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Abstract

The pervasive use of lists as intermediate data structures in functional programming
can cause time and space inefficiency in naively compiled programs. Using compiler
optimizations to remove intermediate lists has come to be known as deforestation.
Many techniques for deforestation have been proposed, although few consider their
impact on parallel languages. This thesis investigates a particular deforestation tech-
nique based on hylomorphisms and the category theory of types and describes how
the technique is implemented in the compiler for pH, an implicitly-parallel dialect of
Haskell.

Resumo

La trapenetrema uzado de listoj kiel interaj datumstrukturoj en funkcia programado
povas katzi tempan kaj spacan malefikecojn en naive kompilerataj programoj. Uzi
kompilerajn optimigojn por forigi interajn listojn nomigis senarbigo. Multaj teknikoj
por senarbigi estas proponitaj, kvankam malmultaj konsideras sian efikon sur parale-
laj lingvoj. Tiu tezo esploras specifan senarbigan teknikon bazita sur hilomorfioj kaj
la kategorio-teorio pri tipoj kaj priskribas kiel la tekniko efektivigas en la kompilero
por pH, implicite paralela dialekto de Haskell.
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Chapter 1

Introduction

1.1 The Problem

Common practice in functional programming is to use a compositional style. This
style encourages programmers to break algorithms down into simple functions which
can be written and analyzed separately. The individual functions are easier to reason
about, thus making programming and debugging easier. This style also allows for
greater code reuse.

Lists provide a “glue” which binds separate functions together into a single algo-
rithm. They are the intermediate data-structures which are generated by one function
and passed to the next to be consumed. In a naive implementation of this process,
most intermediate lists would be constructed, traversed once, and then discarded.
This is horribly inefficient in space (and time), when the function can be more simply
computed in a single iterative loop.

Consider the classic example of computing the sum of the first n squares. In the

functional language Haskell [15], one might write the computation as follows:
(sum (map square [1..n]))

Here, sum and map are functions defined in the extensive Haskell prelude (library),
square represents for simplicity a function which squares an integer, and [1..n] is

syntax for the list of integers from 1 to n. A straightforward compilation of this
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example would generate the list of integers from 1 to n and apply (map square)
to the list, thus generating a second list (of the the squares from 1 to n?), to be
then consumed by sum to finally produce the output. The generation of the two
intermediate structures is wasteful, since we could accomplish the same computation
in a single loop. Specifically, we could rewrite the composition of functions as a single

function which generates no lists at all:

sumOfSquares n = if (n > 1)
then (square n) + (sumOfSquares (n-1))

else (square n)

We want to continue to use the compositional style of programming, so rather
than make programmers change their ways, the solution is to make smarter compilers
which can recognize when intermediate data-structures are wasteful and remove them.

This process has come to be known, humorously, as deforestation.

1.2 The Thesis

The original goal of my research was to rewrite the traversal optimization pass of
the pH compiler [20]. The pass was written by Jan-Willem Maessen using the de-
forestation rules he derived in his master’s thesis [17]. It worked with higher-order
representations of the code to be optimized rather than working directly on the code.
There were known bugs in the pass which were difficult to fix because the code was
so convoluted. In addition to cleaning up the compiler, it was hoped that rewriting
the pass would allow me to tease out implicit optimizations being performed in the
pass along with the deforestation transformations. These implicit optimizations (de-
scribed in Section 2.2.4) are “clean up” rules which were necessary in the original
implementation to ensure that the transformed code output by the deforestation pass
was in its most efficient form. Some of the optimizations, however, might be useful
on other parts of the code. Separating out the strictly deforestation rules would not

only allow the general optimizations to be moved to their own compiler pass (or to an



existing pass with other simplifying optimizations), but would reduce the complexity
of the traversal optimization pass, making it simpler to read and debug.

The course of the research changed when I discovered a new deforestation tech-
nique which seemed more powerful than Maessen’s scheme. The technique, proposed
by Takano and Meijer in [24], is an extension of the foldr/build deforestation to
other data types. They express recursion with the notation from the infamous “ba-
nanas and lenses” paper [19] and specifically use hylomorphisms as their canonical
form.

Papers about the technique made miraculous claims about its power, including
the ability to automatically (and efficiently) derive the canonical form from recursive
definitions, the ability to deforest recursion over multiple data structures, and the
ability to extend to arbitrary algebraic data types. These claims, coupled with the fact
that other researchers in functional programming were working with hylomorphisms,
made the option of using this technique in the pH compiler enticing. My research
then shifted to discovering how the hylomorphism technique handled parallelism and
whether it could be extended to work with the pH compiler.

After researching the hylomorphism technique, the place for my thesis within
other deforestation work seemed clear. In Chapter 2, I describe three methods of
deforestation. The first method is the traditional deforestation technique used in
serial languages, such as Haskell. The second method is that devised by Maessen
and implemented in the pH compiler and is simply an extension of the first method
for parallel languages. The third method described is the hylomorphism fusion of
Takano and Meijer, which is itself just a generalization of the traditional deforestation
(first method). While the hylomorphism method does much to improve the power
of traditional deforestation, it does not concern itself at all with parallelization. My
work, then, would be to extend hylomorphism fusion for use in parallel languages, in
the same way that Maessen extended traditional deforestation.

My plan for this project was to implement an existing serial hylomorphism fusion
system in the hope that it would provide insight into a system for parallel fusion.

When I began, the only presentation of an automatic system for hylomorphism fu-



sion was Onoue, Hu, Iwasaki, and Takeichi’s paper “A Calculational Fusion System
HYLO” [21]. Implementing the algorithms in that paper proved to be a significant
project in itself, leaving little time to explore parallelism. This thesis, then, discusses
the implementation of that system and leaves the extension to a parallel system as
future research. In Chapter 3, I discuss the HYLO algorithms in greater detail than
the original paper, providing corrections and pointing out open questions along the
way. | even present an important algorithm which was missing from the HYLO sys-
tem. In Chapters 4 and 5, I conclude with a few thoughts on parallelism and pointers

to papers that might be helpful in extending the HYLO system in various directions.
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Chapter 2

Background

This chapter presents previous work on deforestation which is relevant to the work be-
ing done on the pH compiler. In particular, three techniques are described: traditional
foldr/build deforestation (which is implemented in the Glasgow Haskell compiler
[7]), reduce/map optimization (which was the first deforestation technique imple-
mented in the pH compiler), and calculational fusion using hylomorphisms (which is
the basis for the work in this thesis). An overview of the various methods for remov-
ing intermediate data structures can be found in [9]. A short history of deforestation

(and the general problem of intermediate data structures) is presented in [16].

2.1 foldr/build Deforestation

As far as this thesis is concerned, the first major step in that history is the work by
Gill, Launchbury, and Peyton Jones [10]. They proposed a system for transforma-
tion which requires that modules generate and consume lists in specific ways. The
form they used, which I will describe below, is too restrictive for the programmer
to be required to write all functions in that form. It is still a useful method, how-
ever, because one can implement the functions in the standard Haskell prelude in
this form and reasonably expect programmers to write most of their programs with
prelude functions. Automatic deforestation can then proceed on any function which

is composed of these standard functions, including the sum of squares example.
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2.1.1 Consuming Lists

The work of Gill et al. builds on the Bird-Meertens formalism [2]. Bird devised an
algebra for describing operations on lists, from which algorithms can be derived. By
proving theorems in this algebra, one can say something about the algorithms they
represent. Gill et al. are specifically interested in using transformations in the algebra
(which can be proven to be correct) to remove intermediate lists.

Bird describes a set of useful operations, which he calls reduction operators and
which can convert lists into other kinds of values. The first reduction operator he

presents is reduce, defined as follows:

reduce (@) z [1 ==

reduce (®) z [z, 29,..., 2, ] =21 DT D --- Py

The first argument is a binary operation @ (on a specific data type) which, for reduce
to be safe, must be associative and have z, the second argument, as its (left and right)

identity. That is:

a®(bdc)=(adb) Dc

abz=2Pa=a

We can define reduce more constructively as follows (where ++ is the append operator

for lists):
reduce (@) z [1 = z
reduce (P) z [el = e
reduce (@) z (a ++ b) = (reduce (@) z a) @ (reduce (®) z b)

The typical next step at this point is to disambiguate the definition of reduce by
picking an arbitrary direction for the computation of the reduction to proceed. Gill

et al. choose to represent reduce as a right fold, but either direction is perfectly legal:

reduce f z foldl f =z

reduce f z foldr f =z

12



where the fold operations are defined as follows:

foldr ® 2 [21,T2,...,%n] =21 D (T2 ® (- ® (7, D 2)))
foldl @ z [x1,m9,..., 2] = (2D 1) B x2) D) Dy

As mentioned before, we can define all of the list-consuming functions in the
Haskell prelude as folds. For instance, in the sum of squares example, we could define

sum and map as follows:

sum xs = foldr (+) 0 xs

map f xs = foldr (\ a b -> ((f a):b)) [I xs

Many other functions can be represented in this manner. Of interesting note are

the following (where (:) is the cons operator):

xs ++ ys = foldr (:) ys xs

foldl f z xs = (foldr (\ bga ->g (f a b)) id xs) z

2.1.2 Producing Lists

The Gill et al. approach also requires that list production be standardized. They note
that the effect of foldr f z on a list is to replace the cons between each element in
the list with the function £ and to replace the nil at the end of the list with z. They
then reason that if the construction of lists were abstracted over cons and nil, then
the effect of applying fold to a list could be achieved by applying the abstracted list

to £ and z. They invented a function build to represent this idea:
build g = g (:) [I

As an example, consider the list of integers from 1 to n used in the sum of squares

example. We could create that list using the following function:

from a b = if (a > b)
then []
else (a:(from (a+1) b))

13



which can be defined in terms of build as follows:

from a b build (from’ a b)

from’ a b (\cn —->if (a>Db)
then n

else (c a (from’ (a+1l) b c n)))

All functions which generate lists should abstract them in this way if the compiler
is to deforest compositions involving those functions. We cannot expect the program-
mer to use build in his programs, but we can expect the prelude functions to be

written in this way (as we did with foldr). For example:

map f xs = build (\ ¢ n -> foldr (\ a b -> c (f a) b) n xs)

2.1.3 The foldr/build Rule

With list consumption and production standardized, we can now use a single trans-

formation rule to remove intermediate lists. That rule is:
foldr f z (build g) = g f =

This rule is the heart of the Gill, Launchbury, Peyton Jones paper. It is significant
enough to be the only function highlighted with a box in that paper! To see how it
works, consider the sum of squares example, rewritten using foldr and build. The

expression
sum (map square (from 1 k))
will be desugared by the compiler into

foldr (+) 0 (build
(\ ¢cn->foldr (\ a b -> ¢ (square a) b) n (build
(from’ 1 k))))

14



In this scheme, functions which consume a list and return another list in the standard
forms must themselves be of the form build...foldr. Thus, when we compose several
such functions we produce an expression which has alternating build and foldr,
as seen in the above equation. The foldr/build rule then tells us that we can
remove all the intermediate occurrences of foldr...build, leaving an expression with
a single build and a single foldr (assuming the composite function both consumes

and produces a list). In the current example, the pairs which are deforested are

foldr| (+) 0 (build]
(\cn—>(\ab—>c(squarea) b)n(

(from’ 1 k))))

leaving the following deforested code:
(\ cn-> (from’ 1 k) (\ a b -> ¢ (square a) b) n) (+) 0
which we can f-reduce to produce

(from’ 1 k) (\ a b -> (square a) + b) 0

2.2 Parallel List Traversal

The foldr/build deforestation works great, except that it requires list traversals be
expressed using foldr. This imposes an arbitrary data-dependency on otherwise par-
allel computations, which serializes the computation. In a parallel compiler, we want
the option of deciding how to traverse a list when there is no inherent “handedness”
in the computation.

The solution implemented in the current pH compiler is due to Maessen [18]. He
suggests that we back up to the point where Gill et al. choose to represent reduce as
foldr, and instead stick with reduce.

As Maessen points out, reduce is not quite enough. There are still some operations
which we cannot represent using only reduce. Maessen provides as an example, the

following idea which we would like to express:

15



length (a ++ b) = (length a) + (length b)

If we compare the type of this function to the type of reduce, we can see what the

problem is:

reduce :: (a ->a ->a) > a > [a] -> a

length :: [a]l -> Int

What is needed is some way to transform the values of the elements of the list into

values of the type to be returned. The solution is to introduce the map operator:

(]
[(f e)]
(map f a) ++ (map f b)

map f []

map f [e]

map f (a ++ b)

Now we can represent length in terms of reduce and map as follows (where const
is a function which returns the first of its two arguments and . is the composition

operation for functions):
length = sum . map (const 1)

Both Bird [2] and Maessen [17] show that using the two operations reduce and
map in this way we can express the homomorphism from the monoid of lists over type
«, given by the four-tuple ([ad,++, [1, (: [1)), to an arbitrary monoid (3, ®, idg, 1)

as follows:
h s = reduce @ idg (map ¢ xs)

Thus, any data-type which is expressible as a monoid can be implemented with
lists and list operations. Maessen [17] discusses how arrays and open lists are imple-

mented this way in the pH compiler.
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2.2.1 Consuming Lists with reduce/map

The way that Maessen avoids picking an arbitrary traversal direction is by using
higher-order functions. He describes this process in three steps. First, the computa-
tion that will be done on each list element when it receives the data traveling down
the “spine” of the traversal is packaged up. Then a higher-order function is used
to string these packages together. These two steps are captured in the reduce/map
structure. The final step is to call this higher-order function on the initial value of
the traversal to actually perform the computation. Here are both fold operations
represented in this form (where id is the identity function and flip on a function

reverses the order of the first two arguments of that function):

foldr £ z xs

(reduce (.) id (map f xs)) z

foldl f z xs = (reduce (flip (.)) id (map (flip f) xs)) z

Similarly, we can express reduce in this way:
reduce @ z xs = reduce (\ 1 rt -> (1 z) & (r z))
id
(map const xs)

z

The optimizations that lead to deforestation will then assume that all list con-

sumers are of the (canonical) form:

(reduce a id (map w list)) t

2.2.2 map/reduce Optimization

After showing that reduce and map can express the homomorphisms with respect to
the append operator ++, Bird then uses this to prove several promotion rules, which
show how certain list operators can be “pushed” inwards through calls to concat (the

reduction of a list by ++). The promotion rules for map and reduce are:
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map f (concat L) concat (map (map f) L)

reduce @ z (concat L) reduce @ z (map (reduce @ z) L)

Maessen derives some similar rules that illustrate the ordering assumptions present
in map and reduce. The result of applying map to a list is unaffected by the ordering
of that list. The same cannot be said for reduce, because the operation passed to it

is not necessarily commutative. Maessen illustrates this idea with the following rules:

map f (reverse L) reverse (map f L)

reduce @ z (reverse L) reduce (flip @) z L

When the operation of the reduce is commutative, the compiler would benefit
from dropping flip in the above example. In order to tell the compiler that we do
not care about the order of a list—when we are using it as a bag, for example—we can
call the function someOrder. It takes a list as its argument and returns a permutation
of that list. When the compiler reaches a call to someOrder, it drops any assumptions
about ordering and then chooses the best ordering (by picking a traversal direction
for each sublist) considering the traversal function it is constructing.

Having shown some of the rules which can be derived, Maessen puts it all together
into a set of optimization rules (Figure 2-1), which he calls the map/reduce rules
because the last three arguments to LF are the values of a, u, and ¢ in the canonical
reduction given earlier using map and reduce, which is being applied to the expression
in the double brackets.

If promotion rules were applied directly, there would still be redexes in the code
after compilation. The map/reduce rules eliminate these redexes by building a higher-
order representation of the computation. Specifically, it makes all calls to a at compile

time! This can be done because a has a known regular structure.

2.2.3 Producing Lists with unfold

List generation needs to be standardized as well, if we are to eliminate lists and not

just optimize their traversal. The current pH compiler provides a function unfold for
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LE|LE,, Ey, ...E,]] = LF[LE,, Ey, ...E,]] aus wist tiist

LE[E,++E,] = LF[E++Es] aiist wiist tiist
etc. for other list expressions
LE[reduce f t L] = L&[let z = ¢ in
in LF[L] (Mlrt.f (lz)(rz)) const {]

LE[foldr f t L] = LE[LFIL] () f ]

LE[foldl f t L] = LE[LF[L] (£lip (.)) (flip f) {]
LF[LE,, Ey, ...E,]1] aut = ((uFE) ‘a' (uky)‘a ... (uFE,))t
LF[E++Es] aut = (LF[E] au‘a E}"[[Eg]] au)t
LF[0] aut =t
LF[A:L] aut = (uA'‘a LF[L] au)t
[[mapr]] aut = LF[L)a(u - f)t
LF|concat L] aut ﬁ FIL] a (A1 EJ:[[Z]] u) t
LF|reverse L] aut LF[L] (swap a) u
LF|[someOrder L] aut = LF[L] (bothways a) ut

Figure 2-1: map/reduce optimization rules

the programmer to use (again, as long as the programmer sticks to list comprehensions

and prelude functions, the use of this function will be hidden from him):

unfold p f v="h v

(]
(a: (h b))

where h v | pv

| otherwise

where (a,b) = f v

This definition was arrived at because it is flexible enough that, when transformed
with some additional rules, it generates different code depending on how it is con-
sumed.

A similar function synthesize is described in [17]. It operates in the reverse
manner of reduce in the way that unfold is the reverse of foldr and foldl.

We can now add two final rules:

19



LF[unfold P F V]aut =
let h v acc | LE[P] = acc
| otherwise = (a (u e) (h v’)) acc

where (e,v’) = LE[F] v

in h LE[E] t
Otherwise:
LF[E]aut =

let h [] acc = acc

h
h (e:es) acc = (a (u e) (h es)) acc
h

in LE[E] t

A more sophisticated set of transformations to replace these last two is given in
[18]. Those transformations take into account that the structure of a is known, where
this naive set of transformations does not. The result is code which builds up the list

in a way that is best suited to the function which will consume it (defaulting to an

iterative form when possible).

2.2.4 Other optimizations

As Gill notices in [9], there are optimizations other than straightforward deforestation
which are necessary for Maessen’s transformations to produce proper output. These
optimizations are implicit in Maessen’s implementation of deforestatation in the pH
compiler. Gill specifically mentions arity analysis as one such optimization, since the
same mechanism is needed in his implementation of foldr/build deforestation. Con-
stant argument removal is another optimization used in Maessen’s implementation.
As an example, consider what the compiler does when it encounters the following

code (our infamous sum of squares example):
reduce (+) 0 (map (\ x -> x * x) xs)

Maessen’s implementation sees this code, generates representations for a, u, and ¢,
and runs the higher-order function to generate the final output—a loop, which would

look something like this:
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let h xs t = case xs of
1>t
(x:xt) > (x * x) + (h xt t)

in h xs O

As we mentioned, there are some hidden optimizations required to produce this
output. In Maessen’s implementation, it is unclear whether these optimizations are
being applied correctly. Their implicit presence in the optimization pass makes it
difficult to reason about the correctness. A cleaner implementation would separate
these rules from those which are strictly deforestation rules. For example, if we apply
only the deforestation rules, the process might proceed as follows. First, the code is

transformed into the canonical form:

_reduce (\1rt->(1t)+ (rt))
(Nt ->t)
(cmap (\ x t => x * x) x8)

0

Then the traversal optimization pass does its computation and outputs the following

loop code:

let h xs = case xs of
0> Nt -=>1%)
(x:xt) > (N 1rt->(1Qt)+(rt))
((\xt > x * x) x)
(h xt)

in h xs 0

This is different from the output given in the first example. The difference is
that there is still much simplification that can be performed on the code. However,
this is not simplification that the traversal optimizations should be concerned with.

Trying to make this simplification part of the traversal optimization pass is part of
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the reason why the code is so convoluted. Instead, general code-simplifying passes
should be used to shape the loop into a form that is most efficient for compilation.
Continuing with our example, we can apply [-reduction rules to achieve the fol-

lowing code:

let h xs = case xs of
0> Nt -=>1%)
(x:xt) -> let f = h xt
in (\t > (x*x) + (ft))

in h xs 0

This is where we apply the arity analysis that Gill mentions. The remaining step
is to notice that the function f is always applied to one argument. Thus we can

n-abstract by adding an additional argument to the definition of f:

let h xs = case xs of
0> Nt -—>1t)
(x:xt) > let ft=hzxtt

in (\t > (x *xx) + (f t))

in h xs O

Now we notice that the function h is always applied to at least two arguments, so it

is safe to n-abstract the definition of h:

let h xs t = (case xs of
0> Nt >t
(x:xt) -> let £t =h xtt
in (\t > (x*xx)+ (ft)))t

in h xs 0

Now we can perform some final S-reduction and other simplifying transformations to

achieve the result of optimization in the first example. Without the arity analysis to

22



raise the arity of h, the compiler would not realize that the function can be computed
nicely as a tail-recursive loop.

It is worth noting that further optimization is still possible. Since the argument
t never changes in recursive calls to h, it is safe to lift it out of the recursion. Since
the function is only called once (and thus always called with the same value of t), we

can go even further and replace all instances of t with the constant value:

let h xs = case xs of
(1 >0
(x:xt) -> (x * x) + (h xt)

in h xs

This optimization, like arity analysis, is straightforward.

2.3 Calculational Fusion

A third form of deforestation was introduced by Takano and Meijer in a paper called
“Shortcut Deforestation in Calculational Form” [24]. The term calculational refers to
the philosophy that one should calculate programs from their descriptions in the way a
mathematician calculates the answer to a numerical problem [19]. It is easy to discuss
statements about simple operators, like addition, multiplication, and composition; but
in order to propose and prove statements about whole programs, one will eventually
have to analyze recursion, which is not so easily done in the general case. Meijer,
Fokkinga, and Paterson liken this situation to the use of goto statements, which are
difficult to reason about and so have been replaced in modern languages by structured
control flow primitives such as conditionals and while-loops which make reasoning
feasible.

Using category theory, Meijer et al. extend Bird’s calculational framework for
recursion on lists into a calculus for describing recursion on arbitrary, inductively-
defined data types. They propose a set of higher-order functions for representing

certain recursion schemes, over which they can prove laws and which are powerful
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enough to describe the kinds of recursion seen in functional programs. These repre-

sentations are the basis for Takano and Meijer’s deforestation scheme.

2.3.1 Bananas, Lenses, and Envelopes

Before presenting the calculational framework over arbitrary data types, it is worth
examining the specific case for lists. This will reduce the conceptual leap required to
move from the foldr/build framework to the more general form.

Meijer et al. describe three forms of recursion. The first are functions from lists (a
recursive data type) to some other arbitrary data type. Such functions destruct lists
and are called catamorphisms, from the Greek preposition kaTa meaning “down-
wards.” The second form of recursion are functions which construct lists, and thus
are functions from an arbitrary data type to lists. Such functions are called anamor-
phisms, from the Greek preposition arva meaning “upwards.” The third type are
functions from one arbitrary data type to another arbitrary data type, but with a
call structure in the shape of a list. These functions are called hylomorphisms, from
the Aristotelian philosophy that form and matter are one, and v Ao meaning “dust”

or “matter” [19].

Catamorphisms

A list catamorphism is a function h of the form:

h :: [A] -> B
h [
h (a:as)

b

a @ (h as)

This should look familiar as it is the definiton of a fold. The function h can be

expressed in Bird’s notation as:
h = foldr & b

In the notation proposed by Meijer et al., list catamorphisms are written using “ba-

nana” brackets (so named for their shape):
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h = (b,®)

Anamorphisms

A list anamorphism is a function of the form:

h :: B -> [A]

hb | (pb)=101

h b = let (a,b’) = gb
in (a:(h b’))

where p is a predicate that takes a value of type B and returns a boolean.
List anamorphisms construct a list and are represented in Bird’s framework by

the unfold function:
h = unfold p g

In the extended framework, list anamorphisms are written using a pair of brackets

which looks like concave lenses:
h = (g,p)

Hylomorphisms

A list hylomorphism is a recursive function whose call structure is isomorphic to a

list—that is, a linear recursive function. Such functions have the form:

h:: A->8B
hal (pa =c
h a = let (b,a’) =g a

in b ® (ha’)

Hylomorphisms are indicated in the extended notation by double brackets, which

Meijer et al. refer to as “envelopes”:

h = [(c,®), (g p)]
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Notice that the form for hylomorphisms is the same form as for anamorphisms ex-
cept that the list constructors nil and cons have been replaced by ¢ and @ respectively.
This means that anamorphisms are just a special case of hylomorphisms. Similarly,
catamorphisms are hylomorphisms with specific values for p and g. This is because
hylomorphisms represent the composition of a catamorphism and an anamorphism

(or a fold and an unfold in Bird’s framework):

[(c,®), (g:p)] = (c,®) o [g p)

2.3.2 Algebraic Data Types

Having described the three patterns of recursion in terms of cons-lists, we would now
like to extend these ideas to arbitrary data types. In order to do this, we need to
be able to discuss data types (and functions which operate on them) in a systematic
way. Fortunately, there exists a theory of data types which we can use. This theory is
based in category theory and defines recursive data types (also called algebraic data
types) as the least fixed points of functors.

The following sections will briefly describe the algebra of data types. For a more
thorough treatment of category theory and its applications to programming, see [1].
The category used in this work is CPQO, the category of complete partial orders with
continuous functions. As we will see, this has the benefit that the carriers of initial

algebras and final co-algebras coincide.

Functors

There are several basic functors we will need in order to define data types. These
functors are id (identity), A (constants), x (product), + (separated sum), and A,
(strictify or lifting).

The product functor is defined as follows for both types and functions:

AxB = {(a,b) |a€ Abe B}
(f xg) (a,0) = (fagb)
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We also define the related combinators left projection, right projection, and split:

exl (a,b) = a
exr (a,b) = b

(feg)a = (fa,ga)

b)
b)

The relationship between these combinators and the product functor is character-

ized by the equation:

fxg = (foexl)a(goezr)
The separated sum functor is defined as follows for both types and functions:

A+B = ({0}xA U {1} xB),
(f+g9) L = L
(f+9) (0,a) = (0,f a)
(f+9) (1,0) = (1,9b)

The related combinators left injection, right injection, and junc are defined as

follows:
inla = (0,a)
inrb = (1,b)
(fvg) L = L
(fv9) (0,0) = fa
(fvg) (1,b) = gb

The relationship between these combinators and the separated sum is character-

ized by the equation:

f+g = (inlo f)~ (inrog)
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Initial Fixed Points of Functors

For our analysis, it is necessary that data types are defined by functors whose opera-
tion on functions are continuous. As it turns out, all functors in CPO which are built
up from the basic functors just described satisfy this continuity condition. Having
described the basic functors, we are now ready to define data types as the initial fixed
points of functors.

Let F be an endofunctor on category C. That is, F is a functor from C to C. We
can define several concepts based on this functor. An F-algebra is a strict function of
type FA — A. Dually, an F-co-algebra is a (not necessarily strict) function of type
A — FA. In both cases, we say that the set A is the carrier of the algebra. An
F-homomorphism h : A — B from F-algebra ¢ : FA — A to F-algebra v : FB — B is

a function which satisfies the equation:
ho¢p = YoFh

This is expressed more concisely as h : ¢ — 10. We define the category ALG(F) as the
category whose objects are F-algebras and whose morphisms are F-homomorphisms.
Dually, COALG(F) is the category whose objects are F-co-algebras and whose mor-
phisms are F-co-homomorphisms.

Now we see why the default category is CPO. In this category, ALG(F) has an
initial object and COALG(F) has a final object, and the carriers of both algebras
coincide. Specifically, the initial object of ALG(F) is the F-algebra inp : FuF — uF
and the final object of COALG(F) is the F-co-algebra outp : uF — FuF, where p is
the fixed point operator that satisfies the equation uh = h(uh). The algebras ing and
outr are inverses of each other and therefore determine the isomorphism pF =2 FuF
in C. The type pF is the algebraic data type defined by the functor F.

An example is definitely in order.

Examples

These are examples are taken from [24].

Consider the following recursive type declaration in Haskell:
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data Nat = Zero | Succ Nat

This declaration defines a functor N = L +id. That is, NA = L +A and Nh = id | +h.
It also defines the data type nat = puN and an initial N-algebra iny = Zero~ Succ :
Nnat — nat, where | is the terminal object in C and Zero: 1 — nat is a constant.

Now consider the parameterized declaration for lists of type A:
data List A = Nil | Cons A (List A)

This declaration defines a functor Ly = L + A x id, which by the definitions of
the basic functors means that L4B = L + (A x B) and Lah = id, + (ids x h). As
before, the data type is defined by the carrier pul 4 of the initial L4-algebra ing, =
Nilv Cons : La(listA) — (listA).

We can also construct a final L4-co-algebra as follows:
out;,, = (id;, +hdatl)oismnil?: (listA) — La(listA)

Here p? injects a value x of type A into the type A + A depending on the result of p

x. One could therefore think of the definition of out;, as corresponding to:

\ x -> if (isnil x) then | else (hd x,tl x)

2.3.3 Morphisms Over Generic Types
Catamorphisms and Anamorphisms

The fact that ing is the initial object of ALG(F) means by definition that for any
F-algebra ¢ : FA — A, there is a unique F-homomorphism A : inp —r ¢. This
F-homomorphism is just a catamorphism over the type uF! We denote this catamor-
phism by (o)) .

Dually, for outr to be the final object in COALG(F) means that for every F-co-
algebra 1) : A — FA, there is a unique F-co-homomorphism A : ¢ —p outp, which is
an anamorphism over the type pF and is denoted by [¢)F.

We can also define these two morphisms as least fixed points:
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(-)p : (FA=A) —puF— A

() = u(\f. ¢poFfooutr)
(L) : (A—=FA) = A—uF

(V] = pAf.inpoFfou)
From these fixed point definitions, we can derive the following useful equations:

(0D = ¢oF(¢)yoouts
() oing = ¢oF(o)y

()p = inpoF(¥)pod
outpo (Y], = F(Y)pot

Hylomorphisms

As was mentioned before in the specific case of lists, hylomorphisms are the compo-
sition of catamorphisms with anamorphisms. This is still true over arbitrary types.

We denote hylomorphisms by:

[0, 9] = (¢)pe(P)n

As with the other morphisms, we can also represent hylomorphisms as least fixed

points:
s + (FA=-A)x(B—FB)—-B—A

[0.4]p = uAf ¢oFfoy)

It should be obvious from the fixed point definitions that catamorphisms and

anamorphisms are just special cases of hylomorphisms:

(6)p = [9,o0utr]p

Many useful laws for program calculation can be derived for hylomorphisms. One

such law is called HyloShift and is expressed as follows:
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n:F=G = [oon¢]p, = [¢,n0v],

This law demonstrates that natural transformations can be moved between the two
parameters of a hylomorphism. It will allow us to introduce a new notation for

hylomorphisms in section 2.3.5.

2.3.4 Acid Rain

The goal of all of this work to structure recursion is that we will be able to fuse
compositions of recursive functions. This is performed by a pair of rules which Meijer,
following the tradition of humorous names, has dubbed the Acid Rain theorem.

Takano and Meijer first introduce Acid Rain as a single free [27] theorem:
g:VA. (FA—=A) = A = (0)p (ginp) =9 ¢

This rule should make sense as an extension of the traditional foldr/build rule to
all algebraic data types. That is, it is simply saying that a catamorphism (fold) over
the recursive type defined by F composed with a function which is parameterized by
the constructors of that data type (build) is equivalent to applying the parameterized
function on the parameter of the catamorphism.

Takano and Meijer suggest that it is easier to apply this rule if it is expressed in

terms of functions, so they present the Acid Rain rule again:
g:VA.(FA—-A) -B—A = (¢)po(ging)=g¢

Takano and Meijer then note that since we are working in category theory, it

makes sense to take the dual of this rule:
h:VA.(A—-FA) - A—B = (houtp)o[¢),=h

This rule does not have an equivalent in the work on traditional deforestation, however
it is not hard to see that such an equivalent could exist. Gill [9] suggests that in the
traditional framework this dual could be called the unbuild/unfold rule. As with

build, unbuild would not have a Hindley-Milner type.
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Thus we have two Acid Rain rules—one for catamorphisms and one for anamor-
phisms.

We are not finished yet, however. While we now have rules for fusing catamor-
phisms and anamorphisms, it is not clear how to go about applying these rules in
an automatic system. We need methods for both finding reducible expressions and
for deciding what order to apply the rules when redexes overlap. Takano and Meijer
suggest that the first step to resolving these problems is to use hylomorphisms as the
canonical representation for recursion. This seems like a natural choice since cata-
morphisms and anamorphisms are just special cases of hylomorphisms and previous

work has shown that most reasonable functions can be represented as hylomorphisms

3].

2.3.5 Hylomorphisms in Triplet Form

Even with hylomorphisms as the canonical form, there is still a problem. Some func-
tions can be represented as catamorphisms on their input types and anamorphisms

on their output types. For example:

length = (Zerov (Succoexr))),

= [(id. +t1) o ismil?),

And in general, for any natural transformation n : F — G, the HyloShift rule tells us

that the following catamorphism and anamorphism are equivalent:

(IiTLGoT]DF = [[inGOT],OUtF]]F =

= [ing,nooutp], = [nooutr),

If such hylomorphisms appear in a program we are attempting to deforest, we may
miss an application of the Acid Rain theorem for catamorphisms because the function
appears in anamorphism form, or vice versa. In order not to miss such opportunities,
we would need to apply the HyloShift rule at every step. This is a lot of work to

do, which we can avoid by using a new notation for hylomorphisms which keeps the
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natural transformation as a third parameter to the hylomorphism, separate from the
other two parameters.

Specifically, the new least fixed point definition for hylomorphisms is:

[ dgr @ VAB.(GA— A) x (F—=G)x (B—FB) = (B — A)
[[d)ana,w]]G,F = N()\fﬂsoﬁoFfoi/))

With this notation, we can represent natural transformations in a neutral form:

(IinG o 77DF = [[inGa ;s OUtF]IG,F = [(77 © OutF]G
Specifically, we can represent the function length as follows:

length = [iny,id + exr, OUtLA]]NLA

Takano and Meijer claim that with this notation, it becomes easier to judge
whether a hylomorphism is a catamorphism or an anamorphism: If the third param-
eter of the hylomorphism is outp, then it is an F-catamorphism; if the first parameter

is ing, then it is a G-anamorphism.

2.3.6 Hylomorphism Fusion

We can now restate the Acid Rain rules in terms of the triplet notation for hylomor-
phisms.

The Acid Rain rule for catamorphisms becomes the Cata-HyloFusion rule:

7T:VA.(FA—-A)-FA—- A =

[[¢7 UiE OUtF]IGyF © [[7_ inFa 12, w]lF,L = [[7_ ((]5 © 771)7 N2, w]]F,L

The Acid Rain rule for anamorphisms becomes the Hylo-AnaFusion rule:

0:VA.(A—FA) - A—-FA =

[¢.m, 0 outrls p o line, o, Ylp, = [6,m,0 (o¥)lp,
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Transformation Algorithm

The transformation algorithm proposed by Takano and Meijer is simply to repetitively
apply the hylomorphism fusion laws until there are no redexes left in the program.
The one non-trivial aspect of this algorithm is the reduction strategy that decides
the order in which redexes are transformed. Despite the use of hylomorphisms as the
canonical form, the order in which the Acid Rain rules are applied can change the
amount of deforestation possible.

Because there are two kinds of redexes (Cata-Hylo and Hylo-Ana), there are four

different ways in which two redexes can overlap:

1. Two Cata-Hylo redexes overlap:

The reduction of the left redex does not destroy the right one.

2. Two Hylo-Ana redexes overlap:

The reduction of the right redex does not destroy the left one.

3. A Cata-Hylo redex on the left overlaps with a Hylo-Ana redex on the right:

The reduction of either redex does not destroy the other.

4. A Hylo-Ana redex on the left overlaps with a Cata-Hylo redex on the right:

The reduction of either redex does destroy the other.

From these cases, Takano and Meijer conclude that it is important to reduce a
series of redexes of the same kind (that is, cases 1 and 2) in the right order. They
propose the following reduction strategy to maximize the opportunities for deforesta-

tion:
1. Reduce all maximal Cata-Hylo redex chains from left to right.
2. Reduce all maximal Hylo-Ana redex chains from right to left.

3. Simplify the inside of each hylomorphism using reduction rules for the basic

functors and combinators.

4. If there still exist any redexes for HyloFusion rules, return to step 1.
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[t was noticed by Paterson [23] that the Acid Rain theorems could each be gen-
eralized to a form that would not make overlapping redexes sensitive to the order of
reduction. His rules, which also appear in [21], differ from the originals in that they
allow the intermediate functors of two composed hylomorphisms to be different as
long as the ¢ (1) of one can be reduced to 7 in (o out) of the other. The rule for
Cata-HyloFusion is:

7:VA.FA—-A) -FA—= A =

[[¢7 i, OUtF]IGyF © [[7_ inFa M2, w]lnyL - [[7_ ((]5 o 771)7 N2, w]]F',L

With this rule, and a similar rule for Hylo-AnaFusion, it is not necessary to reduce

chains of the same redex in a particular order.
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Chapter 3

Implementing Hylo Fusion

The first step towards implementing a parallel hylomorphism fusion pass in the pH
compiler is to implement an existing non-parallel system. The only practical imple-
mentation of the hylomorphism fusion theory was presented by Onoue, Hu, Iwasaki,
and Takeichi in [21]. This chapter describes how the algorithms in that paper are

implemented in an optimization pass for the pH compiler.

3.1 HYLO

As Onoue et al. point out, the major difficulty in implementing the hylomorphism
theory is that the transformation laws have so far been developed as aids for program
calculation by hand and not by machine. To develop an automatic system for program
calculation, one needs to re-express the transformation laws in a constructive form.
The work by Onoue et al. attempts to do this. They developed an automatic fusion
system called HYLO and give, in the paper, all the algorithms used by this system.

The second difficulty, according to Onoue et al., is developing a system for practical
use. As we will see in their implementation, sometimes it is impossible to give a
constructive algorithm for all possible inputs. In these cases, Onoue et al. settle
for algorithms which cover only the forms of input one might reasonably expect in
practice.

The basic steps of the HYLO system are as follows:
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1. Derive Hylomorphisms from Recursive Definitions
Hylomorphisms are not in the source language, only in the intermediate syn-
tax used by the HYLO system. Thus, the system cannot expect programmers
to write their recursion in this way. Further, the HYLO system does not as-
sume that functions in a standard prelude are defined as hylomorphisms. The
HYLO system follows the lead of Launchbury and Sheard [16] and derives hy-
lomorphisms from arbitrary recursive definitions. In actuality, not all recursive
definitions can be turned into hylomorphisms, but Onoue et al. argue that their

algorithm covers a sufficient range of inputs that appear in practice.

2. Restructure Hylomorphisms to expose Data Production and Consumption
As we saw in the previous chapter, for fusion of hylomorphisms to proceed by
the Acid Rain laws, ¢ and v need to be of the form 7 in and o out. To put
hylomorphisms in this form, the HYLO system first extracts computations from
¢ and v that can be moved to 7. This process, called restructuring, is performed
by two algorithms, one for removing computation from ¢ and one for removing
computation from . At this point, if ¢ and ¢ are not already in or out, the
HYLO system attempts to derive 7 and o such that ¢ = 7 in and ¢ = o out.

Again, one algorithm is given for ¢ and one for .

3. Apply Acid Rain
The Acid Rain law is applied to fuse adjacent hylomorphisms. After fusion, it
may be necessary to restructure the resulting hylomorphism to allow fusion with
other hylomorphisms. The fusion may also have brought nested hylomorphisms
together, requiring restructuring and application of the fusion law inside of
hylomorphisms. Thus steps 2 and 3 are repeated until no fusible hylomorphisms

remain.

4. Inline Remaining Hylomorphisms
Any hylomorphisms still in the program must be replaced by a recursive defini-
tion. Onoue et al. do not give an algorithm for this process except to say that

it is the inverse process of hylomorphism derivation.
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3.2 Representation in pH

Even though Onoue et al. are concerned with developing constructive algorithms for
calculational fusion, their presentation is still in the abstract notation of category
theory. When deriving and manipulating hylomorphisms in the pH compiler, it is
helpful not to stray too far from the intermediate syntax that the compiler pass is
given. At the same time, while we do not want to give up the syntax in which the
program is already represented, we also do not want to have to bring the category
theory into this syntax by defining operators in the syntax for concepts like separated
sum. The solution is to decide what information from a function is necessary to
compute the hylomorphism, and to store only that information.

Examining the HYLO algorithms, one finds that the hylomorphism [¢, 7, ¢¥]r ¢ is

always of the form:

F = F+---+F,

Fi = T(vi) x - xD(vg,, ) x [y x -+ X I,

G = G +--+6G,

G, = T(vi) x---xT(vg, ) x Iy x -+ x I,

b = div oo,

¢ = )\(vil,...,viki,vgl,...,vgli).t@.

noo= et

N = )\(vil,...,vimi,vgl,...,vz’-li). (til,...,tiki,vz’-l,...,vgli)
= v, case tg of pr = (1,ty,); 500 — (0, 1y,)

by, =t it th)

Here, variables are represented by v, expressions by ¢, and I' is the constant functor
that returns the type of its argument. The functors F; and G; represent tuples whose
first values are regular variables with the given type (I'(v)) and whose remaining
values are recursive values (I). That is, they are values of the recursive data type.
For example, for the list data type, the functor corresponding to (x:xs) would be
['(x) x I. The variables corresponding to an I in the functor are marked with a prime

to indicate that they are recursive variables.
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As it turns out, the specific types returned by each I'" are unused in the HYLO
algorithms. The functors are only needed to indicate which variables are recursive
and which are not. If we keep track of this inside ¢, n, and 1, then we do not need
the functors in our representation.

All we need to represent in order to represent a hylomorphism are the three
components from the triplet notation: ¢, n, and . For ¢ and 7, we keep a list of
n elements, which are the representations for the individual ¢; and 7;. Each ¢; is a
triple whose elements are a list of the non-recursive variables v, a list of the recursive
variables v', and the expression ¢4,. Each 7; is also a triple whose elements are a list
of the non-recursive variables v, a list of the recursive variables v’, and a list of the
expressions t that make up the first part of the tuple that n; returns. The second
part of the tuple is just the recursive variables, and since we already have them in the
representation, there is no need to store them again. Finally, ¢ is a 4-tuple consisting
of the variable v, over which the hylomorphism inducts, the expression ¢, given to
the case-statement, a list of n 2-tuples representing the patterns p by indicating the
constructor and its variables, and a list of n 2-tuples representing the tuples ¢,, by
indicating the recursive values separately from the non-recursive. To put things more

concretely, here are the type declarations for the three components of a hylomorphism:

type Phi [([Var], [Var],Expr)]
[([Var], [Var], [Expr])]

type Psi = (Var,Expr, [(Constr, [Var])], [([Expr], [Expr])])

type Eta

This definition was not purely derived from the category theory definition of a
hylomorphism; it co-evolved with the algorithms that use it, so some of the reasons
for this representation might not become clear until we introduce the algorithms.
This definition also depends a bit on the intermediate syntax used in the optimization
passes of the pH compiler. The syntax also influences most of the algorithms that
will follow, so we present it here in Figure 3-1.

This isn’t the whole hylomorphism representation, yet. While developing the

algorithms for finding fusible hylomorphisms, it became clear that some additional
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data Expr = Apply Var [Exprl

Lambda [Var] Expr

Constr ConstrID [Expr]

Case Expr [(ConstrID, [Var], Expr)] (Var,Expr)
LetRec [Def] Expr

Let Var Expr Expr

data Def Def Var Expr

| Par [Def]
| Seq [Def]

Variables are represented as applications with no arguments and con-
stants are represented as constructors with no arguments.

Figure 3-1: pH Intermediate Syntax

information is needed. Technically, a hylomorphism is just the sum of the three
components, but most functions which reduce to hylomorphisms actually have ad-
ditional parameters besides the recursive argument v, in the @ component of the
hylomorphism. Thus, we don’t often find hylomorphisms composed directly with
hylomorphisms. Instead, we find hylomorphisms composed with A-abstractions and
let-statements which have a hylomorphism at their core. If we incorporate these
“wrapper” statements into our hylomorphism representation, we can work directly
with compositions of hylomorphisms. We incorporate this information by appending
a context to the representation. To make working with the context easier, we don’t
store an actual expression for the context, but instead store a list of surrounding

statements using the following data type:

data HyloContext = Apply e
| Lambda [Var]
| Let [Def]

| Case (Expr -> Expr)

The first three disjuncts are necessary for implementing the fusion system. Hylomor-
phisms like map have extra arguments beyond the recursive argument that need to be

recorded. This is done with the Lambda disjunct. As the hylomorphism is applied,
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those A-variables become bound to values, which are represented with the Let dis-
junct. Let-statements surrounding a hylomorphism can also be incorporated directly
into the representation as Let values. Since let-statements, A-abstractions, and ap-
plications can be interwoven in the code, this information needs to be captured in a
single list to preserve the order. The final argument to a hylomorphism, the recursive
argument, also needs to be stored. This is the sole purpose of the Apply disjunct.
The fourth disjunct is a special case that we have added to handle a common
occurrence inside the pH compiler. The compiler is aggressive about transforming

functions into the following form:

f tuple xs = case tuple of
(a,b) -> case xs of
1 -

(x:x8) -

Deconstructing the non-recursive arguments before the recursive arguments is not a
form that the algorithm for deriving hylomorphisms expects. To solve this problem,
we store the case-statement as part of the context. We store in the Case disjunct a
function which takes an expression (in our case, the hylomorphism) and outputs that
expression with the case-statement added around it. This simplifies the inlining of the
hylomorphism later on. It also allows us to capture a larger group of case-statements.
Using information from a previous pass of the compiler, we can detect whether all
but one branch of a case-statement results in bottom. In such cases, we do not
need to push code into the non-terminating branches, so we can take shortcuts and
consider the case-statement almost like a let-binding. When we encounter such case-
statements, we can separate them into the non-bottom expression and the context
for that expression, which we can store as a Case disjunct of the HyloContext data

type.

The final representation of a hylomorphism in our system is thus:

type Hylo = (Phi,Eta,Psi,[HyloContext])
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These descriptions of hylomorphisms should make more sense after we have seen
a few algorithms. In particular, the process for deriving hylomorphisms is quite

revealing.

3.3 Deriving Hylomorphisms

The algorithm for deriving hylomorphisms from recursive definitions is first presented
by Hu et al. in [11] and is expanded upon in the comprehensive paper by Onoue et

al. [21]. The algorithm derives hylomorphisms from functions of the form:
f = Avg. case tyg of p1 = t1; - ;pn =ty

The trick is to replace each ¢; with an equivalent expression g; .. This produces

a new definition for the function:
f=MAvs. casetpof p1 = g1 ) ;P = gn T,

We can then lift all the g;s out of the case-statement to produce a compositional

definition for the function:
f=(g1v -+ vgn) o (Avs. case tg of p1 — (L, t}); -+ ;o0 — (0, 1))

Now, if the individual g;s can be expressed as ¢; o F; f where F; is a functor, then

we can show that:
Qv Vg =(1v o vep)o (Pt + Fy) f
Substituting this into the definition of the function f we arrive at:
f=(p1v - vop)o(Fi+---+F,) fo(lvs. case tyg of p1 — (1, t}); -+ ;00 — (n,t]))
And by the definition of a hylomorphism, we have that:

f=1¢,id,¢¥]rr
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This is nice, but how do we go about finding ¢;, F;, and ¢} for each ¢;? According
to Hu et al. [11] this is done in five steps:

1. Identify all the recursive calls to f in ¢;, and call them f ¢;,,...,f ¢; .

k; "

7

2. Find all the free variables in ¢; but not in ¢;,, . .. s tiy, and call them v;,,...,v;

3. Define ] by tupling all the arguments of the recursive calls obtained in step 1

and the free variables obtained in step 2. That is,
th = (vgy, - ..,viki,til,...,tili).
4. Define F; according to the construction of ¢, by
F, =T(v;,) X ---xF(viki) x Iy x - x I,

where I} =--- =1, = I and I returns the type of the given variable.

5. Define ¢; by abstracting all the recursive function calls in ¢; by

bi = My, - ..,viki,vz'-l,...,vz’-li).ti[f ti JV, s f tili/vz’-li],

!
i,

ftil""7ftili in tz

where v] ,...,v; are new variables introduced for replacing occurrences of

Hu et al. give a formal, constructive algorithm for this process on a simplified
language and then provide a proof of its correctness. This algorithm is expanded
to a more complicated language by Onoue et al. The algorithm, called A, uses an
auxiliary algorithm D which returns a triple containing the free variables found in
step 2, a set of associations {(vj , f t;,),..., (vgli, f tizi)} found in step 1, and ¢; with
each occurrence of f replaced by its associated new variable v'. Algorithm D takes
as input a list of bound variables (which it builds up as it makes recursive calls to
itself). When D recurses down to a variable, it checks to see if that variable is in the
list of bound variables or in some nebulous “global_vars” and if the variable appears

in neither then it is deemed to be a free variable and output in the first part of the
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tuple. This is, however, not constructive. To solve this problem, we realized that
the free variables in ¢; with which we are concerned are simply the variables in the
pattern p;. Thus, we pass these variables to the algorithm D which then considers a
variable to be free only if it appears in this list.

The algorithm by Onoue et al. only works for specific recursive functions f. It first
requires that f inducts over its last argument. The position is not important, because
we can rearrange the arguments of a function to make the inductive argument the last
one, but it does mean that the function f must induct over a single argument. Further,
it is required that recursive calls to f be saturated and that all other arguments be
constant in the recursive calls. In this way, the non-inductive arguments can be lifted
out to reduce f to a single-argument function as expected by the simplified algorithm
given by Hu et al.

The pH intermediate syntax allows for default cases, which are not accounted for
in the given derivation algorithm. Case-statements with default cases would need to
be converted to complete case-statements, by duplicating the default case for each
missing constructor, in order for derivation, and thus fusion, to proceed. This con-
version can result in code duplication, so some examination might be necessary to
determine whether the possible fusion is worth duplicating code. Our current im-
plementation simply ignores case-statements with default cases which have not been
converted by earlier passes of the compiler.

Implementing the derivation algorithm for pH was straight-forward, but there is
still one issue looming. The intermediate syntax used in the pH compiler does not
allow nested constructors in the patterns of case-statements. Patterns in pH with
nested constructors result in nested case-statements in the intermediate syntax. The
derivation algorithm would need to recognize such cases and produce a representation
that could be handled by the other algorithms in the HYLO system. This potential
problem has not been explored as part of this project, although several solutions do
seem possible.

See Section 3.9 for examples of the derivation algorithm on sample programs.
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3.4 Inlining Hylomorphisms

Inlining is the reverse problem of deriving hylomorphisms. It involves taking a hylo-
morphism in triplet form (or 4-tuple) and producing a recursive definition in the pH
intermediate syntax. Onoue et al. dismiss this problem as simply the inverse of the
derivation algorithm and move on. For the sake of completeness, here is how inlining
is implemented in the pH compiler.

Given a function f = [¢,n, ] (if you want to inline a hylomorphism which is not
named, of course, you simply give it a fresh identifier), compose ¢ and 7 into a single

¢', producing a hylomorphism with the identity function as its middle parameter:

f=1¢'id, 4]
where ¢ =¢1v -+ v,
b; = )\(Uil,...,Uiki,vgl,...,vgli). (til,...,tiki,vgl,...,vgli)

Y = Av,. case ty of p; — (1,8));---;pp — (0, 1))

! ! ¢
ti = (U/ila"'7uiki7ui1""’uili)

This is now in the form that the derivation algorithm outputs. To perform the
inverse operation, we need to derive the original ¢; for each ¢; and associated t; from .

This is done by replacing all occurrences of the non-inductive variables v;,, ..., v;,

7

in ¢;,,...,t;, with the values u;,...,u;

,, from ¢ and replacing all the inductive

!

3 !
variables vj , ..., Ui,

with the function f applied to the variables u; , ..., u{ from .

More succinctly:

ti = ¢Z (uil,...,uiki,f U;l,...,f U;ll)

Seeing this equation, it is now clear that it can be derived from the equation in
step 5 of the hylomorphism derivation algorithm. The final output of inlining is, of

course:
f = Avs. case tg of py —> ty;-+ ;P —

Remember, though, that we are carrying around context information for the hy-

lomorphism, including any other arguments to the function f and any values they
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might have been bound to along the way. This information needs to be output as
well. Creating the context is straightforward, using the appropriate intermediate syn-
tax statement for each disjunct of the context type. Some simplifying transformations

might be necessary to optimize a naively generated context.

3.5 Restructuring Hylomorphisms

Restructuring is the process by which computation from ¢ or v is transfered to 7.
This is an important part of the fusion process because it helps us discover when
a hylomorphism is simply a catamorphism or anamorphism. Restructuring can also
bring together hylomorphisms inside separate components of a larger hylomorphism
so that they may be fused. Onoue et al. claim that it also helps reduce ¢ and ¢ to
forms from which 7 and o can more easily be derived. The algorithm as given by
Onoue et al., however, seems to sometimes remove the possibility of derivation. This
problem is discussed in Section 3.7.1.

Separate algorithms are needed for restructuring ¢ and restructuring .

3.5.1 Restructuring ¢

Onoue et al. give a constructive description of an algorithm S, to restructure a func-
tion ¢ into ¢ = ¢’ o ny. This algorithm makes use of an auxiliary algorithm & to
detect the maximal subterms of ¢ which can be abstracted out of the bodies ¢; of the
¢;. The subterms which can be abstracted are those which do not contain recursive
variables and whose free variables are a subset of the pattern variables. This last
condition is important because we might encounter let-statements and A-abstractions
inside ¢; and we do not want, for instance, to abstract out the x+1 in \x.x+1.

Here is an example of what we would like to happen, taken from Onoue et al.

Given the function map, we derive a hylomorphic representation:

map g = [Nilv A(a,v}). Cons(g a,v}),id, out]
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In this hylomorphism, ¢; = A(). Nil and ¢, = A(a,v]). Cons(g a,v;). Here, v} is
a recursive variable and, according to Onoue et al., there is only one maximal non-
recursive subterm as shown underlined. Following through with the restructuring

algorithm would result in the following composition:

P2 = Py © T,
where ¢4 = A(ug,, v]). Cons(ug,,v})
Mg, = AMa,v1). (g a,v))

We now notice that ¢’ = ¢ v ¢), is the in function for lists, making map available
for deforestation in more situations.

The attentive reader will note that Nil is not underlined. Why is it not abstracted
out of ¢y by the restructuring algorithm? If we follow the definition for £ given above,
and, in fact, the algorithm as given by Onoue et al., then Nil ought to be returned
as a maximal subterm not containing any recursive variables. The definition as given
performs a legitimate transformation, moving as much work as possible from ¢ into
n. However, Onoue et al. expect the restructuring algorithm to leave ¢ in in form
when such a form exists. If the algorithm abstracts Nil in the case above, it would
not return ¢’ in the in form. In some sense, it would take too much computation out
of ¢. If we are to use the restructuring algorithm for the purpose of uncovering in
form, we need to change algorithm £ to recognize these cases and not mark them for
abstraction. In order to do this, however, we ourselves need to have some notion of
what the possible cases are. So far we have only one example.

A first thought might be to prevent the abstraction of all constants (constructors
with no arguments), but this can’t be the whole picture. As a counter example,
consider the composition length xs = sum . map (\x. 1) xs. We could imagine
deriving a hylomorphism for the map in which ¢ = A(a,as). Cons(1,as) or even
b2 = ANas). Cons(1,as). If we identify the constant as a subterm to be abstracted,
we can recover the anamorphic aspect of the hylomorphism. Further, we should not
only consider constructors with no arguments, but all constructors with no recursive

arguments. For example, the in form for a hylomorphism over a tree data type with

data in the leaves might be (A(a). Leaf(a)) v (A(l,r). Node(l,r)). The restructuring
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algorithm as given would attempt to move Leaf(a) into n, which is a perfectly legal
transformation, but destroys the in form that we would like to preserve.

It seems that what we want to do is not remove constructors from the top level.
That is, if the body of a ¢; is a constructor, we should not abstract away the entire
body. In our implementation, we do allow total abstraction of the arguments to a
top-level constructor. This is acceptable because our implementation does not deal
with recursive structures formed from nested constructors (see Section 3.3). This is
a bit of a hack, though. What we really want to do is recognize when the top-level
constructor is of the type over which the hylomorphism recurses. When we do not
allow nested constructors, type correctness guarantees us that our hack will work.
However, if our implementation needed to look for a larger structure of constructors,
it would need some way of knowing which constructors were part of the recursive
structure and which ones could be abstracted away.

Another possible solution to over-eager restructuring is to say that the problem is
not with algorithm £ but in our method for identifying whether a ¢ (¢) is in in (out)
form. The definitions for in and out aren’t that flexible, though. Perhaps what we
really mean to say is that we can let the restructuring algorithm run rampant if we
add some better checks to the fusion side. If a function fails the check for the in and
out forms, we can then run an algorithm to check if the function is in a form which
can be easily converted to that form. In a sense, we already have such an algorithm
in the algorithms which derive 7 and o, but it would be inefficient to derive 7 or o
when an in or out form exists, and it would reduce the number of cases where fusion
is possible.

Restricting the amount of abstraction performed by the restructuring algorithm is
easy enough, so that is what we have done in the pH compiler. Our algorithm takes
a boolean input p which indicates whether the expression being examined is at the
top-level. The case for constructors uses this value to determine whether to abstract
the entire expression.

There are additional differences between our algorithm and the one given by Onoue

et al. that are worth mentioning. The original algorithm &£ did not live up to the verbal

48



explanation given above. That is, it failed to properly compute the subterms to be
abstracted by allowing subterms with bound variables to be marked for abstraction.
This required a non-trivial fix to the algorithm, because Onoue et al. used the returned
list of subterms to signal whether any recursive variables were found in that subterm.
In many cases, their algorithm £ reasons that an expression can be abstracted if and
only if all of its subterms can be abstracted. This is not the case with the \x.x+1
example given above. We do not want to abstract out x+1, but when we consider
the entire expression then it no longer has any free variables and we can abstract
the whole expression out of ¢. To relieve the subterm list of its double purpose, a
boolean output was added to indicate whether any recursive variables were found.
An additional input, s, is also needed to list the bound variables which cannot occur
in a subterm to be abstracted.

The algorithm we use is given in Figure 3-2. This revised algorithm takes as input
an expression, a boolean indicating whether the expression is top-level, a list of the
recursive variables, and a list of the bound variables. It returns a triple containing
a list of associations of fresh variables to the subexpressions that they replace, the
original expression with the subexpressions replaced by the new variables, and a
boolean indicating whether the expression contains any references to the recursive
variables.

The remaining differences between this description and the one given by Onoue
et al. result from the algorithms operating on different languages. For one, the pH
intermediate syntax does not contain a special representation for hylomorphisms, so
our implementation does not contain a case for them. It would be possible for our
compiler to put a marker around inlined hylomorphisms and thus have a special case
for them in our algorithms. However, we currently make the assumption that the
algorithms are correct whether the nested hylomorphisms are inlined or not. This
may not be so safe of an assumption when we also consider that Onoue et al. do
not have cases in their algorithm for recursive let-statements, prefering instead to
allow recursion in their core syntax only in top-level definitions. Our implementation

handles recursive let-statements, potentially with mutually recursive definitions. We
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Elv] - s sy = ifv € s, then ({},v,False)
else if v € sp, then ({},v, True)
else ({(u,v)},u,True)

ENN - sr s = ({(u,0)},u,True)

E[M.t] sy sp = if b then ({(u, \v.t)}, u, True)
else (w, \v.t',False)
where (w,t',b) = £[[t] False s, s, U{v}

E[case tg of p1 = t1;--;pp = tn] - Sr Sp =
if Vi. b; then ({(u,case ty of p; — t1;-+-;pn — tn)}, u, True)
else (wo U...Uwy,case ty of p — th;---;p, — t,,,False)

where (wo, t, by) = E[to] False s, sp
(w;, t,b;) = E[t;] False s, sp U Vars(p;)

Evtr ... tp] - sp sp=
if Vi. b; then ({(u,v t1 ... t,)},u, True)
else (wo U...Uwy,t; t) ... t,, False)
where (wo, t(,by) = E[v] False s, s
(wi,t;,bi) = 5[[152]] False s, s

E[Ct1 ... ty] p Sy sp=
if =p AVi. b; then ({(u,C t; ... t,)},u,True)
else (wy U...Uwy,,Ct) ...t False)
where (w;, t},b;) = E[t;] False s, sp

E[let v=1t; in tg] - s, sp =
if bg A by then ({(u,let v =1, in ty)},u, True)
else (wp Uwy,let v =1¢] in t{,False)
where (wo, t(,by) = E[to] False s, sp U{v}
(’wl,tll,bl) = 5[[151]] False s, Sp

E[letrec vy =ty; ;v =ty in to] - s, p =
if Vi. b; then ({(u,letrec vy =t1;---;v, =ty in ty)},u, True)
else (wo U...Uwy,letrec vy =1t}; - ;v, =1, in t{,False)

where (wo, t(,by) = E[to] False s, sp U{vy,...,vn}
(wi,t;,bi) = 5[[152]] False s, s

uw = fresh variable
Vars(p) = the variables of a pattern

Figure 3-2: Revised Algorithm &
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assume our extensions to be correct.

3.5.2 Restructuring v

The restructuring algorithm for ¢ should take functions of the form:
Y = Av,. case ty of p1 — (L, ty,); ;00 — (0, ty,)

and extract any natural transformations which can be shifted into the 7 portion of
the hylomorphism. The restructuring algorithm S, given by Onoue et al. uses an
auxiliary algorithm FV to determine the free variables in each ¢, which are not
recursive variables (and not globally available to all parts of the hylomorphism). The
algorithm then creates a new term t;, which is a tuple of those free variables and
the recursive variables. The original expressions in t,, are substituted into 7. In this
way, the new t;, just passes along the free variables needed to compute whatever
more complicated expressions appeared originally, while the computation is done in
n. Before restructuring, ¢ contained ¢,,s which were tuples of arbitrary expressions.
After restructuring, the new ¢’ contains ti/,is which are tuples whose non-recursive
elements (corresponding to ' in the functor) are only variables. If the recursive
elements as well are only variables, then v’ has the potential for being in out form.
The algorithm S, suffers from the same over-eagerness problem as Sy: it does not
return ¢’ in out form in some cases when it exists. What happens is that ¢,, may not
use all the variables available to it from the patterm p; so the restructured tipi could
be missing some of the non-recursive variables which we require for ¢ to be in out
form. We are free to add these variables into ¢, but we have to be sure that we are
not adding recursive variables, which could also prevent ¢) from being in out form. As
the algorithm for detecting the out form is not clearly defined, it is possible that our
problem lies with the detection algorithm. As with S, we could loosen our definition
of the out form, making the output of the restructuring algorithm more acceptable.
We could even have the detection algorithm perform some transformations on the
less-optimal cases to put them into a form suitable for fusing. We have chosen to

place the burden on our restructuring algorithm.
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The restructuring algorithm implemented in the pH compiler uses an auxiliary
algorithm FV to collect the free variables. Note, however, that the free variables
of ty, which are not already available to n are only the variables in the pattern p;
(and that proper out form uses all of them), so it might be possible to derive the
out form without looking for the free variables which are actually used. When it can
be determined that the out form is not possible, though, it is best to resort to the
free-variables method rather than clutter up the function with unnecessary variables.
So once our implementation has retrieved the free (non-global) variables from the
non-recursive elements of ¢,,, it examines the recursive elements to make sure they
are all variables. If any of them are complex expressions, then we know that ¢ cannot
be restructured into out form so we follow the method of Onoue et al. and use only
the free variables in the output. If the recursive elements are all variables, then
we perform a second test to see if out form is possible. We compare the variables
appearing in the recursive parts of the tuple against the free variables list. If any
variables are shared between them, then the 1) cannot be restructured into out form,
so we resort to using only the free variables. If the lists are disjoint, then we attempt
to create the out form by adding back any pattern variables which do not appear in
either list. These variables are added to the non-recursive part of the tuple.

If the algorithm reaches this final stage where all the variables are used, the
output is not guaranteed to be in out form because the recursive variables could
appear multiple times in the tuple. What we hope is that the algorithm will produce
an output in out form if it exists. This turns out not to be the case for this algorithm,
and we show a fix for this in Section 3.8. Further, the functor for which the output
is in out form might not be the same as the functor of the hylomorphism with which
we hope to fuse it. We deal with these issues later when we present the detection and
fusion algorithms.

As with the derivation algorithm, the description given by Onoue et al. for this
restructuring algorithm also contains a reference to global vars. When the algorithm
FV encounters a variable, it considers it to be a free variable of interest if it is not

an element of global_vars. Perhaps Onoue et al. are only considering hylomorphisms
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in top-level definitions or they have their algorithms collect the context for each
hylomorphism. Our implementation, however, does not attempt to construct this
list. Instead, we pass the auxiliary algorithm a list containing the variables from the
pattern plus v, and we consider a variable to be a free variable of interest if it is
contained in this list.

The algorithm used in the pH compiler is given formally in Figure 3-3. The
auxiliary algorithm FV takes an expression and a list of potential free variables and
returns a list of those variables which occur in the expression.

In the algorithm given in the figure, we intersect sy with the list containing v, and
the recursive variables. This is to check whether the non-recursive part of the tuple
makes reference to any recursive variables. We include v; because it can be replaced
by a construction involving all of the pattern variables. If any of these variables are
recursive, then an occurrence of v, means that the expression uses recursive variables.
What the figure does not show is that in disjuncts where there are no recursive
variables, an occurrence of vy is acceptible and this check should not be performed.
In those cases, we can produce the out form by making all of the pattern variables
non-recursive inputs and replacing occurrences of v, with a construction of these

variables.

3.6 Fusing Hylomorphisms

Given the composition of two hylomorphisms, [¢1, 71, 1] o [¢2, 12, ¥s], we want to
determine whether fusion is possible and if so, apply the appropriate fusion rule to
produce a single hylomorphism.

There are three forms that we attempt to fuse:

1. Cata-Ana Fusion

[1,m, outr]r o [ing, n2, Vo] pu

This is just a special case of the two following rules, but it is easy to detect in

the process of detecting the other forms and the fusion law for this case is much
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Syllé,m + -+ mn. Ylar] = [¢ 01 + -+ np ' la
where \vs. case tg of p1 — (1,t1);-+ 500 — (o) =9
(Biry oo i, o iy iy ) = £
L+ +F,=F
D(tiy) x - x D(ty,) x [y x - X I}, = F
{vi, s, t = if IsVar (i) A -+~ A IsVar(tt;, )
then if sy N {vs, tt;,,..., 2, } ={}
then Vars(pi) — {tti,,.... tt; }

else s
else s
where s¢ = U?izl(]:V[[tij]] Vars(p;) U {vs})
n: = A(uil,...,uiki,vgl, .. ,vgmi). eils]
t; = (ti17“‘7t7;ki7tt;17 . ,tt;mi)

' = Avg. case tg of p1 — (1, 8));-+ ;00 — (n,t))
F =TD(ti,) x - xT(ti,) x [t X -+ X I,
F'=F +-- +F
FV[v] s, = ifv € s, then {v} else {}
V[l s = {3
FV[ vt] s, = FV[t] sp

FV[case ty of p1 = t1;--;pp > tp] sp = soU---Usy
where s; = FV[t;] sp

FV[vtr ... ty] sp = soU---Usy,
where sy = FV[v] s,
S; — fV[[tl]] Sp

FV[Cty ... ty] sp = s1U---Usy,
where s; = FV[t;] sp

FV[let v=1t; in ty] s, = soUsi
where s; = FV[t;] sp

FV[letrec vy =t1;-++;u, =1, in to] s, = spU---Usy,

where s; = FV[t;] sp

Figure 3-3: Revised Algorithm S,

o4



simpler. For deforestation of lists, the case we are most concerned with, this is
the only fusion rule that is needed for reasonable inputs. (Only functions which

recursively generate the tail and the head need to have 7 derived to be fused.)

2. Cata-Hylo Fusion

[61,m,0utplaro [T ing, n, Yol r m

This form can be fused with the Cata-HyloFusion rule from Section 2.3.6.

3. Hylo-Ana Fusion

(1,11, 0 outp]ar o [ing, N2, Y2l ru

This form can be fused with the Hylo-AnaFusion rule from Section 2.3.6.

To determine whether a composition is in one of these forms, we first restructure
the hylomorphisms by applying Sy to the first hylomorphism and &, to the second
hylomorphism to produce [¢1, 1], 1] o [¢5, 5, 12]. Then we test whether ¢} is in out
form and ¢} in in form. If so, then we further test that they are in and out for the
same functor! (This is explained further in Section 3.6.3.) If the functors match, then
we can apply the Cata-Ana fusion rule. If not, it might still be possible to derive 7
or o and proceed with the other fusion rules. If only one of ¢} or ¢} is in the proper
form, then we attempt to derive 7 or ¢ from the other to produce a deforestable
composition. If neither ] nor ¢, is in the proper form, or if a 7 or ¢ cannot be

derived, then our implementation gives up.

3.6.1 Detecting inp

Our implementation considers a function ¢ to be in in form if all of the t4s are
constructors whose arguments, if any, are all variables. The order of the variables is
not considered, because the ordering can be affected through natural transformations
which can be moved into 7 to produce the order which best suits us (meaning, the

order which matches the ¢ of the hylomorphism with which we are attempting to
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fuse). What is important is which variables are recursive and which are non-recursive.
This is something we do not check for in this stage, because, regardless, the function
is in in form. The placement of non-recursive and recursive variables changes the
functor for which it is the in function. If this functor, call it F' does not match the
functor F’ of the hylomorphism is it composed with, then we might need to derive a
7 for which inp = 7 inpg.

For the list data structure,
in = (X\(). Nil) v (AMu,v). Cons(u,v))

Detecting this in form is deceptively easy, because the first constructor has no argu-
ments and the second constructor has one non-recursive argument and one recursive
argument, which can’t easily be mixed up: it can only have two recursive elements in
crazy functions which recurse to produce the head and it can’t have only non-recursive
variables because then it wouldn’t be a recursive function! Hylomorphisms which op-
erate on more complicated structures, however, like trees, whose constructors contain
multiple recursive variables, can have ¢ in in form, but over a different functor, not
the proper functor for the data type, depending on the distribution of non-recursive
and recursive variables. In these cases, it becomes important to compare the ¢ from
one hylomorphism with the v from the other hylomorphism to see if simple reordering
of the variables will reconcile the functors or if it is necessary to derive 7 or o.

As an example of when two composed hylomorphisms might be in in and out

form, but for different functors, consider the following functions:

data Tree t = Leaf | Branch t (Tree t) (Tree t)

mapTree f Leaf = Leaf

mapTree f (Branch n 1 r) = Branch (f n) (mapTree f 1) (mapTree f r)

mapLeft f Leaf = Leaf

mapLeft f (Branch n 1 r) = Branch (f n) (mapLeft 1) r

makeTree [] = Leaf
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makeTree (x:xs) = Branch x (Leaf) (makeTree xs)

The derived hylomorphisms for these functions are

mapTree = \f. [¢,id, ]
where ¢ = A((), ()).-Leaf v A((uyr), (v, vz)).Branch((f u;), vy, vs)
1 = \vg.case vy of

Leaf — (1,(0),()))
Branch(n,l,r) — (2,((n), (I,7)))

mapLeft = \f. [¢,id, V]
where ¢ = A((), ())-Leaf v A((ur, uz), (vi)).-Branch((f u), vy, us)
1 = A\vg.case v, of

Leaf — (1,((),()))
Branch(n,l,r) — (2,((n,r), (1))

makeTree = [¢, id, V]
where ¢ = A((), ()).Leaf v A((uy), (v;)).Branch(uy, Leaf , v;)

1 = \vg.case vy of

Nil — (1,(0),0)))
Cons(z, 1) — (2, ((z), (s)))

It should be clear that mapTree and mapLeft each have a ¢ which is in in form,

but for different functors, because they have different numbers of recursive variables

in the Branch case. The first function recurses over the last two arguments to the

constructor, while the second function recurses only over the middle argument. Sim-

ilarly, the derived hylomorphism for makeTree has only one recursive variable and

therefore cannot be directly fused with either of the previous functions, whose v are

in out form but have two recursive variables. That is, makeTree (after restructuring)

has the functor F» = I'(n) + I'(Leaf) + I, which does not match the functor from

mapTree, F) = I'(n) + I + I. It would be necessary to derive 7 in order to deforest

the composition.
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3.6.2 Detecting outp

Our implementation considers a function ¢ to be in out form if every t,, is a tuple
of the variables in the associated p;, with each pattern variable appearing exactly
once. As with detecting in, the order of the variables is unimportant (although we
can enforce an arbitrary order here and in the restructuring algorithms), rather the
important information is which pattern variables are in the recursive part of the tuple

and which are in the non-recursive part.

3.6.3 Reconciling iny and outp

As we have mentioned, once the hylomorphisms in a composition have been identified
as catamorphism and anamorphism, it is still necessary to determine whether they
are acting over the same functor. This can be done rather easily in our implemen-
tation by matching the constructor in each ¢4, with a pattern p; and associated i,
from 1, checking first, of course, that the number of cases n is the same in both
hylomorphisms! If the cases from ¢ and ) can be matched up one-to-one, then it is
necessary to check that the variables in each case match up. This means that if the
jJ-th variable in the constructor from ¢4, is supplied by the k-th element of the input
to ¢;, then the j-th variable of the same constructor in p; must be the k-th element
in the output t,,. Further, that variable should be either recursive in both places or
non-recursive in both places. If in one instance it is a non-recursive variable and in
the other it is a recursive variable, then the hylomorphisms are not operating on the
same functor.

We can guarantee that the variables will be in the same order by enforcing an
order in the output of the restructuring algorithms. It is easy enough to have these
algorithms return hylomorphisms whose inputs to each ¢; and outputs in each 2,
are variables given in the order they appear in the constructors, but grouped into
non-recursive and recursive, of course. What we are really concerned with, then, in
the reconciling algorithm, is the distribution of variables into these two groups, a

property which is intrinsic to the hylomorphisms.
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It is worth noting that given a constructor, the pH compiler can retrieve the entire
set of constructors for that data type and can determine the type signature for each
constructor. Thus, it is possible to tell which arguments to the constructors are of
the same type as the output of the constructors. From this it is possible to generate
the true in and out for that data type, and to detect whether a given ¢ or v is in
that form. As we have seen, however, the functor of a ¢ or v is only important in
relation to the ¢ or ¢ to which it is being fused. There are, in fact, cases where two
hylomorphisms are not in in and out form based on the functor F' for the intermediate
data type, but there exists a related functor F” for which one hylomorphism is in inp
(outpr) form and the other is in o outw (7 ing) form. In such cases, fusion can
proceed through the functor F’, when it could not have proceeded had we required

that everything be expressed in terms of F'.

3.6.4 Fusion

If the cases of the hylomorphisms can be matched and the variables agree in all cases,
then it simply remains to reorder the cases of one hylomorphism to match the other
before fusion can be performed. Fusion itself is simple composition of functions to
produce a single hylomorphism.

Since we have appended additional information to the hylomorphism representa-
tion, there is one new step to the fusion process, which is to combine the contexts from
the composed hylomorphisms to become the context for the hylomorphism resulting
from fusion. Except for A-abstraction, the statements we have allowed in the context
have had the property that we can push surrounding code inside the expression with-
out worry. Thus, to fuse composed hylomorphisms, we simply push the outermost
hylomorphism inside the context of the first, and perform the fusion there. This is
possible only if the inner hylomorphism is fully applied, and thus does not have any
surrounding A-abstractions. The context for the resulting hylomorphism is then just

the concatenation of the context lists of the composed hylomorphisms.
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3.6.5 Finding Compositions of Hylomorphisms

As mentioned in Section 2.3.6, the current Acid Rain rules relieve the requirements
that overlapping compositions be performed in a particular order. This suggests that
any reduction strategy is acceptable, which is nearly true. There are still a few issues
to think about, though.

For one, we will show in Section 3.7.2 that the algorithm for deriving o might
remove the possibility of later fusion, and if so should be performed last. This is
easy to say, but it also means that we need to be careful about the order that we
fuse inside the elements of a let-statement. We may want to fuse the definitions
of functions before fusing instances of them inside the body of the let-statement so
as to avoid duplicating work if we need to fuse multiple instances inside the body.
But if the definition consists of multiple composed hylomorphisms whose outermost
hylomorphism will require deriving o, then fusing the entire definition first might
produce a hylomorphism that cannot be later fused with other hylomorphisms to
which it might be applied.

Another issue arises if we try to reduce applications of hylomorphisms to construc-
tors while we are performing fusion reductions. That is, if we encounter a recursive
list function being applied to the list [1,2,3,4], then we can find the case in the
hylomorphism for (x:xs) and apply it to 1 and [2,3,4]. Since it is a recursive
function, the result of the application is likely to contain another application of the
hylomorphism—in this case, to the tail of the list—which we can continue to reduce.
The problem arises if there is a composition of hylomorphisms being applied to the
constructor. While we could reduce the applications one at a time, it is likely to be
more efficient if we fuse all the hylomorphisms first and perform a single reduction
on that hylomorphism applied to the constructor. The first step of this reduction, as
we have said, is likely to produce applications of the hylomorphism on the recursive
arguments of the constructor. It might also have introduced new fusible compositions
as well which, by the same reasoning, should be performed before continuing to unroll

the hylomorphism on the constant data structure.
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Our reduction algorithm does not provide any special insight, but we present it
here for completeness. Our algorithm makes two passes. First, it derives hylomor-
phisms for all of the recursive functions in the program, producing a table which
associates the names of the functions with their hylomorphism representations. This
table is then used by a second pass which finds fusible compositions and performs the
fusion.

This second pass recurses to the deepest parts of the program and works its way
out. Each recursive call returns whether the subexpression it has processed so far
is a hylomorphism, allowing the caller to decide if the larger expression is a fusible
composition of hylomorphisms and, if so, to return the fused hylomorphism. The
table of hylomorphisms is necessary so that when a variable is encountered, it can
be looked up in the table to see if it is bound to a hylomorphism. This way, a
composition of variables which are bound to hylomorphisms can be fused without
having to inline every hylomorphism. If the hylomorphisms bound to variables in a
composition cannot be fused, they are not inlined.

The algorithm for finding and performing fusion is given in Figures 3-4 and 3-5. It
examines an expression and returns the deforested expression plus a signal indicating
whether the expression represents a hylomorphism and what that hylomorphism is.
This way, when the algorithm is operating on an application of a hylomorphism, it can
call itself recursively on the last argument to see if that argument is a hylomorphism.
If so, then we have a composition of hylomorphisms which we should attempt to fuse.
If fusion is successful, then we inline the result and return that as the new expression,
while at the same time returning the hylomorphism representation and a signal that
the expression being returned is a hylomorphism. The signal also becomes useful
in the let-statement, A-abstraction, and case-statement cases where, if the body is
a hylomorphism, then the entire expression is that hylomorphism with its context
adjusted to reflect the additional statement. As mentioned, this algorithm requires a
hylomorphism table in order to determine which identifiers represent hylomorphisms.
As we see in the case for recursive let-statements, if recursively applying the algorithm

to the definition of a variable results in a hylomorphism, then the hylomorphism table
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J[v] ht = if (v,h) € ht then (Just h,v) else (Nothing,v)
J] ht = (Nothing,l)

J[Mv.t] ht = case h of
Just h' — if (GetArity h') > 0
then (Just (AddLambda h' v),\v.t')
else (Nothing, Av.t')
Nothing — (Nothing, \v.t')
where (h,t") = J[t] ht

j[[case to of pi —>t1;"';pn—>tn]] ht =

case SingleBranch(case t;, of p; — t1;-+-;pn — tpn) Of
Nothing — (Nothing, case t{, of p1 — t}; - ;pn — t)
Just (context,e) —
case h of
Nothing — (Nothing, case t{ of p; — t}; - ;pn — t])
Just h' — (Just h', case &) of p1 — t\; - ;pn — 1))

where (_,t) = J[ti] ht
(h¢) = TTe] ht
h'" = AddCase h' context

Jvtr ... ty]) ht = if (v,h) € ht
then if (I > n)
then (Just A',v ¢} ... t])
else if (n =1)
then case h,, of
Nothing — (Just A/ vt} ... i)
Just hl, —
case hy, of
Nothing — (Just h,vt] ... t)
Just h" — (Just A", Inline h")
else case h; of
Nothing — (Nothing,v t| ... t,)
Just h; —
case hy, of
Nothing — (Nothing,v t| ... t)
Just b’ —
(Nothing, (Inline h") t;, , ... t;)
else (Nothing,v t} ... t])
where (h;,t}) = J[t:i] hs
I = GetArity h
h' = AddValues h {t},... t.}
hy, = FuseHylos (AddValues h {t},...,t;,_;}) hy,
hg, = FuseHylos (AddValues h {t},...,t;_,}) h

Figure 3-4: Finding Fusible Compositions (Part I)

62



JIC ¢ ... t,] ht = (Nothing,C ¢, ... t\)
where (h;, t)) = J[t;] hs

Jlet v=t; in to] ht = case hg of
Nothing — (Nothing,let v =t} in t{)
Just h — (Just h/,let v =1¢] in tf)
where (h1,t)) = J[t1] ht
(ho, to) = TTto] ht U {h1}
h' = AddLet h {(v,t})}

J[letrec vy =t1;---;v, =ty in to] ht =

case hg of
Nothing — (Nothing, letrec vy =t};---;v, =t in t})
Just h — (Just h/,letrec vy =t;---;v, =t in t)

where (hy,t}) = J[t1] ht
(hi,t;) = j[[tl]] ht U {(Ul,hl), ceey (’Uz',l,hifl)}
(hg,tf)) = j[[t()]] ht U {(Ul,hl), ceny (vn,hn)}
h' = AddLet h {(vy,t}), ..., (v, t))}

Figure 3-5: Finding Fusible Compositions (Part II)

needs to be updated for the scope of that variable to indicate the new hylomorphism
that the variable represents.

A problem with this algorithm is that it requires that an identifier be bound
to a hylomorphism in order to be inlined for fusion. If an identifier represents a
composition of functions, the last of which is a hylomorphism, then our algorithm
will not realize that fusion is possible in cases where the identifier is being applied to
a hylomorphism. If pre-processing does not inline all such cases for us, a more clever
method for identifying when to inline is needed.

For the same reasons, the case for recursive let-statements may not catch all
compositions of hylomorphisms. The table of hylomorphisms is threaded serially
through the recursive calls on the bindings so that as a definition is discovered to
be a hylomorphism, it can be fused in later definitions. With mutually recursive
definitions, it may be necessary to process the definitions several times before all
possible fusion has been performed. We currently assume this case to be rare or
impossible, and only process the definitions once.

Another issue to note is in the A-abstraction case where we check the arity of the

63



hylomorphism before adding to the context. The case for application, where fusion
is performed, operates on the assumption that if a hylomorphism has a non-zero
arity, then it has not yet been applied to its recursive argument. Thus, to make this
assumption correct, we have to check the arity of hylomorphisms in the A-abstraction
case and not add to the context of a hylomorphism which is fully applied. However,
more inlining could be performed if we relaxed this restriction. To do this, we would
need to alter the case for applications to not only check the arity of the hylomorphism
but also to look for the existence of an Apply disjunct in the context. If one does not
occur in the context, then we are free to use the arity information to determine the

recursive argument,.

3.7 Deriving 7 and o

Sometimes simple restructuring will not produce a catamorphism or anamorphism.
In those cases, we can still proceed with fusion if we can show that ¢ (1)) is of the form
Tin (o out). That is, if we can show that the computation can be abstracted over the
data constructors. This derivation is necessary in cases where computation is being
performed on the recursive elements of the data structure. For ¢, this can mean that
a hylomorphism is being applied to a recursive variable. For v, it means that further
pattern matching is being performed beyond the first level of constructors. Onoue et
al. give examples to illustrate when derivation is needed and what the results are.

The algorithm for deriving 7 was straightforward and easy to write. The algorithm
for o has not been implemented in our system. It will likely require more tinkering to
perform the algorithm in the pH framework because the algorithm as given involves
the construction of patterns which is not as easy as the high-level description makes it
look. In the same way that our implementation does not explicitly produce functions
with separated sums, it is likely that a special representation will be needed for o
which captures all the information necessary for applying it to an actual v, but
without creating a real function.

Both algorithms take a ¢ (1) from which to derive and the functor of the 1) (¢) to
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which we want to fuse. In our implementation for deriving 7, we pass the entire ¢ to
the algorithm rather than simply extracting the functor. The algorithm for deriving
7 makes use of the out form for the functor it has been passed, and because we only
attempt to derive when the ¢ of the other hylomorphism is in out form, by passing
the 1 to the algorithm we can have a specimen of this form handy rather than have

to create it from the functor.

3.7.1 Deriving 7

The algorithm F given by Onoue et al. for deriving 7 requires that its input be in
a canonical form or else it cannot derive 7 for that input. A function ¢ is in this

canonical form if, for each ¢;, the body ?; is in one of the following forms:
1. a variable bound by ¢;

2. a constructor application in which each of the arguments to the constructor is

in one of these four canonical forms

3. an application of a hylomorphism to one of the recursive variables of ¢;, where

the ¢ of the hylomorphism is in canonical form and the ¢ is in out form

4. a function application where the function is, according to Onoue et al., a “global
function” (meaning that it can be lifted out of the hylomorphism or already is)
and where no argument to the function contains a reference to any recursive

variable

Onoue et al. claim that this form is not as restrictive as it might look. Restructuring,
they say, removes much of the computation not related to the building of the final
data type. In fact, after restructuring, expressions of the fourth kind have been
extracted from ¢ so we do not even need to consider that case in our algorithm.
Onoue et al. dismiss let-statements, case-statements, and non-recursive functions as
things which can be removed by pre-processing. They suggest that case-statements
can be translated into hylomorphisms, although it is not clear whether they are simply

observing that most case-statements are removed when we convert recursive functions
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to hylomorphisms (and remember that some recursive functions just don’t fit the form
from which we can derive, so some case-statements will remain) or whether they are
further suggesting that case-statements not in recursive functions can be converted
into non-recursive hylomorphisms! In any event, the proposed algorithm works for a
large number of reasonable cases. The question of whether still more cases can be
squeezed out of the system is a matter for further research.

In order to derive a 7 satisfying ¢ = 7 ing, one needs the ¢ from which to derive
and the functor F. We perform the derivation because we are hoping to fuse the
hylomorphism containing this ¢ with a hylomorphism whose ¢ is in outp form. It
is this functor F', from 1, that we pass to the deriving algorithm. In fact, rather
than deriving the functor, for which as we have said we do not have a representation,
we simply pass the entire ¢ to the deriving function. From ) we can produce a
list of the constructors in its patterns. Using this list, we can create a set of fresh
variables which can be used to abstract out occurrences of those constructors in ¢.
Further, we can determine which are the recursive and non-recursive arguments to
the constructors, which is the information we needed from the functor F'.

With this information, we straightforwardly implement the algorithm given by
Onoue et al. We do take a shortcut, perhaps at the sake of readability, by checking
that ¢ is in the canonical form at the same time that we are deriving 7. If we find that
¢ is not in canonical form, we simply throw away the information we have gathered
so far.

It is worth noting that the algorithm F uses an auxiliary algorithm F’ which
operates on the t; of each ¢;. The auxiliary algorithm as given in [21] relies on
information from F without explicitly mentioning it as arguments to the algorithm.
This is acceptable if F' is defined in the scope of F, but it is worth clarifying what
information is being used because it does create a slight ambiguity in the case of F’
on a single variable. The result of the algorithm depends on whether the variable is a
recursive variable. Since there can be nested hylomorphisms and thus recursive calls
to F, it is unclear which recursive variables should be considered. Should recursive

calls to F build up a list of recursive variables or should it only consider recursive
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variables from the current hylomorphism? We choose to only consider the current
hylomorphism. Changing our system to the other interpretation would be trivial.

The algorithm F abstracts away constructors leaving a function 7 which takes in
the cases of a ¢ and places them where the constructors used to be. Inside 7, in order
to abstract constructors from structures which will not be built until runtime, it is
necessary to use a catamorphism (¢, v -+ v¢,|) = [e1 v -+ v ¢, id, out] which serves
to perform the abstraction. In our implementation, we construct this catamorphism
once, from 1, and insert it into 7 wherever it is needed. When 7 is applied to a ¢,
each variable ¢; is replaced by the expression ¢;. Thus, the catamorphism becomes
[#,id, out]. We could save a little work if we added an additional abstraction variable
to 7 when it is derived, and used this new variable in place of the catamorphism.
Then, in our function which applies 7 to the ¢ from another hylomorphism, we can
simply substitute the whole hylomorphism in place of this new variable.

In this algorithm it is important to recognize hylomorphisms to decide whether
a ¢ is in canonical form. If we find a global variable applied to a recursive variable,
we have to know the hylomorphism to which it is bound in order to consider it
in canonical form and derive 7. Thus, our implementation passes the hylomorphism
table to algorithm . When a hylomorphism is identified, it is abstracted by recursive
application of the algorithm. The result is a new hylomorphism. In the case where
the hylomorphism is indicated by a global variable, the new hylomorphism needs
to be inlined with a new name. In the case where the hylomorphism is inlined,
we simply need to rewrite the hylomorphism, and a new name is not necessary.
However, when we apply 7 to a ¢ and produce the fused hylomorphism, new internal
hylomorphisms will not appear in the hylomorphism table and any hylomorphisms
inlined under their original names will now have incorrect entries in the table. Since
we rely on the information in this table, particularly if we will need to derive 7 again,
the hylomorphism derivation pass should be performed on the fused hylomorphism

to correct the entries.
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Restructuring as an aid to deriving 7

Onoue et al. claim that the restructuring algorithm helps simplify the derivation of
7 and 0. However, it appears that the algorithm for restructuring ¢ can actually
transform a hylomorphism into a form from which we cannot derive 7. This was
discovered when our system could not derive 7 for the following example from Onoue

et al.:

data Tree = Leaf | Node Int Tree Tree

foo = \xs. case xs of
] -> Leaf

(a:as) -> Node (double a) (squareNodes (foo as)) (foo as)

where squareNodes is a hylomorphism that squares the values in a tree. Our system

derives the following ¢ for this function:
¢ = X). Leaf v MNv, v}, v}). Node(double v, squareNodes v}, v})

This is in the canonical form and thus our system can apply the algorithm for deriving
7. However, if we restructure the hylomorphism first, as Onoue et al. suggest, we

produce a hylomorphism with the following ¢:
¢ = A(). Leaf v A(v1, vz, v1,v3). Node(vi, v vy, v5)

Here, the hylomorphism squareNodes has been identified as a subexpression which
can be moved into n. Whether the function is referenced by an identifier or is inlined
into the definition of foo, it will be replaced with a non-recursive variable by the
restructuring algorithm. This leaves the expression vy v} which is not in canonical
form. The canonical form requires that only hylomorphisms are applied to recursive
variables. Since ¢ is not in canonical form, we cannot derive 7 and thus cannot
perform the fusion that was possible before the restructuring algorithm was applied.

To solve this problem, we can alter the reconstruction algorithm to preserve some
computation in ¢. In fact, we only need to change the case of algorithm &£ for function

application. In such cases, we check whether any of the arguments to the function
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contain recursive variables. If none of the arguments contain any references to the
recursive variables, then we are free to abstract the entire application. If any of the
arguments contains a recursive variable, then we have to decide how much restruc-
turing we want to perform on the remaining arguments and the applied function.
Because work is being done to a recursive variable, we know that the ¢ cannot be in
in form, but we may still want to abstract away as much work as possible for other
reasons, so the question is how much can we abstract before we cause problems for
the 7 derivation algorithm. It may not be possible to decide exactly how much can be
abstracted and how much should be left, so we should err on the side of caution. Or
we could decide to have multiple restructuring algorithms depending on the purposes
for performing restructuring.

One possibility is that we carry around a table of hylomorphisms and look up the
identifier of the function being applied. If the function being applied is a hylomor-
phism, then do not abstract it. We can even go so far as to consider the arity of the
hylomorphism and determine whether the final argument to the hylomorphism con-
tains a recursive variable. If the final argument does not contain a recursive variable,
or if the hylomorphism is not being applied to enough arguments, we could choose
to abstract it as normal. If we do not abstract the hylomorphism, we still have the
option of abstracting any arguments which do not contain recursive variables.

More exploration is needed to decide which options are best. It is important
to note, though, that restructuring is also used to bring internal hylomorphisms to-
gether for fusion. If our restructuring algorithms are too conservative in how much
computation they leave in ¢ and v, we may miss opportunities for fusion inside hylo-
morphisms. The possibility of using separate restructuring algorithms should not be

ignored.

3.7.2 Deriving o

Onoue et al. present an algorithm G for deriving o from a v of the form:

\vg. case vs 0f p1 — b5+ pp — by
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The restriction here is that the case-statement operates on a single variable, the
variable of the A-abstraction.

The algorithm is intended to operate on hylomorphisms defined by nested case-
statements, such as a list-consuming function which has a case for empty lists, a case
for single-element lists, and a case for multiple-element lists. This algorithm is the
dual of the algorithm for deriving 7 in that it abstracts the deconstruction of the data
structure. As Onoue et al. say, the implicit decomposition is made explicit by using
the function outr to perform the decomposition.

The result of the algorithm, however, is a function o which, when applied to
a 1, produces a 1’ whose case-statement branches on a complex expression. This
new v)’, it would seem, cannot be an input into algorithm G. However, the complex
expression involves case-statements nested inside the branching expressions of other
case-statements, with the variable v, of the A-abstraction at the core. It is possible
that this nesting of case-statements could be transformed into a nested set of patterns

branching purely on vy, which would satisfy the form on which algorithm G operates.

3.8 Revising the Restructuring Algorithms

In the hylomorphism representation given in Section 3.2, we assume that the recursive
variables in a natural transformation 1 must be exactly those recursive variables in
the input. Further, we assume that no recursive variables appear in the non-recursive
elements of the output. That is, we assume that a derived hylomorphism starts
with an identity n which satisfies this form and that all the algorithms we apply
to hylomorphisms preserve this feature of n. Thus, we reasoned, our representation
needs only to record the input non-recursive variables, the input recursive variables,
and the expressions for the non-recursive part of the output. Since the recursive
variables should not appear in the output expressions, we can actually reduce our
representation to merely keep a count of how many recursive variables are in the
input of n without actually giving them names. However, as we are about to show,

the recursive output of 7 is actually needed and therefore our representation should
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keep the named inputs and be extended to include a set of identifiers corresponding
to the recursive outputs of 7.

The need for a new 1 became apparent when we attempted to test our system on
the function foo (described in Section 3.7.1) used by Onoue et al. to illustrate the
algorithm for deriving 7. Onoue et al. claim that applying the algorithm for deriving
hylomorphisms results in the following hylomorphism:

foo = [¢,id,outp, Ir;,

where ¢ = (). Leaf v A(v, v"). Node(double(v), squareNodes(v'), v")
Our implementation of the algorithm, on the other hand, produces the following
hylomorphism:
foo = [dyid, Vluy,
where ¢ = A(). Leaf v A(v, v}, vy). Node(double(v), squareNodes(v}), vj)
1 = Avg. case vg of Nil — (1,()); Cons(a, as) — (2, (a, as, as))

The results differ because of a disagreement over how to interpret the mathemati-
cal notation in the description of the derivation algorithm. We claim that their use of
set union indicates that every occurrence of the recursive function should be replaced
by a fresh variable, even if the function is being applied to an argument which has
appeared before. Onoue et al. use a more complicated union procedure which assigns
the same variable to multiple occurrences of the function on the same argument.

Both hylomorphisms inline to the same recursive function, so they are equivalent
representations. The hylomorphism produced by Onoue et al. is a catamorphism
over the functor for lists and therefore is readily fused with hylomorphisms over the
list functor. Our hylomorphism operates over the functor for trees and would be an
anamorphism if the function did not include a call to squareNodes. Thus, each form
is open to different possibilities for fusion. But neither restructuring algorithm in
the HYLO system can convert one form to the other because they do not affect the
recursive elements. A transformation between the forms is needed if we hope to fully
exploit the Acid Rain rules.

Certainly we can inline a hylomorphism and rederive using the other interpretation

of the deriving algorithm, but it would be more efficient to have an algorithm which
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operates on the hylomorphism representation. Such algorithms do exist—one for ¢
and one for 1.

For both parts of the hylomorphism, there is a general algorithm for restructur-
ing which performs as much restructuring as possible. However, it is possible to
implement simplified procedures which only perform restructuring if the output has
a chance of being in in or out form. Recursive restructuring does not simplify the
derivation of 7 or ¢ and does not bring internal hylomorphisms together. Its only pur-
pose, then, is to reveal a catamorphism or anamorphism, so the simpler procedure is

sufficient. For completeness, we describe both the general and simplified algorithms.

3.8.1 Recursive Restructuring of ¢

The middle component 1 of a hylomorphism represents a natural transformation
that can be shifted from one side of the hylomorphism to the other. In order for
a function to be a natural transformation it cannot perform computation on the
recursive variables. That is, the recursive elements of the output must be recursive
variables, not expressions, and the non-recursive elements cannot contain references
to the recursive variables. However, the transformation is free to ignore or duplicate
recursive variables in the recursive elements of the output.

To perform recursive restructuring of ¢, we traverse each ¢; and collect the re-
cursive variables that have appeared so far. When a recursive variable appears more
than once, each new occurrence is replaced by a fresh identifier and the replacement
is remembered in a list which associates the new identifier to the old identifier that it
replaced. The new identifiers are added to the recursive inputs of ¢; and the recursive
outputs of n; are similarly extended to include the values for these new inputs. The
values are just duplicates of the values for the old variables that were replaced. The
algorithm is given formally in Figure 3-6.

The algorithm as given threads the list of recursive variables b from left to right
in subexpressions. If the algorithm traverses from left to right in this way and keeps
the list of recursive variables in the order that they are encountered, then the ¢ of

the restructured hylomorphism will have its variables in the order that we enforced in
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Figure 3-6: Recursive Restructuring Algorithm R,
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Figure 3-7: Recursive Restructuring Algorithm R

the traditional restructuring algorithm and in the in form detection algorithm. Thus,
in our algorithm to find fusible hylomorphisms, before testing for in form, we should
perform both non-recursive and recursive restructuring, after which the hylomorphism
will have ¢ in in form if it is in fact a catamorphism.

Since recursive restructuring only helps in determining if a hylomorphism is a
catamorphism or anamorphism, we can simplify the algorithm to abort if its input
has no chance of being in in form. Specifically, if the body t; of each ¢; is not
a constructor with all variable arguments, then it is pointless to perform recursive
restructuring. Thus, we only need the cases from algorithm # for constructors and

for variables.

3.8.2 Recursive Restructuring of ¢

To perform recursive restructuring of ¢, we look for duplicate expressions in the
recursive elements of each case ¢;. Duplicate expressions are eliminated from ¢; and
the corresponding inputs to 7; are removed, with occurrences of the removed variables
being replaced by the one remaining input variable receiving the same value. The

algorithm is given formally in Figure 3-7.
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As with the algorithm for ¢, we can simplify the algorithm to only operate on
inputs which have a chance of being in out form. For a 1 to be in out form, the
recursive elements of #; must all be variables, and not expressions. Thus, we do not
need to look for multiple occurrences of the same expression, only multiple occurrences

of the same variable.

3.9 Examples

In the following examples, we use the new representation for hylomorphisms discussed
in Section 3.8. This new representation differs from the one given in Section 3.2 in
that we additionally record the recursive output of 1, which we no longer assume to

be identical to the recursive input. The type declaration for this component is then:

type Eta = [([Var], [Var], [Expr], [Var])]

3.9.1 Deforesting Lists
Consider the following program containing recursive functions on lists:

sum xs = case xs of
1 >0

(a:as) -> a + (sum as)

map g xs = case xs of

1 ->10

(a:as) -> ((g a):(map g as))

upto n m = case (m>n) of

True -> []

False -> (m:(upto n (m+1)))

square x = X*X
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main = print (sum (map square (upto 10 1)))

Running the deforestation optimization on this program derives the following hylo-

morphisms:

sum = ¢, id, ]
where ¢ = A((), ())-0 v A((w1), (v1)).(u1 + v1)
1 = A\vg.case v, of

Nil — (1,((),)))
Cons(a, as) = (2,((a), (as)))

map = Ag. [¢,id, ¢]
where ¢ = A((), ()).Nil v A((uy), (v;)).Cons(g uy,v;)
1 = \vg.case vy of

Nil — (1,(0),0))
Cons(a, as) — (2, ((a), (as)))

upto = An. [, id, ]
where ¢ = A((), ()).Nil v A((uy), (vs)).Cons(uy, vy)

1 = \vg.case vy >n of

False — (1,((), ()
True — (2, ((vs), (vs + 1)))

These hylomorphisms are represented in our compiler as:

sum

(o, 1, 0, ([ul, [vl, u + w1,

ccer, o, b, (Lul, Lvl, [ul, [vD],

(xs, xs, [C01, [1D, ¢, [a, as]D], [(OD, [1), ([al, [asDD1),
[

map
cea, o, o, (ul, vl, gu: wl,

ey, o, ), (Lwl, bvl, [ul, vD1,

(xs, xs, [COD, [D), (:, [a, as])1, [([1, [1), ([al, [as])1),
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[Lambda gl)

upto
coer, ma, o, (M, vl, u: 01,
cca, 0o, ), (ul, [vl, [, [vD1,
(m, m > n, [(False, [1), (True, [1)1, [C01, [1), ([ml, [m+ 1)1,
[Lambda n])

To deforest main, we begin with the composition (map square (upto 10 1)) which
is a composition of a catamorphism with an anamorphism, so it can be fused into the

following hylomorphism:

(o1, 0, , (ul, [ul, gu: wl,

cca, i, o, (wl, vl, [ul, vD1,

(m, m > n, [(False, [1), (True, [1)1, [(01, [1), ([m], [m+ 11)1),
[Let [Def g square, Def n 10], Apply 1])

In order to fuse the application of sum to this hylomorphism, it needs to be restruc-

tured into the following anamorphism:

o, o, , (wl, wl, u: wl,

ey, o, ), (Mul, vl, [gul, [vD],

(m, m > n, [(False, [1), (True, [1)1, [(01, [1), ([m], [m+ 11)1),
[Let [Def g square, Def n 10], Apply 11)

Now the ¢ of this hylomorphism is in in form and can be fused with the hylomorphism

for sum which has ¢ in out form. This fusion produces the following hylomorphism:

o, o, o), (ful, [vl, u+ w1,

ccr, o, ), (Lul, [vl, [gul, vD1,

(m, m > n, [(False, [1), (True, [1D]1, (1, [1), ([m], [m + 11)1),
[Let [Def g square, Def n 10], Apply 11)

This hylomorphism represents the fusion of the compositional definition of main and

can be inlined into the following new expression for main:
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let g = square
n = 10
hylo m = case (m > n) of
False -> 0
True -> (g m) + (hylo (m + 1))

in hylo 1

This definition, with a single loop, is an improvement over the original definition with

three loops and two intermediate lists.

3.9.2 Deforesting Trees

To illustrate how the system works on a data type other than lists, we use the following

program on trees:

data Tree t = Leaf | Branch t (Tree t) (Tree t)

makeTree :: (t -> t) -> [t] -> Tree t
makeTree f1 [] = Leaf
makeTree f1 (x:xs) =

Branch x (makeTree f1 xs) (mapTree f1 (makeTree f1l xs))

sumTree :: Tree Int -> Int
sumTree (Leaf) = 0

sumTree (Branch n 1 r) = n + (sumTree 1) + (sumTree r)

mapTree :: (t -> t) -> Tree t -> Tree t
mapTree f2 (Leaf) = Leaf
mapTree f2 (Branch n 1 r) =

Branch (f2 n) (mapTree f2 1) (mapTree f2 r)

upto :: Int -> Int -> [Int]

upto n m = case (m>n) of
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True -> []

False -> (m:(upto n (m+1)))

square x = X * X

main = print (sumTree (mapTree (+1) (makeTree square (upto 8 1))))

When we run the deforestation optimization on this program, we derive the follow-
ing hylomorphisms (plus a hylomorphism for upto which has not changed from the

previous example):

sumTree = [¢, id, ]
where ¢ = A((), ()).0 v AM((u1), (v1,v2)).(u1 + v1 + vo)
1 = \vg.case vy of

Leaf — (1,((),()))
Branch(n,l,r) — (2, ((n), (I,7)))

mapTree = \f. [¢,id, ]
where ¢ = A((), ()).-Leaf v A((uy), (v, vz)).Branch((f u;), vy, vs)
1 = \vg.case vy of

Leaf — (1,(0),()))
Branch(n,l,r) = (2, ((n), (I, 7)))

makeTree = \f. [, id, 9]
where ¢ = A((), ()).Leaf v A((uy), (vs, vz)).Branch(u;, vy, map Tree(f, vz))

1 = \vg.case vy of

Nil — (1,((),()))
Cons(a, as) = (2,((a), (as, as)))

These hylomorphisms are represented in our compiler as:
sumTree
(ccad, 01, 0y, ([ul, [vi, v2], u + vl + v2)],

ccia, 0, 1, (ul, Cvi, v21, [uwl, [vi, v2])],
(xs, xs, [(Leaf, [1), (Branch, [n, 1, rl)],
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(cal, , (1, 1, rHD,
[

mapTree
([C01, 00, Leaf), ([ul, [vi, v2], Branch (f2 u) vi v2)],
[, 0, ), (wl, [vi, v21, [ul, [vi, v21)1,
(xs, xs, [(Leaf, [1), (Branch, [n, 1, r])],
(o, , (ml, 1, rh,
[Lambda £2])

makeTree
([CI1, [1, Leaf), ([ul, [vi, v2], Branch u vl (mapTree f1 v2))],
[co, 0, ), (ul, [vi, v2l, [ul, [vi, v2D)],
(xs, xs, [([1, [, (:, [x, xsDDI1, [C0D, [1), ([x]l, [xs, xsDD]),
[Lambda £1])

To deforest this program, we begin with the composition (makeTree square (upto
8 1)) in main. As in the example for lists, the function upto is an anamorphism,
but here the consuming hylomorphism is not immediately recognizable as a catamor-
phism. Recursive restructuring of the ¢) in makeTree is needed to remove the duplicate
recursive variables. Once this is accomplished, the composition can be fused into the

following hylomorphism:

(Cca, 0, Leaf), ([ul, [vil, v2], Branch u vl (mapTree f1 v2))],
ccil, , ), (ul, vl, [ul, [v, vDI,

(m, m > n, [(False, [1), (True, [1)1, [C[1, [1), ([ml, [m + 11)1),
[Let [Def f1 square, Def n 81, Apply 11)

The n of this hylomorphism duplicates the recursive variable, so recursive restructur-
ing of ¢ is not needed. However, the hylomorphism is not a catamorphism, so 7 will
need to be derived if we are to fuse this hylomorphism with mapTree, which is an
anamorphism. After deriving 7 and performing the fusion, we produce the following

hylomorphism:
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(CC01, 0, Leaf),
([ui, w2], [vi, v2],
Branch (f2 ul) vi
(let £3 = u2
h xs = case xs of
Leaf -> Leaf
Branch n 1 r -> Branch (f2 (£3 n)) (h 1) (h r)
in h v2)1,
(o, aa, i, (l, vl, [, £11, [v, vD)1,
(m, m > n, [(False, [1), (True, [1)1, [(0], [1), ([m], [m+ 11)1),
[Let [Def f2 = (+1), Def f1 = square, Def n = 8], Apply 1])

For this hylomorphism to be fused with sumTree, we will again need to derive 7. It
is worth noting that the internal hylomorphism mapTree was altered in the deriving
process and had to be inlined. Now when we go to derive 7 again, we need to rec-
ognize the entire inlined expression as a hylomorphism being applied to a recursive
variable, in order to determine that ¢ is in the canonical form required for deriving
7. Our first attempt at this recognition process did not account for the surround-
ing let-statements and A-abstractions that result from inlining. In this case, where
the let-statement is binding a variable to a variable, it is easy to suggest that the
hylomorphism-inlining algorithm inline these variable-to-variable let-statements and
thus eliminate the problem. For more complicated let-bindings, the inlining algorithm
could produce a hylomorphism with multiple non-recursive arguments and apply it
to the bound values. However, we would rather produce hylomorphisms that have
constant arguments lifted out of the loop and we can leave some simplifying to later
parts of the compiler. Thus, we leave the inlining process unchanged and instead use
a recognizing algorithm which gathers up the context statements and adds them to
the internal representation of the hylomorphism.

Once we have derived 7, we can apply the fusion rule and produce the following

hylomorphism:
(0C, i, 0,
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([ul, w21, [v],
ul + v + (let £3 = u2
h xs = case xs of
Leaf -> 0
Branchn 1 r -> (f2 (f3 n)) + (b 1) + (h r)
in h v))],
ey, 1, 1y, (Lul, [vl, [£2 u, £f11)1,
(m, m > n, [(False, []1), (True, [1)], [C[, [1), ([m], [m + 11)1),
[Let [Def f2 = (+1), Def f1 = square, Def n = 8], Apply 1])

which inlines into the following expression:

let f2 x =x + 1
f1 = square
n =38
him-=
case (m > n) of
False -> 0
True -> (f2 m) + (h1 (m + 1)) +
let £3 = f1
h2 a2 =
case a2 of
Leaf -> 0
Branchn 1 r -> (£2 (£3 n)) + (h2 1) + (h2 r)
in h2 (hl (m + 1))

in hil 1

This new definition for main is an improvement over the original which used three
loops held together by an intermediate list and two intermediate trees. The new loop

produces no lists or trees.
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Chapter 4

Related Work

Olaf Chitil [5, 4] presents interesting work on how type inference can be used to derive
build forms for most algebraic data types. In [5], he mentions Fegaras’s [6] work on
the use of free theorems [27] to derive the producer and consumer forms. These two
systems, plus the hylomorphism system, all seem to be dancing around the same
issue. It seems that a “unified theory of fusion” is needed.

As mentioned in the introduction, there exist extensions to the hylomorphism
theory that make using hylomorphisms as the canonical form enticing. Alberto Pardo
[22] has explored the fusion of recursive programs with effects, using two schemes he
calls monadic unfold and monadic hylomorphisms and an updated Acid Rain theorem
for fusing the new forms. Pardo claims that his extended rules can still perform
traditional fusion, as purely functional hylomorphisms are special cases of monadic
hylomorphisms with an identity monad component.

The HYLO authors have also proposed a few extensions to the theory. Recognizing
that their system could not properly handle functions which induct over multiple
data structures, like zip, they proposed an extension to the Acid Rain rules. Their
extension meant the addition of a new rule to specifically handle such functions and
not sharing the same form as the original Acid Rain rules. In later work [13], Iwasaki
et al. extended the hylomorphism theory to use mutual hylomorphisms as a second
canonical form, providing rules for operating on mutual hylomorphisms and for fusing

with single recursive hylomorphisms. Unlike the previous extension, these new Acid
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Rain rules followed the same form as the original. Iwasaki et al. show in that paper
how functions which traverse over multiple data structures can be expressed in this
new canonical form. Because the Acid Rain rules are not fundamentally changed,
this new extension to the theory is preferred and is more powerful, allowing for the
representation of mutual recursive functions.

Hylomorphisms are important to the HYLO authors because they see multiple
calculational transformations being performed in a compiler [25]. One such transfor-
mation, based on mutual hylomorphisms, is Hu, Takeichi, and Chin’s parallelizing
transformation [12], which we discuss in the concluding remarks on parallelism in the
next chapter.

As Gill [9] notes, Mark Jones [14] presents a framework for embedding the “ba-
nanas and lenses” notation directly in Haskell. Whether such representation can be
used in a system, such as automatic deforestation, which manipulates these higher-
order functions is still to be determined.

Despite the paper by Gibbons and Jones [8], unfold is still under-appreciated.
Their paper discusses uses for unfold in functional programming, including its use in
deforestation. Gibbons and Jones refer to the HYLO system as operating on functions
which are compositions of foldr and unfold. They demonstrate the HYLO system
on an example program developed in the course of the paper and show how it deforests
to a simpler program provided by another source. It would be interesting to further
explore the HYLO system in terms of direct manipulation of folds and unfolds, rather
than hylomorphisms. Gill [9] provides a start in this direction by giving possible
definitions for unbuild and unfold and the associated unbuild/unfold deforestation

rule.
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Chapter 5

Conclusions

The HYLO algorithms described by Onoue et al. have been implemented in the pH
compiler. This experience showed that some modifications to the algorithms are
necessary. The restructuring algorithms as given formally in [21] do not perform as
described verbally. We revised the descriptions of these algorithms and provided de-
scriptions for additional restructuring algorithms which were missing from the HYLO
system.

We also showed that the restructuring algorithms are overloaded in the HYLO
system. Onoue et al. use restructuring for three different purposes without recogniz-
ing that these purposes place potentially conflicting requirements on the output of the
restructuring algorithms. First, restructuring is used to bring internal hylomorphisms
together for fusion. Second, restructuring is used to reveal whether a hylomorphism
is a catamorphism or anamorphism, to allow for fusion with other hylomorphisms.
Third, restructuring is used to simplify a hylomorphism before 7 or ¢ is derived. In
this paper, we discussed algorithms for all three purposes. Each is a valid application
of the HyloShift rule, but they differ in how much computation is shifted. Restruc-
turing for the purpose of fusing internal hylomorphisms, which requires that nearly
all computation be shifted into 7, is at odds with the restructuring prior to deriving
7, which requires that some hylomorphisms be left unshifted. An implementation of
the HYLO system should have separate algorithms for these purposes.

We also learned from this experience that operations on hylomorphisms should
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be relative. A function which operates on a data type described by a functor F
can be expressed as a hylomorphism over a different, but related functor F'. When
attempting to fuse two hylomorphisms operating on the same data type but expressed
over different functors, it is necessary to massage the hylomorphisms into forms on a
common functor, either through restructuring or deriving 7 or ¢. It is not necessary,
however, that the common functor be the functor F for the data type. In fact,
requiring that the hylomorphisms be expressed over F restricts the number of cases
in which fusion is possible. Thus, massaging a hylomorphism should be performed
relative to the hylomorphism to which we hope to fuse.

Our implementation performs well on sample programs containing recursive func-
tions on lists and trees. The success of this system on real world examples still needs
to be explored. According to Olaf Chitil [5], Christian Tiiffers’s thesis [26] shows that
the derivation algorithm used by the HYLO system can transform most definitions
in real world programs into hylomorphisms. Thus, there is reason to believe that this
system can succeed in practice.

Exploration will likely reveal that some issues common to deforestation optimiza-
tions, such as inlining and handling of wrapper computations, still need to be ad-
dressed in our implementation. As mentioned in Section 3.6.5 describing the algo-
rithm for finding fusible compositions, there are many cases where fusion will be
missed because our algorithm does not perform the necessary inlining. We believe
that research on these issues in other systems will be applicable here. Maessen [17]
discusses the desugaring used by his optimization and briefly addresses inlining; the
majority of Gill’s thesis [9] is discussion of optimizations which are necessary before
the foldr/build deforestation pass can be effective, and which he explicitly claims
are necessary for any calculational optimization to be practical; and Chitil [4] dis-
cusses how the worker/wrapper scheme suggested by Gill can be used to optimize

inlining in his deforestation system.
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5.1 Preserving Parallelism

One of the original goals of this project was to extend the HYLO system to an
optimization which can fuse reductions without having to first serialize them into
folds. In the course of the project, it became clear that implementing the current
HYLO system would be a sufficient thesis in itself and that parallelism would have
to be left for future work. We provide here a few thoughts on the current system and
directions for future research.

The HYLO system as implemented does not introduce any ordering. However,
the system can only perform deforestation on programs which are described in terms
of folds. In the pH compiler, deforestation is relied on heavily to optimize the desug-
aring of list and array comprehensions. As mentioned in the description of Maessen’s
scheme, operations on arrays and open lists are represented as reductions on lists.
Thus, the pH compiler relies heavily on deforestation to optimize the results of desug-
aring operations on these structures. For HYLO to be an effective optimization in
the pH compiler, it would need to fuse reductions without introducing an arbitrary
ordering to the program. Transforming reductions into folds is unacceptable. The
HYLO system can still be useful for deforesting functions on user-defined types, for
which reduction operators are not provided to the programmer.

Hu, Takeichi, and Chin’s paper “Parallelization in Calculational Forms” [12] gives
a calculational system for taking a program on cons-lists and transforming it into a
program with functions on join-lists. That is, they create instances of reduce from
folds. They call this technique parallelization and they perform the transformation us-
ing mutumorphisms, which are mutually recursive forms of Bird’s list homomorphisms
and which are related to the recursive hylomorphisms described in [13]. According
to Hu et al., the point of transformations are for programmers to write horribly in-
efficient programs which are easy to understand, leaving it up to the compiler to
derive an efficient equivalent program. In the same way that deforestation allows us
to write modular programs which the compiler will fuse into a more efficient form,

they say that parallelization allows us to write serial programs which the compiler
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will convert into parallel descriptions. Their philosophy is that calculational fusion
should not be parallelized, but instead a parallelizing transformation should be per-
formed after other calculational transformations have been applied. The benefit of
their parallelizing step is that it generalizes to arbitrary data types rather than simply
lists. The benefit of such a system in the pH compiler would be not only to recover
parallelism after the deforestation pass, but also to automatically derive reductions
over user-defined types.

Understanding the parallelizing optimization of Hu et al. might lead to insight into
how the representation of hylomorphisms in the HYLO system could be be extended
to capture parallel operators such as reduce. If hylomorphisms could be derived for
functions which operate on join-lists, then the HYLO system could be used effectively
in pH without having to arbitrarily transform reductions into folds. Currently, natural
transformations like map can be expressed and deforested with minimal change to the
system, because they do not require operating on the consumer and producer aspects
of the hylomorphism.

Another possibility is to extend the HYLO system in the same way that Maessen
extended the short cut deforestation of Gill et al. That is, to transform the recursive
functions in a program into higher-order functions that build up the original function,
which was either iterative or recursive. Then the task becomes to fuse these higher-

order functions.
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