CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Modeling and Verification of ISA Implementations

Xiaowei Shen, Arvind
In Proceedings of the Australasian Computer

Architecture Conference, February 1998,
Perth, Australia

1998, February

Computation Structures Group
Memo 400A

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Modeling and Verification of ISA Implementations

Xijaowei Shen and Arvind

Laboratory For Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
xwshen, arvind@lcs.mit.edu

Abstract. We propose a method to precisely model implementations of
Instruction Set Architectures (ISA) using term rewriting systems (TRS).
Our method facilitates understanding of important micro-architectural
differences without delving into low-level implementation details. More
importantly, the use of TRS allows us to prove rigorously the equivalence
of different implementations.

We first define AX, a simple RISC ISA, by specifying its operational
semantics using a simple in-order execution model. We then give an AX
implementation which uses register renaming and permits out-of-order
instruction execution. The equivalence of the two models is proved by
showing that the two TRS’s can simulate each other.

1 Introduction

Modern microprocessors embody increasingly complex micro-architectures to
achieve high performance. Optimization techniques such as out-of-order and
speculative execution, write buffers and split-phase bus transactions, can make
the semantics of certain instructions difficult to understand. For example, from
the PowerPC manual [May et al., 1994] it is not easy to pin down the precise
semantics of memory access and memory barrier instructions given the weakly
consistent storage model for shared-memory multiprocessor systems. Often the
only precise description of an ISA implementation is the program (in some hard-
ware description language) from which the actual logic gates are generated. Of
course each implementation has its own hardware description program which
plays an indispensable role in both the behavioral verification of the design and
the debugging of the actual microprocessor chip. However, such a program con-
tains too much implementation detail, and is not very amenable to verification
as an ISA specification.

This paper takes a novel approach to descriptions of ISA implementations.
We describe a computer system and its components as terms generated by a
context free grammar. The operational behavior is specified as a set of rules for
rewriting the terms that represent the system or its components. Term rewriting
system [Klop, 1992] is convenient for describing parallel systems, and can be used
to prove the correctness of an implementation with respect to a specification.

2 Shen € Arvind

We give a brief introduction to TRS in Section 2. In Sections 3 and 4 we
present the AX instruction set and define its operational semantics using a
simple in-order execution processor (Pg). In Section 5 we give an implementation
of AX that allows out-of-order execution by employing register renaming (Pgr).
Then in Section 6, we formally prove that Px is a correct implementation of AX
by showing that Pp and Pr can simulate each other. Finally we discuss other
related work and research in progress.

2 Term Rewriting Systems

A term rewriting system is defined as a tuple (S, R, Sg), where S is a set of terms,
R is a set of rewriting rules, and Sg is the set of initial terms (S¢ C S). In the
architectural context, the terms and rules of a TRS represent states and state
transitions, respectively. The general structure of rewriting rules is as follows:

s1 if p(s1)
— S92

where s; and s, are terms, and p is a predicate.

A rule can be used to rewrite a term if its left-hand-side pattern matches the
term or one of its subterms, and the corresponding predicate is true. If several
rules are applicable, then any one of them can be applied. If no rule is applicable,
then the term cannot be rewritten any further and is said to be in normal form.

We use C[] to represent a contert, which is a term with a “hole” that can
be filled by a term. C[s] refers to the term in which the hole is filled by term s.

We say term s; can be rewritten to term ss in one rewriting step (s1 — s2),
if (i) there exist a context C[] and terms s} and sj such that s; = C[s}] and
s2 = C[s4]; and (ii) s} can be rewritten to s, according to some rewriting rule.

We say term s; can be rewritten to term s, in zero or more rewriting steps
(s1 —» s2), if either (1) sy = so; or (ii) there exists a term s’ such that s; — s’
and s’ —» so.

A term s is legal if there exists so € Sg such that so —» s. Since we are only
interested in legal terms, we will drop the quantifier “legal” in our discussion.

A TRS is confluent if, for any term s1, if s1 —» s2 and s; —» s3, then there
exists a term s4 such that ss —» s4 and s3 —» s4.

A TRS is strongly terminating if, for any term, it can always be rewritten to
a normal form using any rewriting strategy.

3 AX Instruction Set Architecture

AZX is a minimalist RISC instruction set (see Figure 1), in which all arithmetic
operations are performed on registers and only the Load and Store instructions
can access memory. Semantically instructions are executed strictly according
to the program order: the program counter is increased by one each time an
instruction is executed except for the Jz instruction. The informal meaning of
the instructions is as follows:

Modeling and Verification of ISA Implementations 3

The load-constant instruction r:=Loadc(v) puts constant v into register r.
The load-program-counter instruction r:= Loadpc puts the content of the pro-
gram counter into register r. The arithmetic-operation instruction r:= Op(ry, r2)
performs an arithmetic operation on operands specified by registers r; and ra,
and puts the result into register r. The branch instruction Jz(ry, r2) sets the pro-
gram counter to the target instruction address specified by register ry if register
r; contains value zero (otherwise the program counter is simply increased by
one). The load instruction r:=Load(r;) reads the memory cell specified by regis-
ter ri, and puts the data into register r. The store instruction Store(ry, r2) writes
the content of register ro into the memory cell specified by register r; .

INST = r:=Loadc(v) Load-constant Instruction
[r:=Loadpc Load-program-counter Instruction
[r:=0p(r1,r2) Arithmetic-operation Instruction
[Jz(ri,r2) Branch Instruction
[r:=Load(r1) Load Instruction
[Store(ri,r2) Store Instruction

Fig. 1. AX Instruction Set

Throughout the paper, we use ‘]’ as meta notation in grammars to separate
disjuncts. We use ‘a’ and ‘ia’ to represent a data address and an instruction
address, respectively. We use ‘r’ as a register name, ‘t’ as a register renaming
tag, and ‘v’ and ‘v’ as values. Subscripts will be used to distinguish domain
elements whenever necessary. To avoid unnecessary complications, we assume
that the instruction address space is disjoint from the data address space, so
that self-modifying code is forbidden.

4 Pp Model: Operational Semantics of AX

In this section, we define Py (base processor), a single-cycle, non-pipelined, in-
order execution model, and then give the operational semantics of the AX in-
struction set. The grammar of Pp is given in Figure 2. The system has two com-
ponents, a memory and a processor. The memory consists of a set of memory
cells, where each memory cell has an address and a value. The processor consists
of a program counter, a register file, and a program. The program counter holds
the address of the instruction to be executed. The register file is a set of registers,
where each register has a register name and a value. The program is a set of
instructions, in which each instruction is associated with an instruction address.

In our notation, ‘|’ is a constructor that is commutative and associative. We
use ‘e’ to represent the empty term, and ‘-’ to represent the wild-card term that
can match any term. We assume that instructions in a program have distinct
instruction addresses, and use notation prog[ia] to refer to the instruction with

4 Shen € Arvind

SYS = Sys(MEM, PROC) System

MEM = e | Cell(a,v)|MEM Memory

PROC = Proc(PC, RF, PROG) Processor

PC = ia Program Counter
RF = € | Reg(r,v)|RF Register File
PROG = € | Inst(ia, INST) | PROG Program

Fig. 2. Ps Model

instruction address ia in the program prog. We assume that addresses in the mem-
ory are pairwise distinct, and so are register names in the register file. Notation
m[a] refers to the content of memory cell a, and notation m[a:=v] represents
memory m with memory cell a updated with value v. Similarly, notation rf[r]
refers to the content of register r, and notation rf[r :=v] represents the register
file that differs from rf only in the content of register r.

In the initial system term, the program counter is the address of the first
instruction to be executed, and all registers and memory cells have the undefined
value ‘L’. The following rewriting rules specify the operational semantics of the
AX instruction set:

Loadc Rule

Proc(ia, rf, prog) if progfia] = r:=Loadc(v)
— Proc(ia+1, rf[r:=v], prog)
Loadpc Rule

Proc(ia, rf, prog) if progfia] = r:=Loadpc
— Proc(ia+1, rf[r:=ia], prog)
Op Rule

Proc(ia, rf, prog) if progfia] = r:=O0p(r1,r2)
— Proc(ia+1, rf[r:=v], prog) where v = Op(rf[r1], rf[r2])
Jz-Jump Rule

Proc(ia, rf, prog) if proglia] = Jz(ri,r2) and rf[rn] =0
— Proc(rf[rz], rf, prog)
Jz-NoJump Rule

Proc(ia, rf, prog) if proglia] = Jz(ri,r2) and rf[r] # 0
— Proc(ia+1, rf, prog)
Load Rule

Sys(m, Proc(ia, rf, prog)) if progfia] = r:=Load(r;)
—> Sys(m, Proc(ia+1, rf[r:=mla]], prog)) where a = rf[ry]
Store Rule

Sys(m, Proc(ia, rf, prog)) if prog[ia] = Store(r,r2)
— Sys(m[a:=rflrz]], Proc(ia+1, rf, prog)) where a = rf[r{]

Notice the memory access rules involve both the processor and the mem-
ory (i.e. the system), while other rules only deal with the processor. Notation
Op(v1,Vv2) represents the result of operation Op with operands v; and v,.

Modeling and Verification of ISA Implementations 5

5 7Pr Model: An Implementation with Register Renaming

Micro-architectures that do register renaming have a register renaming table
and a set of instruction template buffers to hold instructions that have been
issued and assigned register renaming tags but have not yet completed execution.
Any instruction in the instruction template buffers can be executed if all its
operands are available (as will be seen in a moment, some extra restrictions may
apply to the execution of memory access operations). A natural consequence of
register renaming is that instructions can be executed in a different order from
the program order. Pg (processor with renaming), our implementation for such
a micro-architecture, uses the register file itself as the register renaming table.
This is a common implementation trick in the absence of speculative execution.

The grammar of Pr is given in Figure 3. Compared with the Pz model,
the main points to be noted are: (i) a new component, the instruction template
buffers (ITBs), has been added to the processor; (ii) the program counter can
either hold an instruction address, or be in the Stall state if the next instruction
address has not been resolved yet; (iii) a register can hold either a value or
a renaming tag. The ITBs is a sequence of instruction template buffers where
each buffer consists of an instruction template and the associated instruction
address. An instruction template is an instruction in which all register names
have been appropriately replaced by either values or renaming tags. The ITBs
is typically maintained as an ordered queue. We represent the queue using the
constructor ‘@’, which is associative but not commutative. Initially the ITBs is
empty.

SYS = Sys(MEM, PROC) System
MEM = € | Cell(a,v)|MEM Memory
PROC = Proc(PC, RF, ITBs, PROG) Processor
PC = ia [Stall Program Counter
RF = € [Reg(r,tv)|RF Register File
ITBs = € | ITB(ia, IT) @ ITBs Instruction Template Buffers
IT = ti=twns

[t:=Op(tvy,tva)

|] JZ(tV1,tV2)

[t:=Load(tvi)

[Store(tvi,tva) Instruction Template
tv =t] v Tag or Value
PROG = ¢ | Inst(ia, INST) | PROG Program

Fig. 3. Pr Model

5.1 Instruction Issue Rules

Instructions are issued in-order. When an instruction is issued, an instruction
template is created in the ITBs with operand register names replaced with the

6 Shen € Arvind

corresponding values or renaming tags from the register file. If the instruction
is to modify certain register, an unused renaming tag (t) is used to rename
the destination register. This tag is placed in the destination register, which is
overwritten later by either some value that is “committed” to the register, or
another tag when some other instruction with the same destination register is
issued.

Pgr-Loadc-Issue Rule
Proc(ia, rf, itbs, prog) 4 prog[ia] = r:=Loadc(v)
— Proc(ia+1, rf[r:=t], itbs @ ITB(ia, t:=v), prog)

Pgr-Loadpc-Issue Rule
Proc(ia, rf, itbs, prog) 4f prog[ia] = r:=Loadpc
— Proc(ia+1, rf[r:=t], itbs @ ITB(ia, t:=ia), prog)

Pgr-Op-Issue Rule
Proc(ia, rf, itbs, prog) 4f progfia] = r:=0p(r1,r2)
— Proc(ia+1, rf[r:=t], itbs @ ITB(ia, t := Op(rflr1], rf[r2])), prog)

Pgr-Jz-Issue Rule
Proc(ia, rf, itbs, prog) if progfia] = Jz(ry,r2)
— Proc(Stall, rf, itbs @ ITB(ia, Jz(rf[r1], rf[r2])), prog)

Pgr-Load-Issue Rule
Proc(ia, rf, itbs, prog) 4f progfia] = r:=Load(r;)
— Proc(ia+1, rf[r:=t], itbs @ ITB(ia, t:=Load(rf[r1])), prog)

Pgr-Store-Issue Rule
Proc(ia, rf, itbs, prog) if progfia] = Store(ri,r2)
— Proc(ia+1, f, itbs @ ITB(ia, Store(rf[r1], rf[r2])), prog)

Notice that for the Jz instruction, the program counter is set to Stall, which
will block the instruction issue until the target instruction address becomes avail-
able. The content of the program counter (ia) is recorded in the ITBs so that the
address of the next instruction (ia+1) can be computed in case of “no jump”.

In any implementation, there are a finite number of instruction template
buffers and renaming tags. Instruction issue has to be stalled if all instruction
template buffers are occupied, or no unused renaming tag is available to rename
the destination register. This availability checking can be easily modeled, and
we leave it as a simple exercise for the interested reader.

5.2 Arithmetic Operation and Value Propagation Rules

The arithmetic operation rule states that an arithmetic operation in the ITBs
can be performed if both operands are available. It assigns the result to the
corresponding tag.

Pgr-Op Rule

Proc(pc, f, itbs; @ ITB(iay, t:=Op(vi,va)) @ itbsy, prog)
— Proc(pc, rf, itbs; @© ITB(ias, t:=v) @ itbsy, prog) where v = Op(vi,va)

Modeling and Verification of ISA Implementations 7

The value propagation rules forward the value of a tag to other instruction
templates and the register that contains this tag. Notation itbss[v/t] means that
one or more appearances of tag t in itbsy are replaced by value v. Similarly,
notation rflv/t] refers to register file rf in which the register that contains tag t
is overwritten with value v.
Pgr-Value-Forward Rule

Proc(pc, f, itbs; @ ITB(ia1, t:=v) @ itbsa, prog) if t € itbsy
— Proc(pc, f, itbs; @ ITB(ia1, t:=v) & itbsy[v/t], prog)
Pg-Value-Commit Rule

Proc(pc, rf, itbs; @ (iai: t:=v) @ ithsa, prog) if t € rf
— Proc(pc, rflv/t], itbs; @ (ia;: t:=v) @ itbss, prog)

We also need the following rule so that a renaming tag can be retired and the
associated instruction template buffer can be freed.

Pr-Tag-Retire Rule
Proc(pc, f, itbs; @ ITB(iar, t:=-) @ itbsy, prog) if t ¢ rf, itbsy
— Proc(pc, rf, itbs; @ itbsa, prog)

It is worth noting that the Pg-Value-Commit and Pr-Tag-Retirerules cannot
create or destroy any other redex. Without them, the implementation would still
be correct. However, an unbounded number of instruction template buffers and
renaming tags would then be required.

5.3 Branch Completion Rules

The branch completion rules set the program counter appropriately according
to the resolved branch condition.
Pg-Jz-Jump Rule
Proc(Stall, rf, itbs @ ITB(ia1, Jz(0, nia)), prog)
— Proc(nia, rf, itbs, prog)
Pgr-Jz-NoJump Rule
Proc(Stall, rf, itbs @ ITB(ia1, Jz(v,-)), prog) if v#0
— Proc(ia1 +1, rf, itbs, prog)

5.4 Memory Access Rules

The memory access rules restrict the execution of a Load or Store operation to
cases where there is no other memory access instructions ahead in the ITBs.

Pgr-Load Rule
Sys(m, Proc(pc, rf, itbs; @ ITB(ia1, t:=Load(a)) & itbsa, prog))
if Load, Store ¢ itbs;
— Sys(m, Proc(pc, rf, itbs; @ ITB(iay, t:=m[a]) @ itbse, prog))
Pg-Store Rule
Sys(m, Proc(pc, rf, itbs; @ ITB(iaq, Store(a,v)) @ itbsy, prog))
if Load, Store ¢ itbs;
—> Sys(m[a:=v], Proc(pc, rf, itbs; @ itbss, prog))

8 Shen € Arvind

Memory access instructions can be implemented more aggressively while still
preserving the semantics for single processor systems. For example, allowing a
Load operation to be performed with outstanding Store operations can effec-
tively model FIFO write buffers. Furthermore, allowing a Store operation to be
performed with outstanding Store operations on different addresses allows the
write buffers to be non-FIFO. However, these implementations can produce very
different storage models in multiprocessor systems. We do not have space to ex-
plore this issue any further. Interested readers are referred to [Gharachorloo,
1995] [Shen and Arvind, 1997a] for a thorough discussion.

Discussion: The Pr model, a micro-architecture that uses register renaming
and allows out-of-order instruction execution, is remarkably simpler and more
precise than what one may find in a modern textbook. A part of the simplic-
ity arises from the fact that we have intentionally ignored some architectural
features such as precise pipeline stages, potential structural hazards and the
mechanism of finding the corresponding register for a renaming tag. The Pgr
model can be extended to include all such features as well as speculative in-
struction execution capability. TRS’s seem to be a very natural way to model
parallel and asynchronous systems.

6 Correctness Proof of the Pr Model

In this section, we demonstrate that the Pz and Pr models can “simulate” each
other in regards to the programmer visible states, which include the program
counter, the register file and the memory. By simulation, we mean intuitively
that there exists a mapping between the configurations of the two models such
that if we run a program on one model and take a snapshot of the programmer
visible states at any time during the execution, we can observe the same states
if we run the program on the other model and take a snapshot at an appropriate
time. One can imagine a print instruction that can print the content of the
program counter, a register, or a memory location. If model A can simulate
model B, then for any program, model A should print exactly what model B
prints throughout the execution. The following proof is rigorous though some
technical details have been omitted. The complete formal proof can be found
in [Shen and Arvind, 1997a].

It is easy to show that the Pz model can simulate the Pz model. A Pg
system term can be mapped (lifted) to a Pg system term by simply adding an
empty ITBs in the processor. We call this mapping function ITBL (instruction-
template-buffer-lift). Clearly, ITBL preserves the programmer visible states. It
is also easy to see that any rule of Pp can be simulated by a sequence of Pr
rules. For example, applying the Op rule in Pp can be simulated by applying
the Pgr-Op-Issue, Pr-Op, Pr-Value-Commit and Pgr-Tag-Retire rules in Pg.
The simulation theorem is stated as follows:

Theorem 1. Let s; and s, be system terms in Pg. If sy —» s» in Pp, then
ITBL(s;) —» ITBL(s2) in Pgr.

Modeling and Verification of ISA Implementations 9

The simulation in the other direction requires some thought. We define func-
tion ITBF (instruction-template-buffer-free), which maps Pg system terms to
‘P system terms while preserving the programmer visible states. The idea be-
hind function ITBF is that, for any Pr system term, we can rewrite the term
to a normal form in which the ITBs is empty. The normal form can be mapped
(projected) to a Pp term by simply deleting the empty ITBs. The theorem is
stated as follows:

Theorem 2. Let s; and s; be system terms in Pr. If 51 —» s3 in Pg, then
ITBF(s1) —» ITBF(s2) in Pg.

6.1 Instruction-Template-Buffer-Free Function

Intuitively, with instruction issue stalled, the ITBs will sooner or later become
empty as instruction execution proceeds. When the ITBs becomes empty, no tag
can exist in the register file, and the program counter cannot be in the Stall state.
ITBF is based on the observation that we can always make a Pr system term
“instruction-template-buffer-free” by applying non-instruction-issue rules. This
motivates us to define another rewriting system Rz7px which uses the same
grammar as the P model and includes all the P rules except the instruction
issue rules.

Definition3. Rz7sr = { Pgr-Op, Pgr-Value-Forward, Pg-Value-Commit,
Pgr-Tag-Retire, Pr-Jz-Jump, Pr-Jz-NoJump, Pg-Load, Pr-Store }

It can be shown by simple induction and case analysis that for any Pr system
term, rewriting with respect to Rz7pF terminates within a finite number of
steps, and always reaches the same normal form regardless of the order in which
the rules are applied. In TRS jargon, Rz7x is said to be strongly terminating
and confluent.

It can be furthermore proved by induction that in the normal form, the ITBs
is empty, no renaming tag exists in the register file, and the program counter
contains an instruction address. We define ITBF(s) as “compute the normal form
of s with respect to Rz7px+ and then delete the empty ITBs”. It is trivial to
show that ITBF maps the initial Pr term to the initial Pz term. As can be seen,
for any Pp system term s, ITBF(ITBL(s)) = s.

6.2 Simulate Py in Pp
In the remainder of this section, we prove by induction on rewriting steps that

P can simulate Pr. Assume s; —» S3 in P by applying rule a.. There are two
cases on a:

— a € Rz7pr. Needless to say, ITBF(s;) and ITBF(s2) are identical.

10 Shen € Arvind

— o ¢ Rzrr (i-e. a is an instruction issue rule). In this case, we can show
that an appropriate Pg rule can be applied to ITBF(s;) to yield a term which
is equal to ITBF(sz).

Suppose s; — s3 by applying some Rz7sx rule. It can be seen by inspecting
the Rz7pF rules that a can also be applied to s3. Assume s3 — s34 by
applying «, then s; —» s4 by applying some Rz7pr rules. This follows
from the fact that the Rz rules and the instruction issue rules are non-
interfering. Let s, be the normal form of s; with respect to Rz7px. It can
be proved by induction that o can be applied to s, to yield s,4+1 such that
S2 —» Spt1 by applying RzrsrF rules (see Figure 4).

Riter Riter ITBF
S S—=S - /=& ITBF(SY)
a a a corresponding
rulein Ps
Riter Riter Riter ITBF
SS—=>=>S -~ Sn+1 Sni2 ITBF(S)

Fig. 4. Simulate Instruction Issue Rule «

Furthermore, suppose s, 2 is the normal form of s, ; with respect to Rz75x.
Since s,, and s,2 both have empty instruction template buffers, it is easy
to show that ITBF(s,) — ITBF(s,+2) by applying the corresponding Pp
rule (see Figure 4). The table below gives the correspondence between the
Pg rules and the instruction issue rules of Pr. Notice the Pgr-Jz-Issue rule
corresponds to either the Jz-Jump or Jz-NoJump rule in Pg, depending on
whether the branch is taken or not.

| Pg instruction issue rule | corresponding P rule |

Pgr-Loadc-Issue rule Loadc rule
Pgr-Loadpc-Issue rule Loadpc rule

Pgr-Op-Issue rule Op rule

Pgr-Jz-Issue rule Jz-Jump/Jz-NoJump rule
Pg-Load-Issue rule Load rule

Pgr-Store-Issue rule Store rule

This completes the proof that if s; —» s» in Pg, then ITBF(s;) —» ITBF(sz)
in Pg. O

The two simulation theorems together imply the correctness of the Pgr model
with respect to the Pg model. From a pragmatic point of view it is also important
to specify a rewriting strategy in which a redex is rewritten within a finite number
of steps. Any reasonable implementation can easily satisfy this requirement.

Modeling and Verification of ISA Implementations 11

7 Research In Progress and Related Work

This work is a byproduct of our effort to design provably correct cache coherence
protocols for distributed shared memory systems. It was motivated by our desire
to incorporate program and processor behavior in the specification of memory
models. In [Shen and Arvind, 1997b] we defined sequential consistency based
on the P model, and designed a family of cache coherence protocols for a
distributed shared-memory system with hierarchical caches. The correctness of
the cache coherence protocols was proved by showing that the TRS’s for the
protocols and the memory model can simulate each other. Our experience shows
that the technique not only makes protocol verification more systematic, but
also helps us in designing adaptive protocols by successive refinement.

It is worth emphasizing that the proof technique is quite general and the
definition of the mapping (lifting and projecting) functions is usually straight-
forward. A more sophisticated processor implementation with speculative exe-
cution was verified in [Shen and Arvind, 1997a] using the same technique. The
method can also be used to verify realistic pipeline machines. Our effort is now
focused on the processor-memory interface since our main research interest is to
explore more aggressive implementations of memory access and synchronization
instructions in multiprocessor systems.

The use of formal techniques in designing systems partially depends upon the
tools available to support the technique. We have just begun the investigation
of appropriate tools to support our technique so that tedious case analysis can
be performed by machine. It should be possible to build or connect to a model
checker type of tool to explore all the reductions of a given term. Model checkers
like Murphi [Dill et al., 1992] verify assertions by exploring a finite state graph.
When a problem can be expressed without using too many states, such tools
have proven very useful as debuggers for engineers in verifying properties of
their designs.

Many of our systems can be expressed using other formal techniques such
as I/O automata [Lynch, 1996]. Techniques based on general theorem proving
systems, such as HOL, let the user express more general assertions but require
more help from the user in actually doing the proofs. Like TRS, assertions in
none of these formalisms can be automated fully due to the infinite number of
states. Nevertheless, useful tools such as FDR are available to verify that an
implementation satisfies its specifications.

Formal verification of microprocessors has gained considerable attention in
recent years. For example, Burch and Dill [Burch and Dill, 1994] described a
technique which automatically compares a pipelined implementation to an archi-
tectural specification and produces debugging information for incorrect processor
design. Levitt and Olukotun [Levitt and Olukotun, 1996] proposed a methodol-
ogy that iteratively deconstructs a pipeline by merging adjacent pipeline stages
thereby allowing verifications to be done in a number of easier steps. Wind-
ley [Windley, 1995] presented a case study which uses abstract theories to hi-
erarchically verify microprocessor implementations formalized in HOL. While
most of the previous work has focused on pipeline processors, one contribution

12 Shen € Arvind

of this paper is to show that features such as register renaming and write buffers
can be easily modeled so that their impact in multiprocessor systems can be
investigated conveniently.

Windley’s methodology is similar to ours, in the sense that his correctness
theorem states the implementation specification implies the behavior specifica-
tion. The most critical step in the proof is the definition of the abstract mapping
function such as ITBF. With our technique, the definition of this function is very
straightforward. For the examples we have tried, it can always be expressed as
the normal form with respect to a subset of the existing rules.

Acknowledgement We would like to thank Joe Stoy, Larry Rudolph, Ale-
jandro Caro and James Hoe for reading an earlier draft of this paper. Members
of the Computation Structures Group (CSG) have provided an extremely stim-
ulating environment to discuss the ideas presented here.

Funding for this work is provided in part by the Advanced Research Projects
Agency of the Department of Defense under the Ft Huachuca contract DABT63-
95-C-0150.

References

Burch, Jerry R. and Dill, David L. (1994). Automatic verification of pipelined
microprocessor control. In International Conference on Computer-Aided
Verification.

Dill, David L., Drexler, Andreas J., Hu, Alan J., and Yang, C. Han (1992). Pro-
tocol verification as a hardware design aid. In IEEFE International Confer-
ence on Computer Design: VLSI in Computers and Processors.

Gharachorloo, Kourosh (1995). Memory consistency models for shared-memory
multiprocessors. Phd. thesis, Stanford University.

Klop, Jan Willem (1992). Term rewriting system. In Abramsky, S., Gabbay,
D., and Maibaum, T., editors, Handbook of Logic in Computer Science,
volume 2. Oxford University Press.

Levitt, Jeremy and Olukotun, Kunle (1996). A scalable formal verification
methodology for pipelined microprocessors. In 83nd ACM IEEE Design
Automation Conference.

Lynch, Nancy A. (1996). Distributed Algorithms. Morgan Kaufmann.

May, Cathy, Silha, Ed, Simpson, Rick, and Warren, Hank, editors (1994). The
PowerPC' Architecture: A Specification for A New Family of RISC Proces-
sors. Morgan Kaufmann.

Shen, Xiaowei and Arvind (1997a). Processor models. CSG Memo 400, Labo-
ratory For Computer Science, MIT.

Shen, Xiaowei and Arvind (1997b). Specification of memory models and design
of provably correct cache coherence protocols. CSG Memo 398, Laboratory
For Computer Science, MIT.

Windley, Phillip J. (1995). Formal modeling and verification of microprocessors.
IEEFE Transactions on Computers, 44(1).

