1 cache the suspended request is from the processor and processing

it means resuming the instruction. In non-L1 caches, the suspended request is from another

cache, and is processed by sending a reply message.

Sh-Reply Rules: When an L1 cache receives a Sh-rep message, it caches the data in the

(Sh,R(�)) state. In all other cases the data in cached in the (Sh,R(idk)) state, where idk is

the identi�er in the suspended request.

Receive-Sh-Rep-And-Execute-Load Rule

Sys(hid, m, Msg(idp, id,Sh-rep, a, v) � in, out, Trec(a, (ia,Load)) j trecsi, Proc(ia, rf, prog))

if prog[ia] = r := Load(r1) and a = rf[r1]

�! Sys(hid, Cell(a,v,(Sh,R(�))) jm, in, out, trecsi, Proc(ia+1, rf[r := v], prog))

Receive-Sh-Rep-And-Send-Sh-Rep Rule

hid, m, Msg(idp, id,Sh-rep, a, v)� in, out, Trec(a, (idk,Sh-req)) j trecsi
�! hid, Cell(a,v,(Sh,R(idk))) jm, in, out
Msg(id, idk,Sh-rep, a, v), trecsi

Ex-Reply Rules: When an L1 cache receives an Ex-rep message, it caches the data in the

(Ex,R(�)) state. In all other cases the data in cached in the (Sh,W(idk)) state, where idk is

29

the identi�er in the suspended request.

Receive-Ex-Rep-And-Execute-Store Rule

Sys(hid, m, Msg(idp, id,Ex-rep, a, u) � in, out, Trec(a, (ia,Store)) j trecsi, Proc(ia, rf, prog))

if prog[ia] = Store(r1, r2) and a = rf[r1]

�! Sys(hid, Cell(a,v,(Ex,R(�))) jm, in, out, trecsi, Proc(ia+1, rf, prog)) where v = rf[r2]

Receive-Ex-Rep-And-Send-Ex-Rep Rule

hid, m, Msg(idp, id,Ex-rep, a, v) � in, out, Trec(a, (idk,Ex-req)) j trecsi
�! hid, Cell(a,v,(Ex,W(idk))) jm, in, out
Msg(id, idk,Ex-rep, a, v), trecsi

7.5 Child-to-Parent Reply Rules

Generally a reply message (Wb-rep or Inv-rep) from a child can also be processed immediately

in a similar manner: It updates the cache according to the message, processes the suspended

request, and deletes the transient record for the address. However, there are several di�erent

cases for generating the responses for the suspended requests, and in one case the transient

record is not deleted immediately.

Wb-Reply Rules: When memory id receives a Wb-rep message from child idk, it pro-

cesses the message depending upon the type of suspended request as following:

� Parent's Wb-req request: The cell's state is set to (Sh,R(idk)), and a Wb-rep message is

sent to the parent idp.

� Child's Sh-req request: If the requesting child is idj, the cell's state is set to (Ex,R(idkjidj)),

and a Sh-rep message is sent to idj.

� Child's Ex-req request: The request still cannot be satis�ed because we need to delete the

cell from the child idk �rst. The cell's state is set to (Ex,R(idkjidj)), and a Inv-req is sent

idk. The transient record is NOT deleted.

Receive-Wb-Rep-And-Send-Wb-Rep Rule

hid, Cell(a,u,(Ex,W(idk))) jm, Msg(idk, id,Wb-rep, a, v) � in, out, Trec(a, (idp,Wb-req)) j trecsi
�! hid, Cell(a,v,(Sh,R(idk))) jm, in, out
Msg(id, idp,Wb-rep, a, v), trecsi

Receive-Wb-Rep-And-Send-Sh-Rep Rule

hid, Cell(a,u,(Ex,W(idk))) jm, Msg(idk, id,Wb-rep, a, v) � in, out, Trec(a, (idj,Sh-req)) j trecsi
�! hid, Cell(a,v,(Ex,R(idkjidj))) jm, in, out
Msg(id, idj,Sh-rep, a, v), trecsi

Receive-Wb-Rep-And-Send-Inv-Req Rule

hid, Cell(a,u,(Ex,W(idk))) jm, Msg(idk, id,Wb-rep, a, v) � in, out, Trec(a, (idj,Ex-req)) j trecsi
�! hid, Cell(a,v,(Ex,R(idk))) jm, in, out
Msg(id, idk, Inv-req, a, v), Trec(a, (idj,Ex-req)) j trecsi

Inv-Reply Rules: When memory id receives a Inv-rep message from a child memory idk, it

proceeds as follows:

30

pid

Trec(a,(id ,Wb-req))

Wb-rep

id idk idk

id

idj

Wb-rep
jTrec(a,(id ,Sh-req)) jTrec(a,(id ,Ex-req))

k

p

id

Wb-rep Inv-req

id

Wb-rep Sh-rep

Figure 13: Wb-rep Processing (memory id receives a Wb-rep message)

id

id

Inv-rep

p

kk id

pTrec(a,(id ,Inv-req))
kCell(a,v,(cs,R(id | dir))) k

id

Inv-rep

Inv-rep

idj

Cell(a,v,(Sh,R(id))

idkid

Cell(a,v,(Ex,R(id))k

jTrec(a,(id ,Ex-req))

id

Ex-repInv-rep

Figure 14: Inv-rep Processing (memory id receives a Inv-rep message)

� Incomplete invalidation: If the directory shows that some other children still have the

data, the memory simply removes idk from the directory. The transient record in NOT

deleted.

� Complete invalidation, parent's Inv-req request: The cell is purged and a Inv-rep message

is sent to the parent.

� Complete invalidation, child's Ex-req request: If the suspended message is from child idj,

the cell's state is set to (Ex,W(idj)), and an Ex-rep message is sent to idj.

Receive-Inv-Rep-Pending Rule

hid, Cell(a,v,(cs,R(idkjdir))) jm, Msg(idk, id, Inv-rep, a,?) � in, out, trecsi if dir 6= �

�! hid, Cell(a,v,(cs,R(dir))) jm, in, out, trecsi

Receive-Inv-Rep-And-Send-Inv-Rep Rule

hid, Cell(a,v,(Sh,R(idk))) jm, Msg(idk, id, Inv-rep, a,?) � in, out, Trec(a, (idp,Inv-req)) j trecsi
�! hid, m, in, out
Msg(id, idp, Inv-rep, a,?), trecsi

31

Receive-Inv-Rep-And-Send-Ex-Rep Rule

hid, Cell(a,v,(Ex,R(idk))) jm, Msg(idk, id, Inv-rep, a,?) � in, out, Trec(a, (idj,Ex-req)) j trecsi
�! hid, Cell(a,v,(Ex,W(idj))) jm, in, out
Msg(id, idj,Ex-rep, a, v), trecsi

7.6 Message Passing Rules

Message-Passing-To-Child Rule

Sys(hid, m, in, Msg(id, idk, cmd, a, v)
 out, trecsi, Sys(hidk, mk, ink, outk, trecski, euk) j sg)
�! Sys(hid, m, in, out, trecsi, Sys(hidk, mk, ink �Msg(id, idk, cmd, a, v), outk, trecski, euk) j sg)

Message-Passing-To-Parent Rule

Sys(hid, m, in, out, trecsi, Sys(hidk, mk, ink, Msg(idk, id, cmd, a, v)
 outk, trecski, euk) j sg)
�! Sys(hid, m, in�Msg(idk, id, cmd, a, v), out, trecsi, Sys(hidk, mk, ink, outk, trecski, euk) j sg)

8 Deadlock Avoidance and Bu�er Management

In HCN-base, when a protocol message is received, there are three possible cases regarding

how it can be processed:

1. Reply messages: If the message is a reply message (Sh-rep, Ex-rep, Wb-rep or Inv-rep),

then it can always be processed to completion immediately. If the memory is not an L1

cache, a reply message is issued to the original requesting site.

2. Invalidation request: If the message is Inv-req, then it can always be processed to com-

pletion in a number of steps by invalidating the descendents. (See the discussion in

Section 7.3).

3. Write-back request: If the message is Wb-req, then it may be blocked if the accessed

address is in a transient state. However, as discussed in Section 7.3, the address will

come out of the transient state without communicating with the parent memory.

4. Shared and Exclusive requests: If the message is Sh-req or Ex-req, then it may be blocked

if the accessed address is in a transient state. The memory may need to communicate

with both the parent and children memories to process the request associated with the

transient address. Thus, there is a real potential for deadlock. However, this deadlock is

avoided because the invalidation requests are always allowed to proceed upwards.

A rigorous proof that HCN-base is deadlock free is based on the case analysis of the relative

positions of requesters and the location of the data in the memory hierarchy, and is quite

tedious. Next we discuss two interrelated issues: incoming queue management and liveness.

32

Sh-rep, Ex-rep
Wb-rep, Inv-rep
Inv-req

from network

Sh-req, Ex-req
Wb-req

Sh-req, Ex-req, Wb-req

from network

(a) (b)

Figure 15: Simple Bu�er Management for Incoming Messages

Both reply and request messages may be present in an incoming queue. To avoid dead-

locks, it is essential that reply messages not be blocked by the request messages, and an

enabled request message not be blocked by other blocked requests. We did not have to pay

attention to this problem so far because we assumed that the messages in the queue could

commute with each other. Now we develop a concrete bu�er management strategy that is

fair, deadlock free and implementable.

Figure 15(a) gives a simple bu�er management strategy involving a single FIFO queue.

In HCN-base, a reply message or an Inv-req message can be processed immediately upon

its arrival. The other request messages (i.e. Sh-req, Ex-req or Wb-req), if they cannot be

processed when at the head of the queue, are simply put at the end of the incoming queue.

This ensures that the memory cannot go idle as long as there is an enabled request in the

queue. This implies that if there are cache misses in the system, then within a �nite amount

of time, one of the cache misses will be serviced. However, this simple bu�er management

strategy does not ensure the liveness for each processor. In theory, it is possible that a certain

unlucky Sh-req, Ex-req or Wb-req message never gets an opportunity to be processed because

the requests from other processors always beat it. The probability of this type of starvation

may be very small in practice. A deadlock can also result if the queue cannot accommodate

all the outstanding requests. The worst case for the queue length is determined by the

number of processors and is usually not a serious issue.

Figure 15 (b) ensures the liveness for each process by employing two bu�er queues for

incoming messages, one for reply messages and Inv-req messages, and the other for Sh-req,

Ex-req and Wb-req messages. This organization puts all the blockable requests in a separate

33

1a

na

2a from networkEx-req

Ex-req

Ex-req
Wb-req

Sh-req

Sh-req

Wb-req

Sh-req

Wb-req

Sh-rep, Ex-rep
Wb-rep, Inv-rep
Inv-req

Figure 16: Bu�er Management for Incoming Messages

queue and processes them in the FIFO order. This organization guarantees fairness for all

requests.

An obvious drawback of the bu�er management described above is that a blocked request

message may unnecessarily prevent the processing of di�erent addresses. Figure 16 shows the

organization used in the protocol we designed for the Start-Voyager machine: blocked request

messages for di�erent addresses are maintained in di�erent queues so that they cannot block

each other. This strategy can result in better performance. This completes the description

of a realistic protocol for DSM's with a hierarchy of caches.

9 Summary and Research-in-Progress

This paper has made the following contributions:

A new two-phase Imperative-Directive methodology for designing cache coherence protocols:

This methodology separates the correctness and the liveness concerns in the design process.

In the imperative design phase, we ignore the liveness issues and design a preliminary protocol

by giving a set of rules that can only cause state transitions that are consistent with the

memory model. In the directive design phase, we specify the precise conditions for invoking

the imperative rules by incorporating directive messages and transient records. The key

point is that improper additional conditions for invoking imperative actions cannot a�ect

the correctness of the system although they may cause deadlocks or livelocks. Protocols

34

designed with this methodology are often easier to understand, modify and reason about.

For example, the �nal protocol presented here in 27 rules is far more tractable than its 3000

line implementation in C for StarT-Voyager [3].

Successive re�nement of protocols to incorporate implementation issues: The HC model ig-

nored the DSM issues but made it easy to derive the rules for the HCN model, which had a

network and distributed control. Similarly, in the directive design phase, we separated the

message bu�er management issue by �rst assuming that messages in the input queue could

commute and thus avoid blocking enabled messages. The separation of bu�er management

results in protocols with better modularity.

Protocol veri�cation against a memory model: We specify both the memory model and

the protocol using the same formalism. TRS's are well suited to describe asynchronous

computations, and allow us to formulate the correctness question precisely. The designer

has to prove three conditions (soundness, completeness and connection) with respect to

the memory model to show that a protocol implements the memory model correctly. Our

successive re�nement approach to protocol design makes these proofs much easier to develop

and understand. In fact for us the design and veri�cation process is totally intermingled.

Our approach to veri�cation is di�erent from others [27, 21] because they concentrate

on proving certain invariants. Generally, it is di�cult to determine if one has a su�cient

set of invariants to ensure that the behaviors are consistent with the memory model. In the

course of our proofs one ends up proving many similar invariants but their need is derived in

a systematic way. It is important to point out that, for sophisticated protocols, the tedious

part of the correctness proof (e.g., case analysis) can be automated using a model checker

tool.

A complete protocol to implement Sequential Consistency on a DSM with a hierarchical

caches: The protocol we have presented to illustrate our methodology is a simpler version

of one of the protocols implemented on StarT-Voyager. The �nal version of the protocol

is free from deadlock, and ensures that every processor makes progress. Some potential

optimizations have been excluded from the protocol for the sake of clarity. An optimized

version of the HCN-base protocol along with all the proofs can be found in [24].

35

Related Research-in-Progress: Needless to say, the Imperative-Directive methodology

can be applied to designing other more sophisticated cache protocols. Cachet [23] is a tool-

box containing cache-coherence primitives that can be used to build protocols on-the-y.

Cachet implements a relaxed memory model and employs two critical techniques, instant-

writes (to reduce write latency) and lazy-ushes (to decrease the e�ect of false sharing).

Cachet de�nes a set of coherence primitives for each state for both the cache and the home

memory engines. Memory consistency and protocol liveness are guaranteed regardless of

how the primitives are chosen to execute, although a smart selection can result in better

performance.

We have applied the TRS framework to modeling and veri�cation of out-of-order and

speculative microprocessors [25]. We are also exploring hardware synthesis from the type

of TRS's presented in this paper. The preliminary results based on hand compilation of

TRS rules into synthesizable Verilog look promising. Our goal is to produce an architecture

description language and a compiler that will dramatically reduce the design e�ort required

to implement complex systems.

Acknowledgment: We are thankful to Larry Rudolph, Boon Ang, Alex Caro,

Derek Chiou and Keith Randall for reading the �nal draft of this paper. Funding for this

work is provided in part by the Advanced Research Projects Agency of the Department of

Defense under the Ft. Huachuca contract DABT63-95-C-0150.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie,

and D. Yeung. The MIT Alewife Machine: Architecture and Performance. In Proceedings of the 22th

International Symposium On Computer Architecture, 1995.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.

TreadMarks: Shared Memory Computing on Networks of Workstations. IEEE Computer, 29(2):18{28,

Feb. 1996.

[3] B. S. Ang and D. Chiou. Start-Voyager: Hardware Engineering Speci�cation. CSG Memo 385, Labo-

ratory for Computer Science, MIT, June 1997.

[4] J. K. Archibald. The Cache Coherence Problem in Shared-Memory Multiprocessors. Phd thesis,

Department of Computer Science, University of Washington, Feb. 1987.

[5] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An Analysis of Dag-Consistent

Distributed Shared-Memory Algorithms. In Proceedings of the Eighth Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages 297{308, Padua, Italy, June 1996.

[6] M. Browne, E. Clarke, D. Dill, and B. Mishra. Automatic Veri�cation of Sequential Circuits Using

Temporal Logic. IEEE Transaction on Computers, pages 1035{1044, Dec. 1986.

36

[7] E. Clarke, E. Emerson, and A. Sistla. Automatic Veri�cation of Finite-State Concurrent Systems

using Temporal Logic Speci�cations. ACM Transactions on Programming Languages and Systems,

8(2):244{263, Apr. 1986.
[8] M. Dubois, C. Scheurich, and F. Briggs. Memory Access Bu�ering in Multiprocessors. In Proceedings

of the 13rd International Symposium On Computer Architecture, pages 434{442, June 1986.
[9] G.-R. Gao and V. Sarkar. Location Consistency { Stepping Beyond the Barriers of Memory Coherence

and Serializability. Technical Memo 78, ACAPS Laboratory, School of Computer Science, McGill

Univerisity, Dec. 1993.
[10] K. Gharachorloo. Memory Consistency Models for Shared-Memory Multiprocessors. Phd. thesis,

Stanford University, 1995.
[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory Consis-

tency and Event Ordering in Scalable Shared-memory Multiprocessors. In Proceedings of the 17th

International Symposium on Computer Architecture, pages 15{26, May 1990.
[12] J. R. Goodman and P. J. Woest. The Wisconsin Multicube: A New Large-Scale Cache-Coherent

Multiprocessor. In Proceedings of the 15th International Symposium On Computer Architecture, pages

422{431, May 1988.
[13] C. Ip and D. Dill. Better Veri�cation Through Symmetry. In Proceedings of the 11th International

Symposium on Computer Hardware Description Languages and Their Applications, pages 87{100, Apr.

1993.
[14] C. Ip and D. Dill. E�cient Veri�cation of Symmetric Concurrent Systems. In International Conference

on Computer Design: VLSI in Computers and Processors, Oct. 1993.
[15] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Distributed Shared

Memory. In Proceedings of the 19th International Symposium On Computer Architecture, pages 13{21,

May 1992.
[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira,

J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stanford FLASH Multipro-

cessor. In Proceedings of the 21st International Symposium on Computer Architecture, pages 302{313,

Apr. 1994.
[17] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.

IEEE Transactions on Computers, C-28(9):690{691, Sept. 1979.
[18] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The DASH

Prototype: Implementation and Performance. In Proceedings of the 19th International Symposium on

Computer Architecture, pages 92{103, May 1992.
[19] C. May, E. Silha, R. Simpson, and H. Warren, editors. The PowerPC Architecture: A Speci�cation for

A New Family of RISC Processors. Morgan Kaufmann, 1994.
[20] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Ph.d disser-

tation, Carnegie Mellon University, May 1992.
[21] F. Pong and M. Dubois. A New Approach for the Veri�cation of Cache Coherence Protocols. IEEE

Transactions on Parallel and Distributed Systems, 6, Aug. 1995.
[22] F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying Distributed Directory-based Cache Co-

herence Protocols: S3.mp, a Case Study. In EuroPar'95, 1995.
[23] X. Shen. Cachet: A Cache Coherence Primitive Toolkit (in preparation). CSG Memo 404, Laboratory

for Computer Science, MIT, Nov. 1997.
[24] X. Shen and Arvind. Speci�cation of Memory Models and Design of Provably Correct Cache Coherence

Protocols. CSG Memo 398, Laboratory for Computer Science, MIT, June 1997.
[25] X. Shen and Arvind. Modeling and Veri�cation of ISA Implementations. In Proceedings of the 1998

Australasian Computer Architecture Conference, Perth, Australia (MIT CSG Memo 400(A)), Feb.

1998.
[26] I. C. Society. IEEE Standard for Scalable Coherent Interface. 1993.
[27] U. Stern and D. L. Dill. Automatic Veri�cation of the SCI Cache Coherence Protocol. In Correct

Hardware Design and Veri�cation Methods: IFIP WG10.5 Advanced Research Working Conference

Proceedings, 1995.

37

