MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 N

Deriving Superscalar Microarchitectures
from Pipelined Microarchitectures

Computation Structures Group Memo 424
June 8, 1999

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind }@lcs.mit.edu

Not for Distribution without Authors’ Permission.

This paper describes research done at the MIT Laboratory for Computer Science.
Funding for this work is provided in part by the Defense Advanced Research Projects
Agency of the Department of Defense under the Ft. Huachuca contract DABT63-

\ 95-C-0150. )

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




Deriving Superscalar Microarchitectures
from Pipelined Microarchitectures

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind}@lcs.mit.edu

Not for Distribution without Authors’ Permission.

June 8, 1999

Abstract

A method is given to systematically derive a superscalar microarchitecture from
a pipelined microarchitecture where the microarchitectures are described using Term
Rewriting Systems (TRS). The superscalar derivation is based on the rule composition
property of TRS’s. This automatic derivation, when coupled with a TRS-to-RTL
compiler (TRAC) and commercial synthesis tools, dramatically expands the designer’s
ability to explore microarchitectures interactively. Computer generated estimates of
circuit area and critical path delays are presented for five microarchitectures to study
the cost-performance tradeoff.

1 Introduction

We have used Term Rewriting Systems (TRS) to describe speculative microarchitectures,
memory models and complex cache-coherence protocols, and proven the correctness of these
systems [1, 15, 14]. Recently, we have described the compilation of TRS’s into a subset
of Verilog that is simulatable and synthesizable by commercial tools [7] and shown how
this synthesis technology can be used to design and explore pipelined microprocessors|8].
This follow-on paper describes how to automatically synthesize a superscalar microprocessor
from a pipelined description of the processor using the rule-composition property of TRS’s.
The TRS framework permits the automation of several of the most critical steps in the
processor design flow, thus reducing the amount of time and effort needed to design custom
high-performance microprocessors.

TRS is a simple and intuitive formalism for describing hardware structure and behavior.
In a TRS, hardware states are represented as terms generated by a grammar, and the be-
haviors are specified in the form of rules that specify when and how a term can be rewritten.



The rule-composition property allows new rules to be derived by composing existing rules
without introducing illegal behaviors to the system.

In the TRS-based processor design flow, the architect starts by formulating a high-level
specification of the processor’s instruction set architecture (ISA) as a TRS. The goal at this
stage is to define an ISA as precisely as possible without injecting implementation details.
From such a description, TRAC, the Term Rewriting Architecture Compiler, can generate
a Register Transfer Language description (RTL) of a single-issue, in-order, non-pipelined
processor. The generated RTL can be simulated and synthesized by commercial tools.

Next, the architect manually transforms the ISA’s TRS description into another TRS
that corresponds to a pipelined mircoarchitecture. In this step, the architect makes high-
level architectural decisions such as the locations of the pipeline stages. The pipeline stages
are modeled as FIFO buffers, which makes most of the rules local. A rule typically dequeues
a partially executed instruction from one FIFO, computes on it using only local information,
and enqueues it into the next FIFO. The architect is also responsible for exposing and resolv-
ing any data and control hazards introduced by pipelining. To guard against possible errors
introduced during this manual transformation, a semiautomatic verification technique can
be used to show the correctness of the pipelined TRS against the original ISA specification
using state-simulation techniques|[l]. TRAC can take such asynchronous specifications and
generate RTL’s for synchronous pipelines.

Finally, the pipelined TRS is transformed into a superscalar TRS by devising composite
rules. The effect of a composite rule is to apply more than one pipeline rule at each stage
of the pipeline. As we will show, this can be done totally automatically once the degree
of superscalarity is specified. The correctness of the resulting transformation is guaranteed
because the rules derived by rule composition are always correct by TRS semantics.

Both pipelining and superscalar transformations are source-to-source in the TRS language
and can be compiled into Verilog RTL descriptions using TRAC. Throughout the design
flow, intermediate designs can be compiled. The RTL’s of these intermediate designs can be
evaluated immediately to steer design decisions in successive refinement steps. Presently, we
are using a commercial tool, Synopsys’s RTL Analyzer, to analyze the size and speed of the
circuit. In addition, the operation of the processor on sample programs can be examined
using a commercial Verilog RTL simulator. Based on the prompt feedback from these tools,
an architect can rapidly explore a large number of architectural options and trade-offs.

Related Work: Over the years, a wide range of research has addressed the problem of
synthesizing high-quality circuits from high-level specifications. On one end of the spec-
trum, commercial tool vendors are improving the capability of hardware compilation to
support behavioral Verilog and VHDL[10] descriptions. On the other hand, researches in
the area of Field Programmable Gate Arrays (FPGA) and Reconfigurable Computers (RC)
(e.g. RAW[2], PAM[16], Splash[4]) have explored logic synthesis of algorithms expressed in
software programming languages. Other efforts have focused on high-level optimizations,
such as automatic pipelining [6]. Our research in processor microarchitecture synthesis is
based on a higher-level design abstraction and can benefit from many of these developments.

Developments have also been made specifically in the synthesis of processor microar-
chitectures. The ADAS[12] environment accepts an ISA description in Prolog and emits a



pipelined VLSI implementation that is tuned for factors like instruction issue frequencies,
pipeline stage latencies, etc. The ADAS design environment can be driven by ASTA[9] which
automatically produces a custom instruction set architecture for an application. A similar
line of research is pursued in Automatic Architecture Exploration (AAE)[5]. The Dagar[13]
project accepts behavioral descriptions of digital systems in the form of dataflow graphs
and outputs a customized microprogram-controlled pipelined datapath. As far as we know,
automatic synthesis of superscalar microarchitectures has not been described yet.

Paper Organization: The next section presents the TRS-based behavioral description
framework that is central to our approach. Section 3 applies the TRS description framework
to describe a simple processor ISA, and Section 4 shows how to derive a pipelined processor
from this initial ISA specification. Section 5 describes the transformation from a pipelined
designs to its superscalar equivalent. In Section 6, we present an analysis of the superscalar
design and show how the different tools can be used to guide design decisions. Finally,
Section 7 gives a summary along with our conclusions.

2 TRS as a Hardware Description Language

A TRS consists of a set of terms and a set of rewriting rules. The general structure of a
rewriting rule is:

sif p— &

where s and s’ are are terms, and p is a predicate on s.

A rule can be used to rewrite a term if the pattern implied by the left-hand-side of a
rule matches the term or one of its subterms, and the corresponding predicate is true. The
right-hand-side specifies the resulting term. In hardware descriptions, the terms represent
states and the rules represent state transitions.

The effect of a rewrite is atomic, that is, the whole state is “read” in one step and
if the rule is applicable then the state is updated in the same step. If several rules are
applicable, then any one of them can be applied, and afterwards, all rules are re-evaluated for
applicability on the new term. Starting from an initial term, successive rewriting progresses
until the term cannot be rewritten using any rule.

All terms in a TRS have a type, and each rule is constrained to have the same type
for the terms on both sides of the ‘—»’. The TRS notation accepted by TRAC includes
built-in integers and common arithmetic and logical operators, and product and disjoint
(non-recursive) union types. Two important abstract datatypes, arrays and bounded FIFO
buffers, are also included to facilitate hardware description and synthesis.

Arrays are used to model register files and memories, and have only two operations
defined on them. Syntactically, if rf is an array then rf[r] gives the value stored in location
r, and rf[r:=v] gives the new value of the array after location r has been updated by value
v. FIFO buffers provide the primary means of communication between different modules
and pipeline stages. Syntactically, a buffer bs containing three elements is represented as
b1;b2;b3. The two main operations on FIFO’s are enqueuing and dequeuing. Enqueuing b



Type PROC = Proc(PC,RF,IMEM,DMEM)
Type PC = Bit[n]
Type ADDR = Bit[n]
Type  VALUE = Bit[n]
Type RF = Array VALUE[RNAME]
Type RNAME = Reg0 || Regl || Reg2 || Reg3 || . . . . Regm
Type IMEM = Array INST[PC]
Type  DMEM = Array VALUE[ADDR]
Type INST = Loadc(RNAME,VALUE)
|| Loadpc(RNAME)
|| Op(MINOR,RNAME,RNAME,RNAME)
|| Bz2(RNAME,RNAME)
|| Load(RNAME,RNAME)
|| Store(RNAME,RNAME)
Type MINOR = Add ||Sub || .. ..

Figure 1: TRS grammar for AX parameterized by the datapath width n, number of general
purpose registers m, and the minor opcodes.

to bs yields bs;b while dequeuing from b;bs leaves the buffer in state bs. We also permit any
“read” operation on the elements of FIFO buffers.

Although TRS’s provide great flexibility in specifying state and state transitions, the
TRS language with the restrictions described above essentially has the power of a finite
state machine (FSM) because its terms cannot “grow”. This allows TRAC to map a TRS
into a synchronous FSM by (1) mapping TRS terms to storage elements (e.g., registers,
register files) and (2) mapping TRS rules to combinational logic that generates data and
latch-enable signals for storage elements. TRAC follows this idea to generate a subset of
Verilog that is simulatable and synthesizable by commercial tools. The main challenge for
TRAC is in scheduling - how to fire the maximum number of rules in a given clock cycle
without destroying the semantics that requires the rules to be fired one at a time.

3 AX: A Simple Processor

We use AX[1], a simple RISC instruction set, to demonstrate our synthesis procedure.
The programmer visible state of AX consists of a program counter, a register file, instruction
ROM (read-only memory) and data RAM (read-write memory). These states can be repre-
sented using the terms generated by the grammar in Figure 1. Type PROC is a product type
with the constructor symbol Proc and four fields. The declaration of type INST demonstrates
the use of an algebraic union to represent the AX instruction set. For simplicity, the program
and data memory are modeled as storage arrays internal to the processor. However, when
we discuss synthesis of these descriptions in Section 6, the memory arrays will be replaced
by external memory interfaces represented as FIFO’s.

A set of rewrite rules define AX’s dynamic behavior. For example, the following rule
describes the effect of executing an Add instruction:



Proc(pc,rf,im,dm)

if im[pc]=Loadc(rd,const) —  Proc(pc+1.rf[rd:=const],im,dm)

if im[pc]=Loadpc(rd) —  Proc(pc+1,rf[rd:=pc],im,dm)

if im[pc]=0p(op,rd,r1,r2) —  Proc(pc+1,rf[rd:=op(rf[r1],rf[r2])],im,dm)
if im[pc]=Bz(rc,rt) & rf[rc]=0 —  Proc(rf[rt],rf ,im,dm)

if im[pc]=Bz(rc,rt) & rf[rc]#0 —  Proc(pc+1,rf,im,dm)

if im[pc]=Load(rd,ra) —  Proc(pe+1,rf[rd:=dm(rf|[ral]],im,dm)

if im[pc]=Store(ra,r) —  Proc(pc+1,rf im,dm[rf [ra]:=rf[r]])

Figure 2: TRS rules for a non-pipelined AX.

Figure 3: AX datapath without control. SO and S1 are potential sites for inserting pipeline
buffers.

Proc(pc,rf,im,dm) if im[pc]=Op(Add,rd,r1,r2)
—  Proc(pc+1,rf[rd:=rf[r1]+rf[r2]],im,dm)

This rule can be examined in three parts: the match template (left-hand-side), the rewrite
template (right-hand-side), and the predicate. The free variables in the match template
begin are in italicized lower-case letters (e.g., pc, rf, etc.). Since the match template has
no constants, it matches any term that has PROC’s signature. The predicate will hold if
the program counter points to an instruction memory location containing Op(Add,rd,r1,r2).
When a term satisfies both the match template and the predicate, the rule’s rewrite template
specifies that the pc field should be incremented by 1 and register rd should be updated by
rf[r1]+rf[r2]. Figure 2 gives the complete set of rules for AX in an abbreviated format.
When synthesized, this TRS roughly corresponds to the datapath shown in Figure 3.

4 Pipelining Transformations

The simple datapath in Figure 3 can be pipelined by splitting each rule in Figure 2 into mul-
tiple sub-rules. Each sub-rule describes a sub-operation that uses its own set of resources.
For example, in a two-stage pipeline design, the processing of an instruction can be broken
down into separate fetch and execute steps. A pipelined design needs buffers to hold par-
tially executed instructions. We model such buffers between pipeline stages as FIFO’s of
an unspecified but finite size. In a behavioral description, it is convenient if the operation
of each stage can be described without reference to other stages. FIFO buffers provide this



Type PROC, = Proc, (PC,RF,BS IMEM,DMEM)
Type BS = FIFO ITEMP
Type |ITEMP = Op(MINOR,RNAME,VALUE,VALUE)
|| Bz(VALUE,VALUE)
Il Load(RNAME,ADDR)
|| Store(ADDR,VALUE)

Figure 4: TRS grammar for a 2-stage pipelined AX.

isolation; most rules dequeue an input from one FIFO and enqueue the result into another
FIFO. In the synthesis phase these FIFO buffers are replaced by a fixed-depth FIFO or
simply registers, and flow control logic ensures that a rule does not fire if the destination
FIFO is full.

To describe a two-stage Fetch /Execute pipeline, the system grammar is modified as shown
in Figure 4. PROC, contains a new field, the FIFO buffer BS, to hold instructions after they
have been decoded and the operands have been fetched (see the placement of pipeline stage
S1 in Figure 3). Under these assumptions the original Op rule may be replaced by the
following two fetch and execute rules:

Procy(pc,rf ,bs,im,dm)
if im[pc]=0p(op,rd,r1,r2) and rl¢ Target(bs) and r2¢ Target(bs)
—  Procy(pc+1,rf,bs;Op(op,rd,rf[r1],rf[r2]),im,dm)

Procy(pc,rf,Op(op,rd,vl,v2);bs,im,dm)
—  Procy(pe,rf[rd:=op(v1,v2)],bs,im,dm)

Splitting a rule into smaller rules destroys the atomicity of the original rule and thus, can
cause new behaviors which may not conform to the original specifications. Therefore, in
addition to determining the appropriate division of work across the stages, the architect
must also resolve any newly created hazards. For example, the fetch rule’s predicate has
been extended to check if the source register names are in Target(bs), a shorthand for the
set of target register names in bs. This condition prevents fetching when a RAW (read-after-.
write) hazard exists. If the architect makes a mistake in the transformation, the error would
be revealed when an attempt is made to verify the equivalence of the pipelined processor
against the initial specification via TRS simulation [1, 3].

As another example, consider the pair of Bz rules in Figure 2. Again, we can split the
rules into their fetch and execute components. Both rules share the following instruction
fetch rule:

Procy(pc,rf,bs,im,dm)
if im[pc]|=Bz(rc,rt) and rc¢ Target(bs) and rt¢ Target(bs)
—  Procy(pe+1,rf,bs;Bz(rf|rc],rf[rt]),im,dm)

The two execute rules for the Bz instruction are:

Proc,(pc,rf,Bz(ve,vt);bs,im,dm) if vc=0
—  Procy(vt,rf e,im,dm)



Proc,(pc,rf ,itemp;bs,im,dm)
if itemp=0p(op,rd,vi,v2)
if itemp=Bz(vc,vt) & ve=0
if itemp=Bz(vc,vt) & vc#£0
tf itemp=Load(rd,va)

tf itemp=Store(va,v)

Proc,(pc,rf[rd:=op(vl,v2)],bs,im,dm)
Procy(vt,rf ,e,im,dm)

Proc,(pc,rf ,bs,im,dm)

Proc,(pc,rf [rd:=dm[va]],bs,im,dm)
Proc,(pe,rf ,bs,im,dm[va:=v])

Bl ol

Figure 5: Execute rules for a two-stage AX

Proc,(pc,rf ,Bz(ve,vt);bs,im,dm) i f vc#0
—  Procy(pc,rf,bs,im,dm)

In the fetch phase, the processor performs a weak form of branch speculation by incrementing
pc without knowing the branch resolution. Consequently, in the execute phase, if the branch
is resolved as taken, besides restarting pc at the correct value, we need to discard the
speculatively fetched instructions in bs. This is indicated by setting bs to € in the Bz-taken
rule.

All of the AX rules can be partitioned into separate fetch and execute rules to represent
a two-stage pipeline. A generic instruction fetch rule is:

Proc,(pc,f,bs,im,dm)
if im[pc]=inst and (Source(inst) N Target(bs) = 0)
—  Procy(pc+1,rf,bs; Decode(inst),im,dm)

Source(inst) is a shorthand for extracting the source register names from inst. Decode(inst)
is the shorthand that maps inst to instruction templates where the register operands have
been fetched. For example, Decode(Op(op,rd,r1,r2)) is Op(op,rd,rf[r1],rf[r2]). The gram-
mar does not provide separate templates for Loadc and Loadpc instructions. Instead, De-
code(Loadc(rd,const))=0p(Add,rd,const,0) and Loadpc(rd)=0p(Add,rd,pc,0). The execute
rules for the two-stage pipeline are given in Figure 5. It should be noted that pipelines with
different number of stages or placement of FIFO’s can be described in a similar manner.

5 Transformation for Superscalar Execution

For superscalar execution, a pipelined microarchitecture processes multiple instructions in
each pipeline stage. To achieve two-way superscalar execution, one needs to compose two
rules that specify operations in the same pipeline stage into a new composite rule that
combines the state transitions of both rules. Since the TRAC compiler generates RTL that
executes the transitions of a rule in a single clock cycle, the compilation of composite rules
results in RTL that can execute two instructions at a time. We illustrate this idea by
extending the two-stage pipeline microarchitecture from Section 4 for two-way superscalar
execution. After explaining the idea informally through an example composite rule, we will
systematically derive the two-way superscalar rules.



5.1 Example of a Composite Rule

Consider the following Op and Bz fetch rules:

Proc, (pc,rf,bs,im,dm)
if im[pc]=0p(op,rd,rl,r2) and rl¢Target(bs) and r2¢ Target(bs)
—  Proc,(pc+1,rf,bs;0p(op,rd,rf[rl),rf[r2]),im,dm)

Procy(pe,rf,bs,im,dm)
if im[pc]=Bz(rc,rt) and rc¢ Target(bs) and rt¢ Target(bs)
—  Proc,(pc+1,rf,bs;Bz(rf[rc],rf(rt]),im,dm)

If we write the Bz fetch rule as if it was being applied to the term on the RHS of the Op
fetch rule, it will look like the following rule:

Proc,(pc+1,rf ,bs;0p(op,rd,rf [rl1],rf[r2]),im,dm)
if im[pc+1]=Bz(re,rt)
and  rc¢ Target(bs;Op(op,rd,rf[r1],rf[r2])) and rt¢ Target(bs;0p(op,rd,rf(rl],rf[r2]))
—  Procy((pc+1)+1,rf ,bs;0p(op,rd,rf[r1],rf[r2]);Bz(rf [rc],rf[rt]),im,dm)

This rule is more specific than the general Bz fetch rule because it requires bs to contain a
partially executed Op instruction. Any specific instance of a TRS rule is guaranteed to be
correct because it fires under fewer conditions. Now we can combine the effect of the Op and
Bz fetch rules into a single atomic rule as follows:

Proc,(pc,rf,bs,im,dm)
if im[pc]=0p(op,rd,rl1,r2) and rl¢Target(bs) and r2¢ Target(bs)
and im[pc+1]=Bz(rc,rt)
and  rcg Target(bs;0p(op,rd,rf[r1],rf[r2])) and rt¢ Target(bs;Op(op,rd,rf[r1],rf[r2]))
—  Proc,((pc+1)+1,rf,bs;Op(op,rd,rf[rl],rf [r2]);Bz(rf [rc],rf[rt]),im,dm)

The above rule is an example of a derived rule, that is, it can be derived from other TRS rules.
A derived rule is guaranteed to be correct, that is, it cannot introduce observable behaviors
which were not permitted by the original rules. However, if the derived rule replaces the rules
from which it was derived, the system may not show some behaviors which were permitted
otherwise. Although this error does not lead to illegal state transitions, it could result in
a deadlock. Hence, unless other provisions are made, each new composite rule should be
simply added to the original set of rules and should not replace any of the original rules.

The TRAC compiler will synthesize very different circuits for composite and non-
composite rules. Since the effect of a composite rule takes place in one cycle, significantly
more resources and circuitry are required to implement composite rules. Using its under-
standing of the abstract data type operations, the compiler also tries to simplify the predicate.
For example, the predicate in the above rule can be simplified as follows:

Procy(pc,rf ,bs,im,dm)
if im[pc]=0p(op,rd,rl,r2} and im[pc+1]=Bz(rc,rt)
and rl¢ Target(bs) and r2¢ Target(bs)
and rt¢ Target(bs) and rc¢ Target(bs) and rc#rd and rt#rd
—  Proc,((pc+1)+1,rf,bs;0p(op,rd,rf[r1],rf [r2]);Bz(rf [rc],rf[rt]),im,dm)

Complete superscalar fetching of all possible instruction pairs would require the com-



position of all combinations of the original fetch rules from the 2-stage pipelined microar-
chitecture. In general, given a pipeline stage with N rules, a superscalar transformation
leads to an O(/V®) increase in the number of rules where s is the degree of superscalarity.
Fortunately, the mechanical nature of this tedious transformation makes it easy to handle
by a computer aided synthesis system. Superscalar transformation also implies duplication
of hardware resources such as register file ports, ALU’s and memory ports. Hence, one may
not want to compose all combinations of rules in a stage. For example, we may not want
to compose any other execute rules with memory load or store rules if the memory interface
can only accept one operation per cycle.

5.2 Deriving Composite Rules

A TRS rule 7 on the set of terms 7" can be expressed as a function f whose domain D and
image I are subsets of T. Given a rule s if p — &', function f may be written as follows:

f(s) =if w(s) then &(s) else s

where 7 represents the firing condition derived from the predicate p and the LHS pattern,
and § represents the function to compute the next state. (Please see [7] for detail.) The
composition of two rules, r; 5, i.e., rule 7, followed by rs, is described by the function fig=
f2 o f1, which may be written as follows:

fr2(8) =if mi(s) then(if m2(61(s)) then 62(6:(s)) else s) else s

= if m(s) & m2(d1(8)) then 62(61(s)) else s

The domain D, of the composite function is only the subset of D; that produces the
restricted image (I; N Dy) using f;. By this definition of composition, adding 712 to a TRS
that already contains r; and 7 does not introduce any new behaviors because all transitions
admitted by 7,5 could be simulated by consecutive applications of r; and r,. However, r
and 75 cannot be replaced by r; 5 because some transitions could be eliminated.

It is more convenient to express rule composition as a purely syntactic operation, so that
the resulting composite rule can be expressed using standard TRS syntax. Thus, given the
following two rules:

s1if pr — S’l (Tl)

sy if pa — sy (r2)
we first derive an instance of the second rule that is directly applicable to the RHS of the
first rule such that

sy if Py — s (instance of r9)
This instance of rule 2 can then be composed with rule 1 as follows:
s14f py and py — 55 (r12)

5.3 Derivation of Two-Way Superscalar Rules

To transform the 2-stage pipelined microarchitecture into a two-way superscalar microarchi-
tecture requires derivation of a composite rule for each pair in the cross product of rules for
each pipeline stage. We will present each composite rule under the general assumption that



there are sufficient ALU’s and register file ports available. To make the rule derivation more
interesting, we will assume the data memory is single ported.

Superscalar Fetch rule
The superscalar version of the fetch rule that is given at the end of Section 4 can be
composed with itself to produce the following rule:

Procy(pc,rf,bs,im,dm)
if im[pc]=inst and im[pc+1]=inst’
and Source(inst)N Target(bs) = 0
and Source(inst’)N(Target(bs)U Target(inst)) = 0
—  Procy((pc+1)+1,rf ,bs; Decode(inst); Decode(inst’) ,im,dm)

Superscalar execute rules are derived next. All legal combinations of the rules in Figure 5
are being enumerated in the following cases.

Composing Op and other rules

If the first instruction is an Op instruction then the second instruction can always be
executed. Most rules in the following table require additional read ports in the register file.
Some combinations also require two write-ports.

Proc,(pc,rf,Op(op,rd,v1,v2);itemp;bs.im,dm)

if itemp=0p(op’,rd’,v1’,v2") — Procy(pc,(rf[rd:=0p(v1,v2)])[rd":=0p’(v1’,v2")],bs,im,dm)
if itemp=Bz(vc,vt) & ve=0 —  Proc,(vt,rf[rd:=op(vl,v2)],e,im,dm)

if itemp=Bz(vc,vt) & ve#£0 — Procp(pc,rf[rdzzé(vl,v2)],bs,im,dm)

if itemp=Load(rd’,va) —  Proc,(pc,(rfrd:=op(vl,v2)])[rd’:=dm[va]],bs,im,dm)

1f itemp=Store(va,v) —  Procy(pe,rf[rd:=op(vl,v2)],bs,im,dm|va:=v])

Composing Bz-Taken and other rules

There is no valid composition because the RHS of Bz-taken rule produces an empty FIFO
buffer (¢). Every execute-stage rule requires the FIFO buffer to look like “inst;bs” for some
value of inst. Since (inst;bs) # €, no execute rule can fire immediately after a branch is
taken.

Composing Bz-Not-Taken and other rules

Executing a Bz-not-taken rule has no side-effects other than removing its template from the
head of bs. Hence, composing a Bz-not-taken rule with any other rule produces a composite
rule that is nearly identical to the second rule in the composition. This is true even if the
second rule being composed is Bz-taken or Bz-not-taken.

Proc,(pc,rf ,Bz(vc,vt);itemp;bs,im,dm)
if itemp=0p(op,rd,vi v2) & vc#0

if itemp=Bz(vc’,vt’}y & vc#0 & ve'=0
if itemp=Bz(vc’vt’) & vc#£0 & vo'#0
if itemp=Load(rd,va) & vc#0

if itemp=Store(va,v) & vc#0

Proc,(pc,rf[rd:=op(v1,v2)],bs,im,dm)
Proc,(vt’ f €,im,dm)
Proc,(pc,rf ,bs,im,dm)

(

(

g T

Proc, (pc,rf[rd:=dm]val],bs,im,dm)
Proc,(pe,rf ,bs,im,dm[va:=v])

10



Composing Load and other rules
Since we have assumed a single ported memory, it is not possible to compose a memory
access rule with another memory access rule.

Proc,(pc,rf Load(rd,va);itemp;bs,im,dm)

if itemp=0p(op,rd’,v1,v2) = Procy(pc,(rf[rd:=dm[va]])[rd":=0p(v1,v2)],bs,im,dm)
if itemp=Bz(vc,vt) & ve=0 —  Proc,(vt,(rf[rd:=dm]va]]),e,im,dm)

if itemp=Bz(vc,vt) & ve#0 —  Proc,(pe,(rf[rd:=dm|va]]),bs,im,dm)

Composing Store and other rules

Proc,(pc,rf ,Store(va,v);itemp;bs,im,dm)

if itemp=0p(op,rd,vI,v2)}  — Proc,(pc,rfrd:=op(v1,v2)],bs,im,dm[va:=v])
if itemp=Bz(vc,vt) & ve=0 —  Procy(vt,rf e,im,dm[va:=v])

if itemp=Bz(vc,vt) & ve#0 —  Proc,(pc,rf,bs,im,dm[va:=v])

Please note that these composite rules do not replace the original rules. All five rules in
Figure 5 are still needed in case there is only one instruction in bs.

6 RTL Synthesis and Analysis

All TRS descriptions of AX processors and the derived pipelined and superscalar processors
can be compiled into RTL Verilog descriptions using TRAC, the Term Rewriting Architecture
Compiler[7]. Using commercial tools, these TRAC generated RTL’s can be synthesized
for a number of implementation technologies ranging from Xilinx’s FPGA’s to Synopsys’
GTECH, a technology-independent logic representation. The latter target, when coupled
with Synopsys’ RTL Analyzer, has proved useful in architectural exploration because it
provides quantitative information about circuit sizes and delays. The compilation times
including both TRS-to-RTL and RTL-to-GTECH are short enough to make the exploration
possible in real time.

6.1 TRS to RTL Compilation

Prior to synthesis, the datapath width (n) and the number of GPR’s (m) in the parameterized
TRS descriptions must be fixed. For the results in this paper, we have chosen to synthesize a
32-bit machine (n=32) with 4 general purpose registers (m=4) and two minor opcodes Add
and Sub. Furthermore, we have chosen to externalize the instruction and data memory to
present results for processor synthesis as opposed to a system-on-a-chip.

The TRS processor description can be converted to use external memory interfaces by
introducing two FIFO’s and a memory busy flag. MQOUT FIFO is used for issuing MLoad
and MStore commands, and MQIN FIFO for retrieving MLoad results. The MBUSY status
register records whether the memory interfaces are busy. The new definition of PROC, for
the 2-stage pipelined processor may be given as follows:

13



_full?, _full? _full?

enqueue E enqueue
Stage N-2 Stage N-1 Stage N

Figure 6: Synchronous pipeline firing with look ahead.

Type  PROC, = Proc,(PC,RF,BS,IMEM,MQIN,MQOUT,MBUSY)
Type MQIN = FIFO VALUE

Type MQOUT = FIFO MCMD

Type  MCMD = MStore(ADDR,VALUE) || MLoad(ADDR)

Type MBUSY = Busy || NotBusy

During compilation, special directives are sent to TRAC to identify selected FIFO terms
as synchronous or asynchronous I/O interfaces. In these results, we opted to synthesize
the processor with an asynchronous instruction memory read port and a synchronous data
memory read/write port. The instruction fetch takes place combinationally in a single clock
cycle, while the data fetch by the Load instruction is spread over two clock cycles. In the
first cycle, a MLoad command is issued on the MQOUT interface. On the next cycle, the
processor retrieves the result from MQIN to complete the Load instruction. The processor
can issue MStore commands on the MQOUT interface without blocking for completion.

During TRS-to-RTL compilation, TRAC maps each pipeline FIFO to a single register
plus flow control logic to ensure a FIFO is not overflowed or underflowed during enqueue and
dequeue operations (see the flow control depiction in Figure 6). A stall in an intermediate
stage causes all up-stream stages to stall without affecting the down-stream stages’ advance.
During synthesis, one has to check that this combinational flow-control feedback does not
become the critical path, especially in a deeply pipelined design.

6.2 Synthesis Results

We present the GTECH estimates of five synthesized processor designs: unpipelined, 2-stage
pipelined, 2-stage 2-way superscalar processor (presented in Sections 3, 4 and 5, respectively)
plus a 3-stage pipelined processor and its corresponding 2-way superscalar version also de-
rived using our methodology. The 3-stage pipeline corresponds to the datapath in Figure 3
with both S0 and S7 instantiated. The superscalar transformation described in this paper is
currently being implemented in the TRAC compiler, hence the superscalar TRS’s have been
generated by hand. Once the transformation has been implemented (expected in August,
1999) it will be straightforward to generate and report results for s-way (s > 2) superscalar
implementations.

Figure 7 compares the amount of logic or area needed by the five implementations. The
total area increases by 2.2 times going from an unpipelined implementation to a 3-stage
2-way superscalar pipeline. As expected, both pipelining and superscalarity increase the
buffer requirements (from 0 to 3342) and control logic requirements (from 450 to 1099).
Superscalarity also doubles the ALU requirements and increases the register-file size because
of the increased number of ports.

12



Unpipelined 2-stage 2-stage 2-way 3-stage 3-stage 2- way

area ( % ) || area ( % ) area ( % ) || area ( % ) area ( % )
Prog. Counter 321 ( 74 |l 321.( 56) ] 321( 4.0) ] 32L(.51)). 321( 34)
Reg. File 1786 ( 41.2) || 1792 ( 31.1) | 2157 ( 26.9) || 1792 ( 28.1) | 2157 ( 22.7)
Mem. Interface 981 ( 22.8) 985 ( 17.1) 985 ( 12.3) 985 ( 15.4) 985 (1 10.4)
ALU 796 (18.3) || 796 ( 13.8) | 1588 ( 19.8) || 796 ( 12.5) | 1588 ( 16.7)
Pipe. Buffer(s) 0( 0.0) 737 ( 12.8) 1858 ( 23.2) || 1305 ( 20.4) | 3342 ( 35.2)
Logic 450 (10.4) || 1122 (19.5) | 1099 ( 13.7) || 1179 ( 18.4) | 1099 ( 11.6)
Total 4334 (100.0) ]| 5753 (100.0) | 8008 (100.0) || 6378 (100.0) | 9492 (100.0)
Normalized Total 1.00 1.33 18.5 1.47 2.19

Figure 7: Circuit area distribution of AX processors (Unit area = 2-input NAND gate)

unpipelined 2-stage 2-stage, 2-way
Stage 1 | Stage 2 [[ Stage 1 | Stage 2

Program Counter start start - start -
Instruction Fetch X X - X -
Operand Fetch 4 - - - -
Raw Hazard - 12 - - ~
PC increment - = - 18 =
S1 - 6 start start
32-ALU 20 - 20 - 20
Write Back 6 - 5 - 7
Total 30+X 18+X 25 264X 27
if X=20 50 38 25 46 27

Figure 8: Critical path break down of unpipelined, 2-stage pipelined and 2-stage 2-way
superscalar AX processors. (Unit delay = 2-input NAND gate)

3-stage 3-stage, 2-way
Stage 1 | Stage 2 | Stage 3 || Stage 1 | Stage 2 | Stage 3

Program Counter start - - start =

Inst Fetch or PC Inc X - - X - c
S0 6 start - 8 start —
Instruction Decode - 12 - - 18 o
S1 - 8 start - 11 start
32-ALU - - 20 - - 23
Write Back = 5 5 " - 8
Total 6+X 20 25 8+X 29 31
if X=20 26 20 25 28 29 31

Figure 9: Critical path break down of 3-stage pipelined and 3-stage 2-way superscalar AX
processors. (Unit delay = 2-input NAND gate)

13



Figures 8 and 9 break down the delay of each processor’s critical path into contributions
by different parts of the processor. For pipelined processors, separate critical paths are
given for each stage. (A combinational path is assigned to a stage based on where the path
starts). When a critical path involves instruction fetch, we use X to represent the instruction
memory lookup delay since the actual delay will vary with the instruction memory size and
implementation. The critical path analysis does not have to consider the latencies of data
memory operations. If data memory latencies ever become a factor in the the critical path,
we should modify the synchronous data memory interface to spend more cycles rather than
lengthening the cycle time.

Ideally, converting an unpipelined microarchitecture to a p-stage pipelined microarchi-
tecture should increase the clock frequency by p-fold, but this is rarely achieved in practice
due to unbalanced partitioning and pipeline logic overhead. In our examples, assuming X is
20 time units, the 2-stage pipelined processor only achieves 39% higher clock frequency than
the unpipelined version. The 3-stage pipeline processor achieves a 92% improvement

Analysis of the superscalar designs reveals areas where the synthesis procedure can be
improved. For example, in the derived 2-way superscalar pipeline, the 2-way superscalar fetch
rule references both instructions: im[pc] and im[pc+1]. In a naive implementation where the
processor uses two concurrent but independent instruction memory read ports to support
2-way superscalar fetch, the worst case instruction fetch latency becomes X+15 where 15
is the additional time required to compute the second instruction fetch address (pc+1).
Alternatively, because the 2-way superscalar fetch rule always reference two consecutive
locations, we could provide a 2-instruction-wide memory interface that only requires a single
address but returns both im[pc] and im[pc+1]. The reported superscalar results use the
new memory interface. Again assuming X is 20 time units, the peak performance of the
2-stage 2-way superscalar processor is now approximately twice that of the unpipelined
processor at approximately twice the cost in terms of area. The 3-stage 2-way superscalar
processor appears to have the best performance/area trade-off since it has nearly 3 times
the performance of the unpipelined processors while consuming only 2.2 times more area. A
caveat in this analysis is that we have only estimate the processors’ peak performances based
on cycle time and have ignored the effect of the instruction mix. Final design selection should
also depend on simulations of the TRAC-generated RTL processor descriptions running
software benchmarks.

7 Conclusion

To enable automated architectural exploration and synthesis, we need a high-level descrip-
tion methodology that can precisely specify the functions of a design without injecting im-
plementation details. In this paper, we have described how the formalism of Term Rewriting
Systems can be applied in this context. We began by describing an ISA and a pipelined
representation of the ISA using high-level TRS abstractions. Next, from a high-level de-
scription of an instruction pipeline, we demonstrated a mechanical procedure, based on TRS
rule composition, for deriving a superscalar processor description.

Each of the microarchitectural descriptions presented were synthesized using TRAC, a
TRS to RTL compiler. The quality of the generated RTL was quickly evaluated using Syn-

14



opsys RTL Analyzer. The technology independent GTECH analysis presented in this paper,
not only gave insight into the area-performance tradeoffs between various architectures but
also showed areas where TRAC compilation could be improved. This high-level and quick
feedback can also help the designer in inserting appropriate data bypasses. In future we
plan to confirm the GTECH analysis by compiling the generated RTL’s to real implementa-
tion technologies such as Xilinx Field Programmable Gate Arrays and Synopsys Cell-Based
Arrays. There is no technical difficulty in such synthesis, though the compile times can be
considerably longer than GTECH. There is also more work needed to define memory inter-
faces in a way that is not only precise and abstract during description but also efficient and
practical during synthesis. In related research, we are also exploring the use of rule compo-
sitions in verification. Using rule composition it is also possible to eliminate pipeline buffers
(FIFO’s) one at a time[11]. The ability to couple synthesis and verification to the same
source description will further increase the power and utility of the TRS design framework.

References

[1] Arvind and X. Shen. Design and verification of processors using term rewriting systems.
IEEE Micro Special Issue on Modeling and Validation of Microprocessors, May 1999.

(2] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe.
Parallelizing applications into silicon. In Proceedings of the IEEE Workshop on FPGAs
for Custom Computing Machines 99 (FCCM ’99), Napa Valley, CA, Apr 1999.

[3] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control.
In Proceedings of Conference on Computer-Aided Verification, Stanford, CA, June 1994.

[4] M. Gokhale and R. Minnich. FPGA computing in a data parallel C. In Proceedings
of IEEE Workshop on FPGAs for Custom Computing Machines, pages 94-101, Napa,
CA, April 1993.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description
language for retargetbility. In Proceedings of the 34th DAC, June 1997.

[6] S. Hassoun and C. Ebeling. Architectural retiming: Pipelining latency-constrained
circuits. In Proceedings of the 33rd DAC, Las Vegas, NV, June 1996.

[7] J. C. Hoe and Arvind. Hardware synthesis from term rewriting systems. Technical

Report CSG Memo 421, Laboratory for Computer Science, MIT, April 1999. (Submitted
for publication).

(8] J. C. Hoe and Arvind. Micro-architecture exploration and synthesis via TRS’s. Technical
Report CSG Memo 422, Laboratory for Computer Science, MIT, April 1999. (Submitted
for publication).

[9] I. J. Huang, B. Holmer, and A. Despain. ASIA: Automatic synthesis of instruction-set
architectures. In Proceedings of SASIMI-"93 Workshop, Nara, Japan, October 1993.



[10]

[11]

[12]

[13]

[14]

[15]

D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behavioral synthesis methodology for
HDL-based specification and validation. In Proceedings of the 32nd DAC, San Francisco,
CA, June 1995.

J. Levitt and K. Olukotun. A scalable formal verification mythology for pipelined
microprocessors. In Proceedings of the 33rd DAC, June 1996.

I. Pyo, C. Su, I. Huang, K. Pan, Y. Koh, C. Tsui, H. Chen, G. Cheng, S. Liu, S. Wy,
, and A. M. Despain. Application-driven design automation for microprocessor design.
In Proceedings of the 29th DAC, Anaheim, CA, June 1992.

V. K. Raj. DAGAR: An automatic pipelined microarchitecture synthesis system. In
Proceedings of ICCD8Y, 1989. '

X. Shen, Arvind, and L. Rudolph. CACHET: An adaptive cache coherence protocol
for distributed shared-memory systems. In Proceedings of the 13th ACM SIGARCH
International Conference on Supercomputing, Rhodes, Greece, June 1999.

X. Shen, Arvind, and L. Rudolph. Commit-reconcile & fences (CRF): A new memory
model for architects and compiler writers. In Proceedings of the 26th ISCA, Atlanta,
Georgia, May 1999. '

[16] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard. Programmable

active memories: Reconfigurable systems come of age. IEEE Transactions on VLSI,
4(1):56-69, March 1996.

Contents

1 Introduction 1
2 TRS as a Hardware Description Language 3
3 AX: A Simple Processor 4
4 Pipelining Transformations 5
5 Transformation for Superscalar Execution

S Berrrms iSompeost e Rules et G0 SR L ISRERE N BRI B s TR

T
5e1°  Bstaimple ob 2 Gomposite Rugle S0 000 SIERDTES. DEUAD VS SR o2 8
9
5.3  Dercivation of Bwe Way Sapersecalar Bules - - o . . . 0 AaPsEREAIG 38 9

RTL Synthesis and Analysis i1
T IERS sy BREASompllaiient . . e 11
62 Smiheaclesnles - -0 o0 b O o T 12
Conclusion 14

16



