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Analysis and Optimization
of Explicitly Parallel Programs using
the Parallel Program Graph Representation

Vivek Sarkar

Abstract

As more and more programs are written in explicitly parallel programming lan-
guages, it becomes essential to extend the scope of sequential analysis and optimization
techniques to explicitly parallel programs. Since the definition of a program depen-
dence graph (PDGQG) is strongly tied to its underlying sequential program, the PDG is
an inadequate intermediate representation for analysis and optimization of explicitly
parallel programs. In this paper, we propose the use of Parallel Program Graphs
(PPGs) as a general parallel program representation for analysis and optimization
of explicitly parallel programs. PPGs are comprised of parallel control flow edges
and synchronization edges, and can represent a broad class of deterministic parallel
programs. We highlight the main differences between PPGs and PDGs and show how
PPGs are strictly more general than PDGs. We also present a solution to the reaching
definitions analysis problem for PPGs to illustrate how PPGs can be used to perform
analysis and optimization of explicitly parallel programs.

1 Introduction

Major changes in processor architecture over the last decade have created a demand for
new compiler optimization technologies. Optimizing compilers have risen to this challenge
by steadily increasing the uniprocessor performance gap between optimized compiled and
unoptimized compiled code to a level that already exceeds the performance gap between two
successive generations of processor hardware. These traditional optimizations [2] have been
developed in the context of sequential programs — the assumption of sequential control flow
is intrinsic to the definition of basic optimization data structures such as the control flow
graph (CFQG), and pervades all the optimization algorithms.

As more and more programs are written in explicitly parallel programming languages, it
becomes essential to extend the scope of sequential analysis and optimization techniques
to explicitly parallel programs. This extension is necessary for maintaining single-processor
performance in parallel programs and also for adapting the parallelism in the program to
the target parallel machine. By an explicitly parallel programming language, we mean a



programming language that contains primitives for creating, terminating, and synchronizing
concurrent (logical) threads of activity. The primitives may be in the form of syntactic
extensions (e.g., the cobegin-coend construct in Concurrent Pascal [14], or the parallel con-
structs in the proposed ANSI X3H5 standard [18]), directives (e.g., HPF [15], OpenMP [20]),
or library calls (e.g., start(), run(), wait() in Java [13], and similar calls in pthreads [16]).
In this paper, we assume that the source primitives in the parallel program have already
been translated to the parallel program graph (PPG) representation [23, 24] and focus our
attention of performing compiler analysis and optimization on PPGs.

The memory consistency model assumed for accesses to shared variables can have a profound
impact on the semantics of an explicitly parallel program. We distinguish among three
(increasingly general) classes of parallel programs:

1. Deterministic parallel programs — these parallel programs always produce the same
output across multiple runs with the same input. Examples include parallel programs
with no data races that are constructed out of deterministic parallel control structures
such as doall loops and cobegin-coend, and directed synchronizations such as post-wait.

2. Nondeterministic data-race-free parallel programs — these parallel programs may pro-
duce different outputs across multiple runs with the same input. Examples include
parallel programs from class 1 augmented with undirected synchronization such as
acquire-release. However, all accesses to shared data must be protected by control
sequencing or by data synchronization (directed or undirected) so that each run of the
parallel program is guaranteed to be free of data races (programs in class 2 are also
referred to as data-race-free [1] and as properly labeled [11] in the literature).

3. Nondeterministic parallel programs with data races — these programs may be nonde-
terministic and, more importantly, are allowed to contain data races i.e., to contain
concurrent data accesses that are not protected by synchronization. The semantics
of the data races is usually specified by a strong memory consistency model such as
sequential consistency [17].

Compiler analysis and optimization becomes progressively harder for the three classes of
parallel programs listed above. The results presented in this paper apply only to deterministic
parallel programs (class 1). We intend to extend these results to nondeterministic data-race-
free parallel programs (class 2) in future work. Programs in classes 1 and 2 have the property
that extra reordering constraints on data accesses only need to be imposed at synchronization
boundaries.

However, nondeterministic parallel programs with data races (class 3) pose serious obstacles
to compiler analysis and optimization. The strong memory consistency semantics usually
assumed for programs in class 3 requires a default compilation approach in which the ordering
of all shared data accesses in the program is preserved; in general, it is illegal to even reorder
two consecutive read accesses with no intervening write in a strong memory consistency
model.

There are three approaches that can be taken to deal with class 3 parallel programs. First,
the data races in class 3 parallel programs can be viewed as standard programming practice



whose semantics is defined by a strong consistency model. The price of this approach is lack
of code optimization — by default, accesses to shared data must be treated like accesses to
volatile data. Even though there are cases in which the compiler can reorder data accesses for
simple classes of programs in class 3 (e.g., see [19]), it is hard to avoid the default serialization
of all read/write data accesses in a general case such as separate compilation of procedures
that contain pointer-based data references. The second approach can be to view the data
races in class 3 parallel programs as access anomalies or errors, similar to the assumptions
made by weak hardware memory consistency models (e.g., [1, 11]); this means that strong
memory consistency semantics will be guaranteed only for parallel programs in classes 1 or 2.
The third approach can be to define a weaker model such as Location Consistency [9, 10] as
a uniform memory consistency model for all three classes of parallel programs. The weaker
model does not consider data races in class 3 programs to be errors, but instead gives them a
different semantics that allows the same flexibility in reordering data accesses as is available
for reordering data accesses in class 1 and class 2 parallel programs.

It is unclear at this time which one of these three will become the established approach for
dealing with class 3 parallel programs. In the first approach, the analysis and optimization
techniques required for class 3 programs will be very different from the PPG-based techniques
introduced in this paper. In the second and third approaches, the PPG-based techniques
will be directly relevant. We believe that a significant drawback of the first approach is that
it will penalize all parallel programs (not just class 3 programs), because the compiler will
have to consider the possibility that any procedure that it compiles might be called from a
class 3 parallel program.

The rest of the paper is organized as follows. Section 2 gives an overview of the PPG
representation introduced in [23, 24]. Section 3 contains a few example PPGs. Section 4
highlights the main differences between PPGs and program dependence graphs (PDGs) [7].
Section 5 presents our solution to the reaching definitions analysis problem for PPGs.
Section 6 outlines related work, and section 7 contains our conclusions.

2 Parallel Program Graphs

This section contains an overview of the PPG representation introduced in [23, 24]. The
parallel program graph (PPQG) is a general intermediate representation that can represent
deterministic parallel programs and that subsumes program dependence graphs (PDGs) [7]
and control flow graphs (CFGs) [2]. Analogous to control dependence and data dependence
edges in PDGs, PPGs contain control edges that represent parallel flow of control and
synchronization edges that impose ordering constraints on execution instances of PPG nodes.
PPGs also contain MGOTO nodes [6] that are a generalization of REGION nodes in PDGs.

Definition 2.1. A Parallel Program Graph PPG = (N, Ecopt, Esyne, TYPE) is a rooted
directed multigraph in which every node is reachable from the root using only control edges.
It consists of:

1. N, a set of nodes.



2. Econt € N X N x {T,F,U}, a set of labeled control edges. Edge (a,b,L) € E.ont
identifies a control edge from node a to node b with label L.

Labels T and F' represent true and false outcomes in conditional control edges from a
PREDICATE node. For consistency, we also use a label, U, for unconditional control
edges.

3. Esyne € N x N x SynchronizationConditions, a set of synchronization edges. Edge
(a,b, f) € Esyn. defines a synchronization from node a to node b with synchronization
condition f.

4. TYPE, a node type mapping. TYPE(n) identifies the type of node n as one of the
following: START, PREDICATE, COMPUTE, MGOTO.

The START node and PREDICATE node types in a PPG are just like the correspond-
ing node types in a CFG or a PDG. The COMPUTE node type is more general because
a PPG compute node may either have an outgoing control edge as in a CFG or may
have no outgoing control edges as in a PDG. A node with TYPE = MGOTO is used as
a construct for creating parallel threads of computation — a new thread is created for
each successor of an MGOTO node. Only MGOTO nodes can have multiple successors
with the same label. O

We distinguish between a PPG node and an execution instance of a PPG node (i.e., a
dynamic instantiation of that node). Given an execution instance I, of PPG node q, its
execution history, H(1,), is defined as the sequence/trace of PPG node and label values that
caused execution instance I, to occur. A PPG’s execution begins with a single execution
instance ([sy¢) of the start node, with H(Is4r¢) = () (an empty sequence).

A control edge in Ey is a triple of the form (a,b, L), which defines a transfer of control
from node a to node b for branch label (or branch condition) L. The semantics of control
edges is as follows. If TYPE(a) = PREDICATE, then consider an execution instance I, of
node a that evaluates node a’s branch label to be L: if there exists an edge (a,b, L) € E,ons,
execution instance I, creates a new execution instance [, of node b (there can be at most one
such successor node) and then terminates itself. The execution history of each I, is simply
H(I,) = H(!,) o {a,L) (where o is the sequence concatenation operator). If TYPE(a) =
MGOTO, then let the set of outgoing control edges from node a (all of which must have
label = U) be {(a,b1,L),..., (a,bg, L)}. After completion, execution instance I, creates a
new execution instance (I,) of each target node b; and then terminates itself. The execution
history of each I, is simply H ([,,) = H(I,) o {(a, L).

A synchronization edge in Ejyy is a triple of the form (a,b, f), which defines a PPG edge
from node a to node b with synchronization condition f. In general, f(H;, Hy) can be any
computable Boolean function on execution histories. However, in practice, there will only be
a few limited classes of synchronization conditions of interest (such as the control-independent
synchronization conditions defined at the end of this section). Given two execution instances
I, and I, of nodes a and b, f(H(I,), H(I,)) returns true if and only if execution instance
I, must complete execution before execution instance I, can be started. Note that the
synchronization condition depends only on execution histories, and not on any program



data values. Also, due to the presence of synchronization edges, it is possible to construct
PPGs that may deadlock (as in any explicitly parallel program).

A PPG node represents an arbitrary sequential computation. The control edges of a PPG
specify how execution instances of PPG nodes are created (unraveled), and the synchroniza-
tion edges of a PPG specify how execution instances need to be synchronized. A formal
definition of the execution semantics of MGOTO edges and synchronization edges is given
in [23].

We would like to have a definition for synchronization edges that corresponds to the notion
of loop-independent data dependence edges in sequential programs [3]. If there is a loop-
independent data dependence from node a to node x with respect to a common loop L that
contains a and z, then for each iteration of loop L that executes both nodes a and x it must
be the case that the instance of a iterations of loop L that do not execute both a and x. This
is the notion we are trying to capture with our definition of control-independent, discussed
below.

Consider an execution instance I, of PPG node = with execution history,
H(I;) = (w1, L, .o w4y -, U, - ., Ug, L) where up = .

We define nodeprefiz(H (1), a) (the nodeprefiz of execution history H(I,) with respect to the
PPG node a) as follows. If there is no occurrence of node a in H(I,), then nodeprefiz(H (1), a)
If a # x, nodeprefir(H (1), a) = (u1, L1, ..., u;, Li),u; = a, u; # a,i < j < k; if a = z, then
nodeprefiz(H (I;),a) = H(I;) = (u1, L1, ..., U, ..., Uj, ..., Uk, Li).

A control path in a PPG is a path that consists of only control edges. A node a is a control
ancestor of node z if there exists an acyclic control path from START to x such that a is on
that path.

A synchronization edge (z,y, f) is control-independent if a necessary (but not sufficient)
condition for f(H(1,), H(Iy)) =true is that nodeprefiz(H (1), a) = nodeprefiz(H (1), a) for
all nodes a that are control ancestors of both z and y. The reaching definitions analysis
presented in section 5 is currently restricted to PPGs that contain only control-independent
synchronization edges.

3 Examples of PPGs

In this section, we give a few examples of PPGs to provide some intuition on how PPGs can
be built in a compiler and how they execute at run-time. The reaching definitions analysis
in section 5 can work for all three examples described in this section.

Figure 1 is an example of a PPG obtained from a thread-based parallel programming model
that uses create and terminate operations. This PPG contains only control edges; it has
no synchronization edges. The create operation in statement S2 is modeled by an MGOTO
node with two successors: node S6, which is the target of the create operation, and node S3,
which is the continuation of the parent thread. The terminate operation in statement S5
ends the current thread, and is modeled by making node S4 a leaf node i.e., a node with no
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Figure 1: Example of PPG with only control edges
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Figure 2: Example of unstructured PPG with only control edges



outgoing control edges. (Any other linguistic construct that identifies the end of a thread’s
execution can be modeled in the same way.)

Figure 2 is another example of a PPG that contains only control edges and is obtained
from a thread-based parallel programming model. This is an example of “unstructured”
parallelism because of the goto S4 statements which cause node S4 to be executed twice
when predicate S1 evaluates to true. The PPG in Figure 2 is also an example of a non-
serializable PPG [24]. Because node S4 can be executed twice, it is not possible to generate
an equivalent sequential CFG for this PPG without duplicating code or inserting Boolean
guards. With code duplication, this PPG can be made serializable by splitting node S4 into
two copies, one for parent node S2 and one for parent node S3.

Figure 3 is an example of a PPG that represents a parallel sections construct [20],
which is similar to the cobegin-coend construct [14]. This PPG contains both control edges
and synchronization edges. The start of a parallel sections construct is modeled by
an MGOTO node with three successors: node S1, which is the start of the first parallel
section, node S2, which is the start of the second parallel section, and node S5, which is
the continuation of the parent thread. The goto SO statement at the bottom of the code
fragment is simply modeled by a control edge that branches back to node SO.

The semantics of parallel sections requires a synchronization at the end sections state-
ment. This is modeled by inserting a synchronization edge from node S2 to node S5 and
another synchronization edge from node S4 to node S5. The synchronization condition f for
the two synchronization edges is defined in Figure 3 as a simple function on the execution
histories of execution instances 1.52, .54, 1.S5 of nodes S2, S4, S5 respectively. For example,
the synchronization condition for the edge from S2 to S5 is defined to be true if and only
if H(1.52) = concat(H(I.55),(S1,U)); this condition identifies the synchronization edge
as being control-independent. In practice, a control-independent synchronization can be
implemented by simple semaphore operations without needing to examine the execution
histories at run-time [12].

Note that node S5 in Figure 3 has to wait for nodes S2 and S4 to complete before it can start
execution. For a multithreaded runtime system that supports suspensive threads, a more
efficient PPG for this example can be obtained by reducing the three-way branching from the
MGOTO node by two-way branching e.g., by deleting the control edge from node S0 to node
S5, and then replacing the synchronization edge from node S2 to node S5 by a control edge.
This transformed PPG would contain the same amount of ideal parallelism as the original
PPG but would create two threads instead of three, and would perform one synchronization
instead of two, for a given instantiation of the parallel sections construct. This idea is
an extension of the control sequencing transformation that was used in the PTRAN system
to replace a data synchronization by sequential control flow [5, 22]. (Note that it is illegal to
replace both synchronization edges coming into S5 by control edges, because the resulting
PPG would then incorrectly execute node S5 twice for a given instantiation of the parallel
sections construct.)

Further, if the granularity of work being performed in the parallel sections is too little
to justify creation of parallel threads, the PPG in Figure 3 can be transformed into a
sequential CFG, which is a PPG with no MGOTO nodes and no synchronization edges



EXAMPLE OF PARALLEL SECTIONS (COBEGIN-COEND)

control edge
—_—

synchronization edge l U
S0 [mgoto] <

S0: PARALLEL SECTIONS U U

SECTION / \
SI: -
S2: . @ @

SECTION
S3: l U l U
m.

S5: END SECTIONS @ @

f(H(1.S2), H(1.S5))

goto SO @

f(HWS4), H(1.S5))

f(H(1.$4), H(1.S5)) := H(l.$4) = concat(H(1.S5), <S3,U>)

f(H(1.S2), H(1.S5)) := H(1.S2) = concat(H(1.S5), <S1,U>)

Figure 3: Example of structured PPG with control and synchronization edges



(this transformation is possible because the PPG in Figure 3 is serializable). Therefore, we
see that PPG framework can can support a wide range of parallelism from ideal parallelism
to useful parallelism to no parallelism. As future work, it would be interesting to extend
existing algorithms for selecting useful parallelism from PDGs (e.g., [21]) to operate more
generally on PPGs.

4 Comparing PPGs to PDGs

The main distinction between PPGs and PDGs lies in the complete freedom in connecting
PPG nodes with control and synchronization edges to represent a wide spectrum of sequential
and parallel programs. In contrast, PDGs have several structural constraints arising from the
fact that the PDG was designed to be a “maximally parallel” representation of a sequential
program. Examples of the structural constraints for PDGs include:

e No-post-dominator condition: Let node P be a postdominator of node N in the CFG
that the PDG was derived from. Then there cannot be a directed path of control
dependence edges from N to P in the PDG.

(The example PPG in figure 1 and most CFGs violate this condition. A PDG would
not allow the presence of an unconditional control edge, like the edge from S3 to S4
in figure 1.)

o Predicate-ancestor condition: if there are two disjoint control dependence paths from
(ancestor) node A to node N in a PDG, then A cannot be a region node i.e., A must
be a predicate node.

(The example PPG in figure 2 violates this condition, and hence cannot be viewed as
a legal PDG.)

Given these structural constraints, it is hard to manipulate the PDG representation as an
independent entity. Instead, program transformation is usually performed by maintaining a
tight link between a PDG and its corresponding sequential program (CFQG).

Figure 4 contains a simple example to illustrate how the CFG and the PDG have to be
updated in a consistent manner whenever a program transformation is performed. CFG #1
and PDG #1 contain the original CFG and PDG for this example. As shown in PDG #1,
we assume that the only data dependences are 1 — 3, 1 — 4, and 3 — 4 (e.g., assume that
node 1 contains a def of variable X, node 3 contains a use and a def of variable X, and
node 4 contains a use of variable X). A desirable transformation for this PDG might be
to combine nodes 1, 3 and 4 into a single thread since there is no useful parallelism among
them. However, it is not possible to replace the R1 — 3 control dependence edge in PDG #1
by a 1 — 3 control dependence edge, because the 1 — 3 edge violates the no post-dominator
condition for PDGs. The only transformation that can be made in the PDG towards our
goal of serializing nodes 1, 3, 4 is to interchange nodes 1 and 2 as shown in CFG #2 and
PDG #2. A separate data structure will then need to be maintained to store the desired
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Figure 4: Restrictions on transforming PDGs



thread mapping or task partition as in [21]. Even for this simple code motion transformation,
it is necessary to store both CFG #2 and PDG #2 after the transformation.

There are no such structural constraints imposed on PPGs. For example, any CFG can
be viewed as a PPG that has no synchronization edges (each CFG edge is treated as a
PPG control edge). This PPG is a completely sequential representation of the program.
Similarly, any PDG can be viewed as a PPG by treating each PDG control dependence edge
as a PPG control edge, each PDG data dependence edge as a PPG synchronization edge,
and each PDG region node as a PPG MGOTO node. This PPG is a “maximally parallel”
representation of the program. PPGs can also represent a wide spectrum of intermediate
parallelism granularities.

Figure 5 illustrates how the desired program transformation for the example in figure 4
can be implemented in the PPG framework. PPG #1 contains the original CFG, which
can be viewed as a PPG with no parallelism. PPG #2 contains the PDG derived from
the original CFG i.e., PDG #1 from figure 4. This PDG can be viewed as a PPG by
treating each control dependence edge as a PPG control edge, each data dependence edge
as a PPG synchronization edge, and each region node as a PPG MGOTO node. PPG #3
in figure 5 shows the result of serializing nodes 1, 3, and 4. This was our desired program
transformation. Note that PPG #3 contains parallelism (expressed by the MGOTO node),
but does not contain any synchronization edges.

We conclude this section with a brief discussion of memory consistency semantics. Since
a PDG is derived from a sequential program, its control and data dependences ensure
that there are no data races. It is possible to create a PPG that exhibits a data race,
however. If read and write accesses to the same location are not properly guarded by
control edges or by synchronization edges, then the PPG’s execution may exhibit a data
race. As discussed in section 1, the results presented in this paper apply only to deterministic
parallel programs (class 1). This means that we assume a deterministic and weak memory
consistency semantics for PPGs as follows. If a read access is performed in parallel with a
write access that changes the location’s value, then the result of the read access is assumed to
be undefined (i.e., all memory accesses are assumed to be non-atomic). Similarly, the result
of two parallel write accesses with different values is also undefined. Note that non-atomicity
implies that memory accesses alone cannot be used for synchronization; the control edges
and synchronization edges are the only mechanisms available in the PPG for coordinating
execution instances of PPG nodes. More details on this PPG memory consistency model
can be found in [23]. We intend to extend the results of this paper to nondeterministic
data-race-free parallel programs (class 2) in future work.

5 Reaching Definitions Analysis on PPGs

Section 5.1 reviews reaching definitions analysis for sequential programs i.e., for CFGs.
Section 5.2 presents our solution for reaching definitions analysis for PPGs. Section 5.3
illustrates our solution with an example.
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5.1 Reaching Definitions Analysis on CFGs

Recall that a definition d of variable V' reaches a program point P in a CFG if there is a
directed path in the CFG from d to point P such that d is not “killed” along that path [2] i.e.,
there is no other definition of variable V' along that path. Following the usual convention,
let REACH;, (n) and REACH,,;(n) denote the set of definitions that reach the start and end
respectively of CFG node (basic block) n. Also, let Kill(n) denote the set of definitions d
that get killed in node n i.e., for which there exists another definition d’ in node n to the
same variable as d (if d also appears in n then d' must follow d). And let Gen(n) denote the
set, of definitions d that get generated in node n i.e., d appears in n and is not killed in n.

For each CFG node n, Kill(n) and Gen(n) can be computed by a local examination of the
statements/instructions in basic block n. The following equations can then be used to relate
the REACH;,,(n) and REACH,,,;(n) sets [2]:

REACH,,(n) = (REACH;,(n) — Kill(n)) |J Gen(n)

REACHZR (TL) = U REACHout(p)
p € pred(n)

These equations form the basis for the classical iterative algorithm for reaching definitions
in which the REACH,,,(n) sets are initialized to (), and the REACH,,;(n) and REACH,,(n)
are iteratively recomputed till no change occurs.

In preparation for our solution to the reaching definitions analysis problem for PPGs, we
also formalize the concept of redefinition. We say that a definition d is redefined at program
point P if there is a path from d to P and d is killed along all paths from d to P. The sets
REDEF;,(n) and REDEF,,;(n) denote the set of definitions that are redefined at the start
and end respectively of CFG node (basic block) n.

We observe that if definition d is redefined at point P then it cannot reach point P, and
vice versa. Therefore, the REACH and REDEF sets at any program point must be disjoint.
Further, if a definition d belongs to neither REACHp nor REDEF p for some program point
P, then it must be the case that there is no CFG path from d to P. To prepare for reaching
definitions analysis on PPGs, we provide the following equations which can be used to
compute the REDEF sets using the REACH;,, set:

REDEF,,(n) = (REDEF;,(n)— Gen(n)) |
(Kill(n) N REACH;,(n))
REDEF;,(n) = (1 REDEF.u(p)
p € pred(n)

5.2 Reaching Definitions Analysis on PPGs

We now extend the equations for the REACH;,, and REACH,,; sets in PPGs as follows. As
mentioned earlier, this analysis is currently restricted to PPGs that contain only control-
independent synchronization edges:



REACH,,:(n) = (REACH;,(n)— Kill(n U Gen(n

REACH;,(n) = U REACH,.:(p) | — REDEF;,(n)
p € pred(n)

The first equation for REACH,,;(n) is identical to the sequential case. For the second
equation, the set pred(n) refers to all PPG predecessors of node n (control edge predeces-
sors and synchronization edge predecessors). As we will see in the example program in
section 5.3, it is important to subtract out REDEF;,(n) to ensure that the REACH;,(n)
set does not conservatively (imprecisely) include extra definitions. This subtraction was not
necessary in the equation for the sequential case in section 5.1 because REDEF;,(n) and

U, ¢ pred(n) REACH,,;(p) are completely disjoint for a (sequential) CFG thus making the
subtractlon a no-op in the sequential case.

The equations for the REDEF sets for a PPG are now as follows:

REDEF,,;(n) = (REDEF,,(n) — Gen(n)) |
(Kill(n) N REACH,,,(n))

REDEF;,(n) = U REDEF,.(p) U
p € sync_pred(n)
ﬂ REDEF,;(p)

p € control_pred(n)

The first equation is identical to the sequential case. Also, as in the sequential case,
the second equation includes the intersection of the REDEF,,; sets for node n’s control
edge predecessors in REDEF,,,(n). The main new addition in the second equation lies in
including the union of the REDEF,,; sets for node n’s synchronization edge predecessors in
REDEF;,(n). The union operation is used because an instance of node n must wait for all
the appropriate instances of its synchronization edge predecessors to complete execution.

As a final note, we observe that even though the four equations shown above appear to be
mutually recursive, we can avoid recursion at any given program point by evaluating the sets
in the following order,

REDEF;, (n), REACH,,(n), REDEF ,(n), REACH,,(n).

5.3 Example

In this section, we use an example PPG to illustrate the reaching definitions analysis equa-
tions from section 5.1. The example program and its PPG is shown in figure 6. The example
program was taken from [27] (page 79) where it was included as an example illustrating the
difficulty of doing data flow analysis for a program with explicit synchronization.

The notation X1, X5, X4, X7 is used to identify distinct definitions of the same scalar variable,
X. In addition to the implicit synchronization in the cobegin-coend construct, this example



Si: X; = ...
post(evl)

cobegin
S2: Xog 1= ...
post (ev2)
S3: wait(evl)
post (ev3)
S4: wait (ev8)
X4 =L
\\
SH: ...
S6: wait (ev2)
ST7: X7 1= ...
S8: wait (ev3d)
post (ev8)
coend
control edge
—_—

synchronization edge

| Node n || REDEF;,,(n) | REACH,,,(n) | REDEF ,4(n) | REACH, 4 (n) |

S1 0 0 0 { X}
cobegin 0 {X1} 0 {X1}
S2 0 {X1} {X1} {Xa}
S3 {X1} {Xo} {X1} {Xo}
S5 0 {X1} 0 {X1}
S6 {X1} {Xo} {X1} {Xo}
S7 {Xi} {Xo} {X01, Xo} { X7}
S8 {X1, X5} {X2} {X1, X5} {X7}
S4 {X1, X5} {X7} {X1, Xo, X7} {X4}
coend | {Xi, Xo, X7} {X4} { X1, X9, X7} { X4}

Figure 6: Example parallel program with explicit synchronization and the reaching
definitions analysis sets for its PPG



has explicit synchronization using the post and wait operations on event variables evl, ev2,
ev3 and ev8.

Figure 6 also includes the solutions for the REDEF and REACH sets for all the PPG nodes
that would be obtained by an iterative data flow analysis program using the equations from
section 5.2. Notice that REACH;,(S3) has been computed as {X5}, which is a precise
solution. In contrast, the analysis technique from [27] would conservatively include X; in
REACH;,, (S3) due to the presence of the synchronization edge from S1 to S3 (even though
the synchronization edge is redundant). Note that our analysis also correctly identifies X,
as the only definition that reaches the coend statement.

6 Related Work

The work that is most closely related to ours is by Ferrante, Grunwald, and Srinivasan on
compile-time analysis and optimization of explicitly parallel programs [8] which builds on
earlier work by Srinivasan on optimizing explicitly parallel programs [27]. They too provide
data flow equations for the reaching definitions analysis problem. However, the program
representation assumed in their work is a parallel flow graph (PFG) which is more restrictive
than a PPG. Any PFG can be converted to a PPG, but the converse is not true. Some specific
differences between PFGs and PPGs are as follows. First, the PFG assumes a copy-in/copy-
out semantics for accessing shared variables in parallel constructs, whereas the PPG allows
direct access of shared variables everywhere. Second, the PFG assumes that the parallelism
is well-structured (a nesting of cobegin—coend and doall statements) and that the structure
is visible in the representation (their analysis algorithms use the lexical nesting structure
of parallel constructs); in contrast, PPGs can represent both structured and unstructured
parallelism. (This difference is analogous to special-case optimization of structured sequential
programs using an abstract syntax tree representation vs. general optimization of sequential
programs using a CFG representation). Third, a PFG distinguishes between parallel control
flow and sequential control flow edges, whereas they are treated uniformly in a PPG (explicit
synchronizations and synchronizations associated with parallel control flow are also treated
uniformly in a PPG). Finally, as discussed in section 5.3, the analysis algorithms in [8, 27]
become imprecise in the presence of synchronization edges that cross lexical levels such as
the edge from S1 to S3 in figure 6.

There has been some initial work done on analyzing explicitly parallel programs with a
sequentially consistent memory model e.g., [25, 19, 4]. This is a much harder problem because
it is necessary to analyze all possible interleavings of memory operations to understand the
reordering constraints for a program under a strong memory consistency model. In contrast,
our analysis techniques are developed for the PPG in which all reordering constraints for
the parallel program are captured by the control and synchronization edges (just as a PDG
captures all the reordering constraints for a sequential program).

The idea of extending PDGs to PPGs was introduced by Ferrante and Mace in [6], extended
by Simons, Alpern, and Ferrante in [26], and further extended by our past work in [23]
and [24]. The definition of PPGs used in this paper is similar to the definition from [24];



the only difference is that the definition in [23] used MGOTO edges instead of MGOTO
nodes. The PPG definition used in [6, 26] imposed several restrictions: a) the PPGs could
not contain loop-carried data dependences (synchronizations), b) only reducible loops were
considered, ¢) PPGs had to satisfy the no-post-dominator rule, and d) PPGs had to satisfy
the predicate-ancestor rule. The PPGs defined in this paper have none of these restrictions.
Restrictions a) and b) limit their PPGs from being able to represent all PDGs that can be
derived from sequential programs; restriction a) is a serious limitation in practice, given the
important role played by loop-carried data dependences in representing loop parallelism [28].
Restriction c) limits their PPGs from being able to represent CFGs. Restriction d) limits
their PPGs from representing thread-based parallel programs in their full generality e.g.,the
PPG from Figure 2 cannot be expressed in their PPG model because it is possible for
node S4 to be executed twice. The Hierarchical Task Graph (HTG) proposed by Girkar and
Polychronopoulos [12] is another variant of the PPG, applicable only to structured programs
that can be represented by the hierarchy defined in the HTG.

7 Conclusions and Future Work

In this paper, we motivated the use of the PPG representation in analysis and optimization
of explicitly parallel programs. We presented a solution for reaching definitions analysis on
PPGs and showed how it is more precise and more generally applicable than the solution
presented in [8, 27].

For future work, we intend to extend the results of this paper to nondeterministic data-race-
free parallel programs (class 2 programs) that support mutual exclusion through acquire-
release synchronization. Other possibilities for future work include extending sequential
compiler analysis and optimizations algorithms (e.g., common subexpression elimination,
SSA construction, etc.) for use on PPGs, and extending existing algorithms for selecting
useful parallelism from PDGs to operate more generally on PPGs.
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