MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

8
iy

v.i. =
il

LABORATORY FOR g
COMPUTER SCIENCE A=

Scheduling and Synthesis of Operation-Centric Hardware
Descriptions

Computation Structures Group Memo 426
November 9, 1999

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind }@lcs.mit.edu

Not for Distribution without Authors’ Permission.

This paper describes research done at the MIT Laboratory for Computer Science.
Funding for this work is provided in part by the Defense Advanced Research Projects
Agency of the Department of Defense under the Ft. Huachuca contract DABT63-
95-C-0150 and by the Intel Corporation. James C. Hoe is supported by an Intel
Foundation Graduate Fellowship.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Scheduling and Synthesis of Operation-Centric
Hardware Descriptions

James C. Hoe and Arvind
MIT Laboratory for Computer Science
Cambridge, MA 02139
{jhoe,arvind }@lcs.mit.edu

Not for Distribution without Authors’ Permission.

November 9, 1999

Abstract

High-level specifications, such as processor manuals, are often
operation-centric where the behavior of a system is specified on an
operation-by-operation basis. Whereas, most synthesizable descrip-
tions such as schematic or RTL are state-centric. This paper presents a
synthesis algorithm that compiles an operation-centric description into
a state-centric synthesizable RTL description by finding a consistent
and efficient scheduling of the independently prescribed operations.

1 Introduction

Traditionally, hardware implementation is captured in a state-centric man-
ner that specifies for each state element in a system, its new state after every
time step. This style of hardware specification includes both schematic cap-
ture and text-based Register Transfer Language descriptions (RTL’s). In a
state-centric description, because the events in different parts of the system
are not semantically coupled, it is easy to make a mistake in the coordina-
tion and synchronization of related events. It is also difficult to modify the
timing in one part of the system without considering its interaction with the
rest of the system.

On the other hand, high-level specifications of hardware designs are of-
ten operation-centric, that is, the collective behavior of the whole system

Draft November 9, 1999, Not for Distribution 2

is described on an operation-by-operation basis. The specification of each
operation is self-contained, with minimal dependence between specifications
of different operations. Specifying an operation involves stating when an
operation should take place and what its effect is. Semantically, these oper-
ations are atomic and are interleaved sequentially during an execution. For
example, a microprocessor manual specifies the behavior of a processor on an
instruction-by-instruction basis. For each instruction, the manual specifies
how the processor state registers are affected according to that instruction
alone. In contrast, one can imagine the difficulty in reading a state-centric
processor manual that describes a processor’s behavior by giving the next-
state logic of each register.

1.1 Term Rewriting Systems

Term Rewriting Systems (TRS’s)[2] can be used as a source language for
operation-centric hardware descriptions. In the past, TRS’s have been used
extensively to give operational semantics of programming languages. Re-
cently, TRS has found applications in computer architecture design and
verification. A processor with out-of-order and speculative execution has
been modeled as a TRS and verified against a specification TRS[1].

A TRS models a hardware design by a set of terms and a set of rewrite
rules. The set of terms corresponds to the different states of the system
while the rules specify the allowed state transitions. Abstractly, a rule con-
sists of two components, the = and § functions. The = function determines
when a rule is applicable to a term, and the § function determines the new
term when a rule is applied. The effect of a rule on a term can be captured
by the function,

At if m(t) then d(t) else t

In the context of an operation-centric behavioral description, = specifies
when an operation could take place, and § captures the effect of that oper-
ation on the hardware state.

During the execution of a TRS, the effect of a rewrite rule is atomic, that
is, the whole term is “read” in one step and if the rule is applicable then a
new term is returned in the same step. If several rules are applicable, then
any one of them is chosen nondeterministically and applied. Afterwards,
all rules are re-evaluated for applicability on the new term. Starting from
an initial term, successive rewriting produces a sequence of terms. The

Draft November 9, 1999, Not for Distribution 3

execution stops at a term that cannot be rewritten using any rule.

1.2 Synthesis of Operation-Centric Hardware Descriptions

This paper investigates the problem of synthesizing operation-centric hard-
ware description into state-centric implementation descriptions, i.e. synthe-
sizable synchronous RTL. Detailed synthesis algorithms are presented in
the context of an abstract tramsition system (ATS), which is a suitable
abstract representation of operation-centric descriptions in general. The
crux of the synthesis algorithm involves finding a valid composition of the
independently-prescribed operations into a coherent state transition system.
For performance reasons, the synthesized implementation should carry out
as many operations concurrently as possible, and yet still produce a behav-
ior that is consistent with the atomic and sequential execution semantics
of the original operation-centric specification. The algorithms presented in
this paper have been implemented in a TRS-to-RTL compiler{7].

1.3 Paper Organization

The next section defines the ATS abstraction for operation-centric hardware
description. Section 3 offers a straight-forward reference implementation of
an ATS using synchronous circuit elements. Section 3 also establishes the
correctness and performance criteria of an implementation. Sections 4 and 5
present two refinements to the synthesis algorithm that uses static analysis
to find optimizations that improve the performance of synthesized imple-
mentations. Section 6 presents related work in high-level description and
synthesis, as well as our conclusions.

2 Abstract Transition Systems

An abstract transition system (ATS) is described by §, 8 and 7. § is a list
of state elements, and S? is a list of constants. 7 is a list of state transitions.
The components of an ATS is summarized in Figure 1.

2.1 State Elements

An element in § can be a register (R), an array (A), or a FIFO (F). A register
R can store an integer value up to a maximum word size. The value stored in
a register can be referenced in an expression using the side-effect-free R.get()

Draft November §, 1999, Not for Distribution 4

ATS = <8,8°7>
S = < Rl:'"rRNR-; Ala"'aANA, Fl:"'1FNF >
§° = <Vvh | vEx
T = {T,.Tu}
T = <ma>
T = exp
a = <aft, afive adi | adwa aFi | aFvr
aft = ¢ set(exp)
a' = ¢] a-set(expids,exPdata)
af = €[eng(exp) || deg() {| en-deg(exp) | clear()
exp constant [| Op(expy,expa,...,expy)

R.get() [} A.a-get(idx)
F.first() [| F.notfull() [| F.notempty()

Figure 1: ATS Summary

query operator. For conciseness, R.get() can be abbreviated simply as R. A
‘register’s content can be set to value by the R.sei(value) action operator.
* Any number of queries is allowed in an atomic update step, but each register
only allows at most one set action in each atomic update step. An atomic
update step is defined in Section 2.3 where the operational semantics of an
ATS is defined. ’

An array A can store a fixed number of values. The content of indi-
vidual entries in an array can be indexed for reading and writing. The
value stored in the idx'th entry can be referenced in an expression using the
side-effect-free A.a-get(idx) query operator. A.a-get{idx) can be abbrevi-
ated as A[idx|. The content of the idx’th entry can be set to value using the
A.a-set(idx,value) action operator. Qut-of-bound queries or actions on an
array are not allowed. Each array only allows at most one a-set action in
each atomic update step, but any number of queries on an array is allowed.

A FIFO F stores an unspecified but finite number of values in a first-
in-first-out manner. The oldest value in a FIFQO can be referenced in an
expression using the side-effect-free F.first{) query operator, and can be re-
moved by the F.deg() action operator. A new value can be added to a FIFQ
using the F.eng(value) action operator. F.en-deg(value) is a compound ac-
tion that enqueues a new value after dequeuing the oldest value. In addition,
the entire contents of a FIFO can be cleared using the F.clear() action op-
erator. Underflowing or overflowing a FIFO by an eng or a deg action is
not allowed. The status of a FIFO can be queried using the side-effect-free

Draft November 9, 1999, Not for Distribution 5

F.notfull() and F.notempty() query operators that return a boolean value.
These boolean status flags may be false-negative, that is, F.notfull() may
return felse even if F is not full. Each FIFO only allows at most one action
in each atomic update step, but any number of queries are allowed.

Due to the lack of space, this paper does not discuss input/output. Input
and output are accomplished using register like state elements. An input
state element (1) is like a register but without the set operator. l.get()
returns the value of an external input. An output state element (Q) supports
both set and get, and its content is visible outside of the ATS.

2.2 State Transitions

An element in 7 is a transition which is a pair, <m,a>. 7 is a value ex-
pression. A value expression can contain arithmetic and logical operations
on values. A value in an expression can be a constant or a value queried
from a state element. Given an ATS whose S has N elements, « is a list of
N actions, one for each state element. An action is specified as an action
operator plus its arguments in terms of value expressions. A null action is
represented by the symbol e. The argument expressions to an action need
to be evaluated before the action can be applied to the state element. For

all actions in «, the i'th action of @ must be valid for the i’th state element
in S.

2.3 Operational Semantics

At the start of an execution, all entries in all A’s contain 0’s, and all F’s are
empty. The initial value of R; is taken from the i'th element of §°. From
this initial state, the execution of an ATS takes place as a sequence of state
transitions in atomic update steps.

At the start of an atomic update step, all 7 expressions in 7 are eval-
uated using the current contents of the state elements. In a given step, an
applicable transition is a transition whose 7 expression evaluates to true.
All argument expressions to the actions in «o’s are also evaluated using the
current state of S.

At the end of an atomic update step, one transition is selected non-
deterministically from all applicable transitions. & is then modified accord-
ing to the actions in the selected transition. For all actions in the selected
a, the i'th action is applied to the i’th state element in &, using the ar-
gument values evaluated at the beginning of the step. If an illegal action

Draft November 9, 1999, Not for Distribution 6

or combination of actions is performed on a state element then the entire
state transition system halts with an error. A valid ATS specification never
produces an error.

The atomic update step repeats until S is in a state where none of the
transitions is applicable. In this case, the system halts without an error.
Alternatively, a sequence of transitions can lead § to a state where selecting
any applicable transition leaves § unchanged. The system also halts without
error in this case. Some systems may never halt. Due to non-determinism,
some systems could halt in different states from one execution to the next.

2.4 Functional Interpretation

Thus far, ATS has been defined in terms of state elements and actions with
side-effects. In certain situations, it is convenient to assign a functional
interpretation to ATS. There is a natural one-to-one correspondence be-
tween the two interpretations. In a functional interpretation, the state of
S is represented by a collection of values. R is represented by a value,
A is an array of values, and F is an ordered list of values. Using this
value representation of state, 4, the state-to-state function corresponding
to a=<a®1... a1 .., afl..>, can be defined as,

§(s)= let
<Ri..., A..., F1..>=s
n
< apply(a’ Ry)..., apply(a?’,A1)...,
apply(afl Fi)..>

Applying an action entails computing the new value of a state element based
on the old values of state elements.

apply(a,v)= case a of
set(v') = v’
a-set{idx,data) = v[idx:=data]
eng(v') = viv’
deq() = let first;rest=v in rest
en-deq(v’) = let first;rest=v in rest;v’
clear() = empty list
€= v

Draft November 9, 1999, Not for Distribution 7

Using a functional interpretation, an execution of ATS produces a sequence
of values that corresponds to the sequence of state transitions in the normal
interpretation using side-effects on state elements.

2.5 Example: A Simple Processor

S of a simple processor is <Rpc, Arr, AIMEM, Apaem> where Rpo is a
16-bit program counter, Agr is a general purpose register file of four 16-bit
values, AjarEpm 18 & 218_entry array of 24-bit instruction words, and AppMEM
is a 21%-entry array of 16-bit values.

T consists of transitions that correspond to the execution of different in-
structions in the processor. Let 0, 2 and 3 be the numerical values assigned to
the instruction opcode Loadi (Load Immediate), Add (Triadic Register Add)
and Bz (Branch if Zero). Also let the instruction word stored in ArpEnm be
decoded as follows,

opcode = bits 23 down to 22 of ArmemRpec]
rd = bits 21 down to 20 of Ajmem{Rec]

r1 = bits 19 down to 18 of Ajpem(Rec)

r2 == bits 17 down to 16 of AIMEM[RPC]
const = bits 15 down to 0 of Ajpem[Rec)

's and &'s of the transitions corresponding to the execution of Loadi, Add
and Bz {when taken and not taken) are:

T Loadi = (Opcode==0)
Qpoadi = < set(Rpc+1), a-set(rd, const), €, € >

T Add = (opcode==2)

agd — < set(Rpc+1),
a-set{rd, ARF[!‘I]—FARF[I’Q}),
€, €>

M BzTaken = (OPCOde==3) A (ARF[d]::)
QB:Taken — < SEt(ARF[rQ]), €, € €>

TBzNotTaken = (opcode=:3) A (ARF[I‘I]#O)
O B:NotTaken = < 8et(Rpc+1), € €, € >

Lastly, to zero Rpc during initialization, §7=< 0>. g

Draft November 9, 1999, Not for Distribution 8

{write addr) WA
{wrile dala) WD +
b + R + o {write enable) WE A
—— {read addr) RA | RDy; ircad data)
LE /I\ (read Y RA, :,’f_L RD: fread data
c (read addr) RA , A RD, (rcad dara)
I
C
{enq daia) ED first
(engj enable) EE i F +
(deq ensbley DE __| — -full
{clear enable) CE | | _empiy
AN
|
C

Figure 2: Synchronous State Elements

3 Synchronous Implementation of an ATS

One possible synchronous implementation of an ATS performs one atomic
update step per clock period. The elements of S are implemented using
clock synchronous registers, arrays, and FIFQ’s. These library elements are
shown with their interfaces in Figure 2. (This discussijon assumes that an
array always has a sufficient number of read ports to support all a-get()
queries. After an RTL is generated, the actual number of combinational
read ports can be reduced by common subexpression elimination.} During
a clock period, the 7 expressions and the argument expressions in the a’s
are evaluated combinationally using the current state of the state elements.
In every clock cycle, a scheduler selects one of the transitions whose 7 ex-
pression is asserted. At the rising clock edge at the end of a clock period,
all state elements are updated synchronously according to the actions of the
selected transition. Details of the circuit implementation are given below.

3.1 Reference Implementation

Scheduler: Based on 7, (s),...,m1,, (s) where 77-(s) is the value of T;’s
7 expression in state s, a scheduler generates arbitrated transition enable
signals ¢7, V...Vér,, where ¢r, is used to select the actions of ;. Any valid
scheduler must, at least, ensure that in any s,

1. ¢, = mp,(s)
2. mry(S)V..VrT, (5) = ¢1, V..Vor,

Draft November 9, 1999, Not for Distribution 9

A priority encoder is a valid scheduler that selects one applicable tran-
sition per clock cycle. Since ATS allows non-determinism in selection, the
priority encoder could use static, round-robin or randomized priority.

Register Update Logic: Fach R in S can be implemented using a syn-
chronous register with clock enable. For each R in S, we first find the set of
transitions that update R,

{T:; | a%, = set{eTPq,)}

where aff is ar,’s action on R. The register’s latch enable signal is
3

LE = ¢1,,V..VéT.,
The register’s data input signal is

D = ¢r, -exps, + .- + o =

This expression corresponds to a pass-gate multiplexer where exp,; is en-
abled by ¢r, .

Array Update Logic: Each A in S can be implemented using a memory
array with a synchronous write port. {(Given an array implementation with
sufficient independent write ports, this scheme can also be generalized to
support ATS that allows multiple array writes in an atomic step.) For each
A in S, we first find the set of transitions that write A,

{Ty, | a3 =a-set(idz,, dataz,)}
The array’s write address and data are

WA = ¢r, -idzg, + ... + ¢1,,1dZs,

WD = ¢, -dateg, + ... + ¢, datay,

and the array’s write enable signal is

Draft November 9, 1999, Not for Distribution 10

WE = ¢, V..VéT,,

FIFO Update Logic: Each F in S can be implemented using a first-in-
first-out queue with synchronous enqueue, dequeue and clear interfaces. For
each F, the inputs to the interfaces can be constructed as foliows:

Engueue Interface: We first find the set of transitions that enqueues a
new value into F

{T: | (a%i:enq(e.'z,‘pwi))V(aE!ixen-deq(e:zpmi))}
Every transition T, that enqueues into F is required to test F.notfull() in

its m expression. Hence, no ¢z, will be asserted if the FIFO is already full.
The FIFO’s enqueue data and enable signals are

ED = ¢r,,-€Tpz, + - + OT,, TPz,
EE = ¢7, V..Vé1,,

Dequeue Interfacg: We find the set of transitions that dequeues from F
{Tz; | (af, =deq())V(ar, =en-deg(ezp;;))}

Every transition Ty, which dequeues from F is required to test F.notempty()

in its 7 expression. Similarly, no ¢, will be asserted if the FIFQ is empty.
The FIFO’s dequeue enable signal is

DE = ¢1,, V..Vor,,

Clear Interface: We find the set of transitions that clears the contents of F
{To, | af, =clear()}

The FIFO's clear enable is

CE = ¢, V..Vor,,

Draft November 9, 1999, Not for Distribution 11

3.2 Correctness of a Synchronous Implementation

An implementation is said to implement an ATS correctly if

1. The implementation’s sequence of state transitions corresponds to
some execution of the ATS.
2. The implementation maintains the liveness of state transitions.

Unless the priority encoder in the reference implementation has true ran-
domization, the reference implementation is deterministic. In other words,
the implementation could only embody one of behaviors allowed by the ATS.
The implementation guarantees the liveness of the system in that a transi-
tion is taken on every clock cycle if one is available. The implementation
could not guarantee strong-fairness in the selection of transitions to prevent
life lock. However, a round-robin priority encoder is sufficient to ensure
weak-fairness, that is, if a transition stays applicable, it will be selected in
a finite number of steps.

3.3 Performance Considerations

In a given atomic update step, if two simultaneously applicable transitions
read and write mutually disjoint parts of &, then the two transitions could be
executed in any order in two successive steps to produce the same final state.
In this scenario, although the semantics of an ATS requires an execution in
sequential and atomic update steps, a hardware implementation can exploit
the underlying parallelism and execute the two transitions concurrently in
one clock cycle. In general, it is not safe to allow two arbitrary applica-
ble transitions to execute in the same clock cycle because of possible data
dependence and structural conflicts. The next two sections formalize the
conditions for concurrent execution of transitions and suggest more aggres-
sive schedules that execute multiple transitions in the same clock cycle. In
a multiple transitions per cycle implementation, each implementation state
transition must correspond to a sequential execution of the ATS transitions
in some order.

4 The Scheduling of Conflict-Free Transitions

If two transitions T, and T} become applicable in the same clock cycle when
S is in state s, for an implementation to correctly select both transitions for

Draft November 9, 1999, Not for Distribution 12

execution, 7T, (7, (s)) or 77, (d7,(s}) must be true. Otherwise, executing
both transitions would be inconsistent with any sequential execution in two
atomic update steps. '

Given nr, (67, (s)) or =7, (07, (5)}), there are two approaches to compose
the actions of T, and T} in the same clock cycle. The first approach cas-
cades the combinational logic from the two transitions. However, arbitrary
cascading does not always improve circuit performance since it may lead to
a longer cycle time. In a more practical approach, 7, and T are allowed to
execute in the same clock cycle only if the correct final state can be con-
structed from an independent evaluation of their combinational logic on the
same starting state.

This section develops a scheduling algorithm based on the conflict-free
relationship (<>cF). <>crF is a symmetrical relationship that imposes a
stronger requirement than necessary for executing two transitions concur-
rently. However, the symmetry of <>¢ g permits a straight-forward imple-
mentation that concurrently executes multiple transitions if they are pair-
wise <>¢pr. The next section will present an improvement based on a more
exact condition.

4.1 Conflict-Free Transitions

The conflict-free relationship and the parallel composition function PC are
defined in Definition 1 and Definition 2.

Definition 1 (Conflict-Free Relationship)

Two transitions T, and T are said to be conflict-free (T, <>¢f T) if

Vs, mals) Ama(s) = my(6r, (5)) A ma(d1,(5)) A
(67, (07 (5)) == 07, (07, (5))
== Jpc(s))

where dpc is the functional equivalent of PC(ar, ,a1,).
Definition 2 (Parallel Composition)

PC(oy,m)= <pep(a™ b™)..., pea(a’ bh)...,
per(a® b)), >

where ag=<a® .., at1.. aft..>, ap=<bfr., bh.., bF1. >

Draft November 9, 1999, Not for Distribution 13

pcr(a,b)=caseab ofa,e = a
eb=b
... = undefined
pea(a,b)=case ab ofa,e = a
eb=h
... = undefined
per{a,b)=case a,b ofa,e = a
eb=>b
eng(exp),deq() = en-deg{exp)
deg(),enqg(exp) = en-deg(exp)
. = undefined

The function PC computes a new a by composing two a’s that do not
contain conflicting actions on the same state element. It can be shown that
PC is commutative and associative.

Suppose T, and T, become applicable in the same state s. T, <>cr T}
implies that the two transitions can be applied in either order in two suc-
cessive steps to produce the same final state s’. T, <>¢p T, further implies
that an implementation could produce s’ by applying the parallel compo-
sition of ar, and a7, to the same initial state s. Theorem 1 extends this
result to multiple pairwise <> p transitions.

Theorem 1 (Composition of <>¢r Transitions)

Given a collection of n transitions applicable in state s, if all n transitions are
pairwise conflict-free, then the following holds for any ordering Ty, ,...,T%, ,

TrTIQ (5Tz] (S)) A b A ﬂ-Tzn (JT;:“,I(et 6T23 (6T32 (JT:z:l (S))) b)) A

(JTxn (6T1:,n71(b 5T:n3 (5T:r:2 (6Tr1 (S))) -)) == 5PC(S))
where dpc is the functional equivalent of the parallel compositions of
QT 5-QT,, , I any order.

4.2 Conservative Static Deduction of <>~

Our synthesis algorithm can work with a conservative <>¢r test, that is,
if the conservative test fails to identity a pair of transitions as <>¢p, the
algorithm would generate a less optimized but correct implementation.

Draft November 9, 1999, Not for Distribution 14

4.2.1 Analysis based on Domain and Range

A static determination of <>cr can be made by comparing domains and
ranges of transitions. The domain of a transition is the set of state elements
in S “read” by the expressions in either 7 or a. The domain of a transi-
tion could be further classified as n-domain and a-domain. The range of
a transition is the set of state elements in § that are acted on by a. For
the purpose of analysis, the head and the tail of a FIFO are considered to
be separate elements. The functions to extract the domain and range of a
transition are defined below.

Definition 3 (Domain of 7 and «)

D.(exp) = case exp of
constant = {}
R.get() = {R}
A.a-get(idx) = {A} U D.(idx)
F.ﬁrst() = {Fhead}
F.notfull() = {Fau}
F.notemnpty() = {Freed}
Op(exp1,...,expy) = De(exp;)U...UD.{exp,)

DQ(CI!) = DR(aRi) u...u DA(EAI) U...u DF(EFI) u..
where a=<a®..., a%1.., afl. >
Dp(a) = case a of € = {}
set{exp) = D.(exp)
D4(a) == case a of e = {}
a-set(idx,data) = D,.(idx) U D.(data)
Dp(a) = case a of e = {}
eng(exp) = D.(exp)
en-deg(exp) = D.{exp)
deq() = {}
clear() = {}

Definition 4 (Range of a)

Ro(a)= Rp(@a™)uU.. U Rs(@™) U .. URp(@™) U ..
where a=<af .. at.. afi. >

Draft November 9, 1999, Not for Distribution 15

Rgr(a®) = case a® of e = {}
set{exp) = {R}
Ra(a) = case a® of e = {}
a-set(-,-) = {A}
Rr(af) = case a¥ of e = {}
eng(-) = {Fua}
deg() = {Fpead}
en-deq(-) = {Fhead;Ftait}
clear() = {FheadyFtail}

Using D() and R(), a sufficient condition that ensures two transitions are
<>cr is given in Theorem 2,

Theorem 2 (Sufficient Condition for <>¢F)

Given T, and T,

((D(rs,)UD(0,)) 7 Rlaz,)) A

((D(mrp,)UD(ag,)) A Rlar,)) A

(R(ar,) 7 R(o,))

= (T, <>¢r Ty)

If the domain and range of two transitions do not overlap, then the two
transitions have no data dependence. Since their range do not overlap, a
valid parallel composition of ay, and o, must exit.

4.2.2 Analysis based on Mutual Exclusion

If two transitions can never become applicable on the same state, then they
are said to be mutually exclusive.

Definition 5 (Mutually Exclusive Relationship)
To <>me Ty ifV s. ‘ﬂ(TTTa(S)/\TTTb(S))

Two transitions that are <>psg satisfy the definition of <>¢r by de-
fault. Testing <>asp requires determining the satisfiability of the expres-
sion (7, (s)Amr,(s)). Fortunately, in practice, the 7 expression is usually a
conjunction of relational constraints on the values of state elements. A con-
servative test that searches two m expressions for contradicting constraints
on any one state element works well in practice.

Draft November 9, 1999, Not for Distribution 16

4.3 Scheduling of <>y Transitions

Using Theorem 1, instead of selecting a single transition per clock cycle, a
scheduler could select a number of applicable transitions that are pairwise
conflict-free. In other words, in each clock cycle, the ¢’s should satisfy the
condition,

¢, N, = Ty <>cr T}

where ¢r is the arbitrated transition enable signal for transition T. Given
a set of applicable transitions in a clock cycle, many different subsets of
pairwise conflict-free transitions could exist. Selecting the optimum subset
requires evaluating the relative importance of the transitions. Alternatively,
an objective metric simply optimizes the number of transitions executed in
each clock cycle,

Partitioned Scheduler: In a partitioned scheduler, transitions in 7 are
first partitioned into as many disjoint scheduling groups, P,...,Py, as possi-
ble such that

(To € Po) ATy € Py) = T, <>cr Ty,

Transitions in different scheduling groups are conflict-free, and hence each
scheduling group can be scheduled independently of the other groups. Fora
given scheduling group containing Terv-oTe, @1, +--PT,,, can be generated
from 77, (s),...,7r,, ($) using a priority encoder. In the best case, a transi-
tion T is conflict-free with every other transition in 7. Tis in a scheduling
group by itself, and ¢r=n without arbitration.

T can be partitioned into scheduling groups by finding the connected
components of an undirected graph whose nodes are transitions 11,01,
and whose edges are {(T},T}) | ~(T; <>cr T;)}. Each connected component
is a scheduling group.

Example: Partitioned Scheduler

The undirected graph in Figure 3.a depicts the <>cF relationships in
an ATS with six transitions, T={N, Th, T3, Ty, T, Ts}. Two nodes that
are connected by an edge are known to be conflict-free, i.e.

Draft November 9, 1999, Not for Distribution 17

scheduling group 1 scheduling group 2

- -

n 12 ; T2

scheduling group 3

AT
T \
1 1]
@ T3
1] *
-

T6 T3

TS T4 ' NT4

(a) Conflict-Free Graph (b) Conflict Graph

Figure 3: (a) A conflict-free graph (b) Corresponding conflict graph and its
connected components

(T, <>cr T), (i <>c¢r T3), (T1 <>¢r Ts), (T1 <>cr T},
(Ty <>cr Ts), (To <>crF T4), (T2 <>cF Ts),

(Ts <>cr Th), (Ts <>cr Ts), (Tz <>crF Ts),

(Ty <>¢r Ts),

(Ts <>cF Ts)

Figure 3.b gives the corresponding conflict graph where two nodes are con-
nected if they may not be <>¢p. The absence of an edge between two nodes
T; and 7} implies T; <>¢r Tj. The conflict graph has three connected com-
ponents, corresponding to the three <>¢r scheduling groups. The ¢ signals
corresponding to T}, Ty and Tg can be generated using a priority encoding
of their corresponding 7’s. Scheduling group 2 also requires a scheduler to
ensure ¢, and ¢5 are not asserted in the same clock cycle. However, ¢r,=n,
without any arbitration. a

Enumerated Scheduler: Scheduling group 1 in the previous example
contains three transitions {71,74,7s} such that T <>¢r T but both Ty
and Ty are not <>cp with Ty. Although the three transitions cannot be
scheduled independently of each other, T3 and Tg could be selected together
as long as Ty is not also selected in the same clock cycle. This selection
is valid because T} and Ty are <>¢F between themselves and with ev-

Draft November 9, 1999, Not for Distribution 18

ery transition selected by the other groups. In general, the scheduler for
each group could independently select multiple transitions that are pairwise
<>¢F within the scheduling group.

For a scheduling group with transitions Ty Iy, , T, -s$T,,, can be
computed by a 2" xn lookup table indexed by 7T, (8)-y71,, (5). The data
value dj,...,d,, at the table eniry with index b,,...,b, can be determined by
finding the mazémum cligue of an undirected graph whose nodes A" and
edges £ are defined as follows,

N = {Ty, | b is asserted)
£ {(T2,. T, | (T €N) A (T €N) A
(T2, <>crF Tu,)}

For each T, that is in the maximum clique, assert d;.

fl

Example: Enumerated Encoder

Instead of a priority encoder, the scheduling group 1 from the partitioned
scheduler example above can use an enumerated encoder that allows Ty and
T to execute concurrently.

T T, 71 ¢T1 ¢T4 ¢Tﬁ
0 0 0 0 0 0
0 0 1 0 0 1
0 1 G 0 1 0
0 1 1 0 1 0
1 0 0 1 0 1]
1 0 1 1 0 1
1 1 0 1 0 0
1 1 1 1 0 1

4.4 Performance Gain

When 7 can be partitioned into scheduling groups, the partitioned scheduler
is smaller and faster than the monolithic encoder used in the reference im-
plementation in Section 3.1. The partitioned scheduler also reduces wiring
cost and delay since s and ¢'s of unrelated transitions do not need to be
brought together for arbitration.

Draft November 9, 1999, Not for Distribution 19

The property of the parallel composition function, PC, ensures that
transitions are <>¢r only if their actions on state elements do not conflict.
For example, given a set of transitions that are all pairwise <>¢r, each R
in S can be updated by at most one of those transitions. Hence, the state
update logic described in Section 3.1, which assumes single-transition-per-
cycle, can be used without modification. Consequently, parallel composition
of actions does not increase the combinational delay of the datapath. All in
all, the implementation in this section achieves better performance than the
reference implementation by allowing more transitions to execute in a clock
cycle without increasing the clock period.

5 Sequential Composition of Transitions

Consider the following example, where PC(ar, ,a1,) and its functional equiv-
alent, dpc, is well-defined for any two transitions T, and T} in the ATS,

S = <R;,Ry,Rz>

T = {T11T2:T3}

T\, = <true, <set{Ra+1),e,e>>
Ty = <true, <¢, set(Rz+1),e>>
T3 = <true, <e, ¢, set(Ry+1)>>

Although all transitions are always applicable, the previous section’s imple-
mentation would not permit T, and T}, to executed in the same clock cycle
because, in general, dr, (41, (s)) # é7,(é1,(s)). However, it can be shown
that for all s, §pc(s) is consistent with some sequential order of execution
of T, and T}. Hence, their concurrent execution is allowed in a correct im-
plementation. One should also note that concurrent execution of all three
transitions in a parallel composition does not always produce a consistent
new state due to circular data dependencies between the three transitions.
To capture these conditions, this section presents a more exact requirement
for concurrent execution based on the sequential composibility relationship.

5.1 Sequentially-Composible Transitions
Definition 6 (Sequential Composibility)

Two transitions T, and T} are said to be sequentially composible (T <s¢
T), if

Draft November 9, 1999, Not for Distribution 20

Vs. nr,(s) A (s) = o, (7, (5)) A
(67, (67, (5)) == dsc(s))

where ds¢ is the functional equivalent of SC (aT, o).
Definition 7 (Sequential Composition)

8C(wg,ap)= <scr(a® bf1)..., sca(att b4r)..,
scp(afl bf). >

where a,=<afi.. atr afr >, ap=<bf._ b bpF. >

The sequential composition function SC returns a new « by composing
actions on the same element from two o's. scg, 8c4 and scp are the same
as pcr, pca and pep except in two cases where §C allows two conflicting
actions to be sequentialized. First, scr(set(exp,),set(expy)) is set{expy)
since the effect of the first action is overwritten by the second in a sequential
application. Second, scr(a,clear()) returns clear() since regardless of a,
applying elear() leaves the FIFO emptied.

<sc is a relaxation of <>cp. In particular, <gc is not symmetric.
Suppose T, and T, are applicable in state s, T, <go T} only requires the
concurrent execution of T, and Ty on s to correspond to o1, (07, (5)), but
not ér;, (67, (s)). Two <g¢ transitions can also have conflicting actions that
can be sequentialized. Theorem 3 extends this result to multiple transitions
whose transitive closure on <5 18 ordered.

Theorem 3 (Composition of <g. Transitions)

Given a sequence of n transitions, T;,,....T,_, applicable in state s, if T,
<sc Ty, for all j < k then,

17,00, () A oo Amr, (Or,, (..o b7, (61, (5rs (1)) o) A
(01, 6z, _, (... 01, (67, (6, () ...)) == bsc(s))

where dg¢ is the functional equivalent of the nested sequential compositions
of SC(...SC(SC(aTII,aTzz),aTIS),...)
3.2 Conservative Static Deduction of <gc

Using D() and R(), a sufficient condition for two transitions to be <g¢ is
given in Theorem 4.

Draft November 9, 1999, Not for Distribution 21

Theorem 4 (Sufficient Condition for <gs¢)

Given T, and Tj,
((D(WTb)UD(GTb))mR(aTG)) A (SC(aTasaTb) 18 deﬁn‘ed)
= T, <sc T

5.3 Scheduling of <g¢ Transitions

Incorporating the results from Theorem 3 into the partitioned scheduler from
Section 4.3 allows additional transitions to execute in the same clock cycle.
For each conflict-free scheduling group containing Ty, ,..., Ty, its scheduler
generates arbitrated transition enable signals ¢1,, 39T, - In every s, there
must be an ordering of all asserted ¢’s, Yy ,qﬁT) such that T, <gc Ty,

if j < k. However, in order to simplify the state update logic, our algonthm
further requires a static SC-ordering T3, ,...,T;, for each scheduling group
such that

Vs. ér At = Ty <sc Ty, it j <k.

Scheduler:

To construct the <s¢ scheduler for a conflict-free scheduling group that
contains Ty, ,..., T, , we first compute the group’s SC-ordering using a topo-
logical sort on a directed graph whose nodes are Ty, ,..., T, and whose edges

E8C eyt 15 the largest subset of £5¢ such that this graph is acyclic. Eg¢ is
defined as,

{(Tmi,ij) | (T, <sc Ty, WA ~(Ty, <>crF T:.) }

Next, we find connected components of an undirected graph whose nodes
are T, ,....T; . and whose edges are

{ (TI" ,sz) I ((T-TU 37)) g SSCacychc) A
((T-TJ 3T-T| e gscucychc) A
(Ty; <>cr Ty;) }

Each connected component forms a scheduling subgroup. Transitions in dif-
ferent scheduling subgroups are either <>cp or <g¢. ¢’s for the transitions
in a subgroup can be generated using a priority encoder. On each clock
cycle, Ty,,...,Ty,, selected by the encoders of a scheduling group satisfy the

Draft November 8, 1999, Not for Distribution 22

scheduling group 1

T1 T2
P
) \
3 @ T3
\ '
T5 T4
(a) SC Graph (b} Acyche SC Graph (c)} Conflict Graph

Figure 4: (a) A directed SC graph (b) Corresponding acyclic directed SC
graph, and (c) Corresponding conflict graph and its connected components

conditions of Theorem 3 because Ty, <s¢ Ty, if T;,; comes before T}, in the
SC-ordering of the parent scheduling group.

Example:

The directed graph in Figure 4.a depicts the <g¢ relationships in an
ATS with five transitions, 7={T,72,73.T4,T5}. A directed edge from T, to
Ty implies T, <g¢ T}, ie.

(T <sc T2), (T1 <s¢ T3), (T <sc Ts),
(T2 <sc T3), (T2 <sc Ts),

(T3 <sc Ts), (T3 <sc Ts),

(Ty <sc Th)

Figure 4.b shows the acyclic SC graph made by removing the edge from T to
Ty. A topological sort of the acyclic SC graph yields the SC-ordering of T3,
Ty, T3, Ty and Ts. (The order of Ty and T5 can be reversed also.) Figure 4.c
gives the corresponding conflict graph. The two connected components of
the conflict graph are the two scheduling groups. ¢, =71, without any arbi-
tration. The remaining ¢ signals can be generated using a priority encoding
of their corresponding n’s. More transitions can be executed concurrently if
the following enumerated encoder is used instead.

scheduling group 2

Draft November 9, 1999, Not for Distribution 23

T T, Tr, AT O I R
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 i
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1] 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 1
1 1] 0 1 1 0 0
1 1 0 1 1 1 0 1
1 1 1 0 1 1 0 0
1 1 1 1 1 1 0 1

State Update Logic with Sequential Composition:

When sequentially-composible transitions are allowed in the same clock cy-
cle, the register update logic cannot assume only one transition acts on a
register in each clock cycle. When multiple actions are enabled for a register,
the register update logic should ignore all but the latest action with respect
to the SC-ordering of some scheduling group. (All transitions that update
the same register are in the same scheduling group, except for a transition
that is mutually exclusive with the rest.) For each R in &, we find the set
of transitions that update R,

{Tz, | aii=36t(eﬂ7pmi)}
The register’s latch enable signal is

LE = 7, V..Vér,,

The register’s data input signal is

Draft November 9, 1999, Not for Distribution 24

D = ¢TI! .wTII 'EIEpzl + ..+ (lbr'z:n 'szn-e"‘van

where ¢, = —w(tﬁTyl Vér,, V...). The expression ¥r,, contains ¢1,.’s from
the set of transitions

{I, |Re R(aTyi) A
Ty, comes before T, in the SC-ordering A
Tz; <>ME Tys)}
In essence, the register's data input (D) is selected through a prioritized
multiplexer that gives higher priority to transitions later in the SC-ordering.
The update logic for arrays and FIFO’s are unchanged from Section 3.1.

6 Related Work and Conclusion

The usage of the term high-level and behavioral description has been over-
loaded to mean many different things. In industry, behavioral descriptions
- sometimes refer to specifying a component by its input/output behavior
without implementation or structural details[8]. Synopsys Behavioral Com-
piler allows a module to be specified as sequences of events in loops|[12].
Software programming languages have also been used for high-level represen-
tation of hardware. Transmorgafier-C[4] and HardwareC[11] compile hard-
ware from a source language based on C. In these systems, some constructs
in C are overloaded to convey hardware related information such as clocking
and registered storage. The Programmable Active Memory (PAM) project
uses an RTL in C++ syntax[13]). Algorithms described in data-parallel C
languages have been used to program an array of FPGA’s in Splash 2 [6]
and CLAy(5]. Sequential C and Fortran programs have been parallelized
to target an array of configurable structures in the RAW project[3]). Other
high-level representations have also been developed to verify the correctness
of hardware. Windley uses the specification language from the HOL[10]
theorem proving system to describe a pipelined processor{14]. Matthews
et al. have developed the Hawk language to create executable specifications
of processor micro-architectures[9].

Ultimately, the goal of a high-level description is to provide an un-
cluttered design representation that is easy for a human to comprehend
and reason about. Although a concise notation is helpful, the utility of a
“high-level” description framework has to come from the elimination of some
“lower-level” details. It is in this sense that an operation-centric description

Draft November 9, 1999, Not for Distribution 25

can offer an advantage over a state-centric design capture. Any non-trivial
hardware design, like a parallel program, consists of multiple concurrent
computation structures. This concurrency must be managed explicitly in
RTL-like design representations. In an operation-centric description, the
behavior of a hardware design is specified as a collection of independent
operations. The atomic and sequential execution semantics gives the col-
lection of operations a simple and unambiguous behavioral interpretation.
In a operation-centric description, parallelism and concurrency are implicit
in the source-level descriptions, only to be discovered and managed by an
optimizing compiler.

References

[1] Arvind and X. Shen. Design and verification of processors using term
rewriting systems. IEEE Micro Special Issue on Modeling and Valida-
tion of Microprocessors, May 1999.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R. Barua, and
S. Amarasinghe. Parallelizing applications into silicon. In Proceedings
of the IEEE Workshop on FPGAs for Custom Computing Machines
99, Napa Valley, CA, April 1999.

[4] D. Galloway. The Transmogrifier C hardware description language and
compiler for FPGAs. In Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, pages 136-144, Napa Valley, CA, April
1995.

[5] M. Gokhale and E. Gomersall. High level compilation for fine grained
FPGAs. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines '97, Napa Valley, CA, April 1997.

[6] M. Gokhale and R. Minnich. FPGA computing in a data parallel C.
In Proceedings of IEEE Workshop on FPGAs for Custom Computing
Machines, pages 94-101, Napa Valley, CA, April 1993.

[71 J. C. Hoe and Arvind. Hardware synthesis from term rewriting systems.
In Proceedings of VLSI’99, Lisbon, Portugal, November 1999.

Draft November 9, 1999, Not for Distribution 26

(8]

[12]
[13]

[14)

D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behavioral synthesis
methodology for HDL-based specification and validation. In Proceedings
of the 32nd ACM/IEEE Design Automation Conference, San Francisco,
CA, June 1995.

J. Matthews, J. Launchbury, and B. Coock. Microprocessor specifica-
tion in Hawk. In Proceedings of the 1998 International Conference on
Computer Languages, Chicago, IL, 1998.

SRI International, University of Cambridge. The HOL Systerﬁ Tutorial,
Version 2, July 1997.

Stanford University. HardwareC - A Language for Hardware Design,
December 1990,

Synopsys, Inc. Behavioral Compilere Reference Manual.

J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Bou-
card. Programmable active memories: Reconfigurable systems come of
age. IEEE Transactions on VLSI, 4(1):56-69, March 1996.

P. J. Windley. Verifying pipelined microprocessors. In Proceedings
of the 1995 IFIP Conference on Hardware Description Languages and
their Applications (CHDL), 1995. '

Draft November 9, 1999, Not for Distribution

Contents

1 Introduction
1.1 Term Rewriting Systems
1.2 Synthesis of Operation-Centric Hardware Descriptions
1.3 Paper Organization _...........

2 Abstract Transition Systems
21 StateElements
2.2 State Transitions
2.3 Operational Semantics
2.4 Functional Interpretation
2.5 Example: A Simple Processor

3 Synchronous Implementation of an ATS
3.1 Reference Implementation
3.2 Correctness of a Synchronous Implementation
3.3 Performance Considerations

4 The Scheduling of Conflict-Free Transitions
4.1 Conflict-Free Transitions
4.2 Conservative Static Deduction of <>¢p
4.2.1 Analysis based on Domain and Range
4.2.2 Analysis based on Mutual Exclusion
4.3 Scheduling of <> Transitions
4.4 Performance Gain

5 Sequential Composition of Transitions
5.1 Sequentially-Composible Transitions
5.2 Conservative Static Deduction of <g
5.3 Scheduling of <g¢ Tramsitions

6 Related Work and Conclusion

