
 

 

CSAIL 
Massachusetts Institute of Technology

Software-assisted Cache Replacement Mechanisms 
for Embedded Systems 

Prabhat Jain, Srinivas Devadas

2001, January

Computation Structures Group 
Memo 435

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Software-assisted Cache Replacement Mechanisms for

Embedded Systems

Prabhat Jain, Srinivas Devadas

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

e-mail: fprabhat,devadasg@mit.edu

Abstract

We address the problem of improving cache predictability (worst-case performance)

and performance in embedded systems through the use of software-assisted replacement

mechanisms. These mechanisms require additional software controlled state informa-

tion that a�ects the cache replacement decision. Software instructions allow a program

to kill a particular cache element, i.e., e�ectively make the element the least recently

used element, or keep that cache element, i.e., the element will never be evicted.

We prove basic theorems that provide conditions under which kill and keep in-

structions can be inserted into program code, such that the resulting performance is

guaranteed to be as good as or better than the original program run using the stan-

dard LRU policy. We developed algorithms based on the theoretical results that, given

an arbitrary program, determine when to perform software-assisted replacement, i.e.,

when to insert either a kill or keep instruction. Empirical evidence is provided that

shows that performance and predictability (worst-case performance) can be improved

for many programs.

1 Introduction

On-chip memory, in the form of cache, scratchpad SRAM, (and more recently) embedded
DRAM or some combination of the three, is ubiquitous in programmable embedded sys-
tems to support software and to provide an interface between hardware and software. Most

systems have both cache and scratchpad memory on-chip since each addresses a di�erent

need. Caches are transparent to software since they are accessed through the same address

space as the larger backing storage. They often improve overall software performance but
are unpredictable. Although the cache replacement hardware is known, predicting its per-
formance depends on accurately predicting past and future reference patterns. Of course,

these reference patterns vary depending on input data. Scratchpad memory is addressed

via an independent address space and thus must be managed explicitly by software, often-

times a complex and cumbersome problem, but provides absolutely predictable performance.
Thus, even though a pure cache system may perform better overall, scratchpad memories

are necessary to guarantee that critical performance metrics are always met.

Of course, both caches and scratchpad memories should be available to embedded systems

so that the appropriate memory structure can be used in each instance. A static division,

1



however, is guaranteed to be suboptimal as di�erent applications have di�erent requirements.

Previous research has shown that even within a single application, dynamically varying the
partitioning between cache and scratchpad memory can signi�cantly improve performance

[11].

One important aspect to cache design is the choice of the replacement strategy, that

controls which cache line to evict from the cache when a new line is brought in. The most

commonly used replacement strategy is the Least Recently Used (LRU) replacement strategy,

where the cache line that was least recently used is evicted. It is known, however, that LRU
does not perform well in many situations, including timeshared systems where multiple pro-

cesses use the same cache and when there is streaming data in applications. Additionally, the

LRU policy often performs poorly for applications in which the cache memory requirements

and memory access patterns change during execution. Furthermore, while caches improve

average performance, they can cause unpredictable performance. Most cache replacement

policies, including LRU, do not provide mechanisms to increase predictability (worst-case
performace), making them unsuited for many real-time embedded system applications.

In this paper, we address the problem of improving cache predictability (worst-case per-

formace) and performance through the use of software-assisted replacement mechanisms.
The basic mechanism we consider is an augmentation of the least recently used (LRU) re-
placement method, where additional state in the cache a�ects the replacement decision.
Software can kill a cache element, i.e., e�ectively make the element the least recently used
element, or keep a cache element, i.e., the element will never be evicted from the cache. We

consider di�erent variations of these cache kill and keep instructions in this paper.
Our contributions are twofold. First, we provide a theoretical foundation for the devel-

opment of program analysis and transformation techniques that can automatically add kill

and keep instructions to a program. In particular, we prove basic theorems that provide
conditions under which kill and keep instructions can be inserted into program code, such
that the resulting performance, measured as the hit rate, is guaranteed to be as good as or

better than the original program run using the standard LRU policy. Second, we develop al-
gorithms based on this theory that, given an arbitrary program, determine when to perform
software-assisted replacement, i.e., when to insert either a kill or keep instruction. Empirical
evidence is provided that shows that performance and predictability (worst-case performace)
can be improved for many programs.

The remainder of the paper is organized as follows. In Section 2, we describe related work
in software-controlled caches. In Section 3, we describe our overall strategy for performance

improvement. We present our theoretical results in Section 4; these provide the foundation
for the trace-based and compiler-based algorithms described in Section 6. Preliminary ex-
perimental results are presented in Section 7. We provide conclusions and discuss ongoing

work in Section 8.

2



2 Related Work

2.1 Cache Management

Some current microprocessors have cache management instructions that can 
ush or clean

a given cache line, prefetch a line or zero out a given line [8, 10]. Other processors permit
cache line locking within the cache, essentially removing those cache lines as candidates to

be replaced [2, 3]. Explicit cache management mechanisms have been introduced into certain

processor instruction sets, giving those processors the ability to limit pollution. One such
example is the Compaq Alpha 21264 [4] where the new load/store instructions minimize

pollution by invalidating the cache-line after it is used.

In [7] the use of cache line locking and release instructions is suggested based on the

frequency of usage of the elements in the cache lines. In [14] some modi�ed LRU replacement

policies have been proposed to improve the second-level cache behavior that look at the
temporal locality of the cache lines either in an o�-line analysis or with the help of some

hardware. In [12], active management of data caches by exploiting the reuse information
is discussed along with the active block allocation schemes. In [5], policies in the range of
Least Recently Used and Least Frequently Used are discussed.

Our work di�ers from previous work in that we provide hit rate guarantees when our
algorithms are used to insert cache control instructions. Further, the theoretical results that

we provide can be used as a basis for developing a varied set of methods for automatic cache
control instruction insertion.

2.2 Memory Exploration in Embedded Systems

Cache memory issues have been studied in the context of embedded systems. McFarling
presents techniques of code placement in main memory to maximize instruction cache hit
ratio [9, 13]. A model for partitioning an instruction cache among multiple processes has

been presented [6].
Panda, Dutt and Nicolau present techniques for partitioning on-chip memory into scratch-

pad memory and cache [11]. The presented algorithm assumes a �xed amount of scratchpad
memory and a �xed-size cache, identi�es critical variables and assigns them to scratchpad

memory. The algorithm can be run repeatedly to �nd the optimum performance point.

A technique to dynamically partition a cache using column caching was presented in

[1]. While column caching can improve predictability for multitasking, it is less e�ective for
single processes. Column caching requires signi�cant cache redesign.

3 Overall Strategy

To use caches more e�ciently, application-speci�c information should be incorporated into

the cache line replacement decisions. Program analysis or trace analysis gives indications
about future variable accesses that can be used to augment the LRU replacement policy

with cache kill or keep instructions. These cache instructions are implemented with some

additional cache replacement logic, state and tables. These instructions modify the cache

3



replacement state and the tables. Changing the replacement state in
uences the replacement

policy. A variety of cache control instructions with di�ering hardware requirements can be
used.

3.1 Cache Control Instructions

We consider two forms of cache control instructions: (1) modi�ed load/store instructions
that contain the necessary cache control information (2) separate cache control instructions

that contain only the cache control information. We discuss the kill, conditional kill, and

keep control instructions and their hardware and software requirements.

3.2 Kill Instruction

This form of a kill instruction is a load-store instruction with the kill hint information as

part of the instruction. The kill instruction allows a cache line associated with the access to
be augmented with a cache line kill state. This additional kill state is used along with the

LRU information to choose a cache line other than the LRU cache line for replacement. This
instruction provides a mechanism for replacement of data earlier than it would be possible
in the LRU policy. It can be used for references that result in the last accesses of the array
elements or data structures or the references whose accessed data reuse time is such that

early replacement is likely to bene�t the overall performance.

3.3 Conditional Kill Instruction

This form of a kill instruction is a load-store instruction with the kill hint information as
part of the instruction. The kill hint information contains the condition(s) for the cache

line kill state to be updated. We consider the o�set condition which speci�es the o�set(s)

as a condition. A cache line kill state is updated only if an access generated by the kill
instruction satis�es the o�set condition. For example, consider a cache line size of 4 words
(0; :::; 3), an array A and a reference A[i]. To set the kill state of a cache line when the
reference A[i] results in an access to the fourth word of the cache line, the o�set condition
is (A[i] mod 4) == 3, where (A[i] mod 4) speci�es the o�set of A[i].

3.4 Keep Instruction

This form of a keep instruction is a load-store instruction with the keep hint information as
part of the instruction. The keep instruction allows a cache line associated with the access to

be augmented with a cache line keep state. This additional keep state provides a mechanism

to keep a cache line in the cache longer than it would otherwise be kept in the cache with
the LRU replacement policy. The keep state is used along with the LRU information to
choose a cache line other than the LRU cache line for replacement. It can be used to keep

the time-critical data in the cache for a desired period of time. We consider the use of the

keep state as a 
exible keep state that does not require a release instruction. If the keep

state is used as a �xed keep, then a corresponding release instruction may be needed.

4



3.5 Hardware Cost

The use of the above instructions requires modi�cation to the replacement logic to take into

account the additional cache line states for replacement decisions. The Kill, Conditional Kill,

and Keep instructions described above require only one bit of additional state per cache line

in the cache. The Conditional Kill instruction requires a small amount of logic for o�set

matching.

3.6 Software Cost

The software cost for the above instructions is in the form of the additional 
avors of load-

store instructions with kill hint, keep hint, and kill with o�set condition. The use of the


avors of Kill, Conditional Kill, and Keep instructions does not result in additional accesses

in the instruction or data stream during program execution.

4 Theoretical Results

We present theoretical results for the replacement mechanisms that use the additional states
to keep or kill the cache lines. We show the conditions under which the replacement mech-
anisms with the kill and keep states are guaranteed to perform better than the LRU policy.

4.1 Kill+LRU Replacement Policy

In this replacement policy, each element in the cache has an additional one-bit state (Kl)
called the kill state associated with it. The Kl bit can be set under software or hardware
control. On a hit the elements in the cache are reordered along with their Kl bits the same

way as in an LRU policy. On a miss, instead of replacing the LRU element in the cache, an
element with itsKl bit set is chosen to be replaced and the new element is placed at the most
recently used position and the other elements are reordered as necessary. We consider two

variations of this replacement policy to choose an element with theKl bit set for replacement:
(1) the least recent element that has its Kl bit set is chosen to be replaced; (2) the most

recent element that has its Kl bit set is chosen to be replaced. The Kl bit is reset when there

is a hit on an element with its Kl bit set unless the current access sets the Kl bit. The Kl

bit of an element may be set even if an access is not to that element. But, we assume that
the Kl bit is actually changed { set or reset { for an element only upon an access to that

element. The access to the element has an associated hint that determines the Kl bit after

the access and the access does not a�ect the Kl bit of other elements in the cache. We show

the proof for variation (1) and the proof for variation (2) is similar.

De�nitions: For a fully-associative cache C with associativity m, the cache state is an
ordered set of elements. Let the elements in the cache have a position number in the range

[1; :::;m] that indicates the position of the element in the cache. Let pos(e), 1 � pos(e) � m

indicate the position of the element e in the ordered set. If pos(e) = 1, the e is the most

recently used element in the cache. If pos(e) = m, then the element e is the least recently

used element in the cache. Let C(LRU; t) indicate the cache state C at time t when using

the LRU replacement policy. Let C(KIL; t) indicate the cache state C at time t when

5



using the Kill+LRU policy. We assume the Kill+LRU policy variation (1) in the following

description. Let X and Y be sets of elements and let X0 and Y0 indicate the subsets of X
and Y respectively with Kl bit reset. Let the relation X �0 Y indicate that the X0 � Y0 and

the order of common elements (X0 \ Y0) in X0 and Y0 is the same. Let X1 and Y1 indicate

the subsets of X and Y respectively with Kl bit set. Let the relation X �1 Y indicate that

the X1 � Y1 and the order of common elements (X1 \ Y1) in X1 and Y1 is the same. Let d

indicate the number of distinct elements between the access of an element e at time t1 and

the next access of the element e at time t2.

Lemma 1: If the condition d � m is satis�ed, then the access of e at t2 would result in a

miss in the LRU policy.
Proof of Lemma 1: On every access to a distinct element, the element e moves by one

position towards the LRU position m. So, after m� 1 distinct element accesses, the element

e reaches the LRU position m. At this time, the next distinct element access replaces e.
Since d � m, the element e is replaced before its next access, therefore the access of e at
time t2 would result in a miss.

Lemma 2: The set of elements with Kl bit set in C(KIL; t) �1 C(LRU; t) at any time t.

Proof of Lemma 2:

At t = 0, C(KIL; 0) �1 C(LRU; 0).
Assume that at time t, C(KIL; t) �1 C(LRU; t).

At time t+ 1, let the element that is accessed be e.
Case H: The element e results in a hit in C(KIL; t). If the Kl bit for e is set, then e is also

an element of C(LRU; t) from the assumption at time t. Now the Kl bit of e would be reset

unless it is set by this access. Thus, we have C(KIL; t+ 1) �1 C(LRU; t+ 1). If the Kl bit
of e is 0, then there is no change in the order of elements with the Kl bit set. So, we have
C(KIL; t+ 1) �1 C(LRU; t+ 1).
Case M: The element e results in a miss in C(KIL; t). Let y be the least recent element with
the Kl bit set in C(KIL; t). If e results in a miss in C(LRU; t), Let C(KIL; t) = fM1; y;M2g

and C(LRU; t) = fL; xg. M2 has no element with Kl bit set. If the Kl bit of x is 0,
fM1; yg �1 fLg implies C(KIL; t+ 1) �1 C(LRU; t+1). If the Kl bit of x is set and x = y

then fM1g �1 fLg and that implies C(KIL; t+ 1) �1 C(LRU; t + 1). If the Kl bit of x is

set and x 6= y, then x 62 M1 because that violates the assumption at time t and y 2 L from

the assumption at time t and this implies C(KIL; t+ 1) �1 C(LRU; t+ 1).

Theorem: For a fully associative cache with associativity m if the Kl bit for any element e
is set upon an access at time t1 only if the number of distinct elements d between the access

at time t1 and the next access of the element e at time t2 is such that d � m, then the

Kill+LRU policy variation (1) is as good as or better than LRU.
Proof: We consider the Kill+LRU policy variation (1) for a fully-associative cache C with

associativity m. We show that C(LRU; t) �0 C(KIL; t) at any time t.
At t = 0, C(LRU; 0) �0 C(KIL; 0).

Assume that at time t, C(LRU; t) �0 C(KIL; t).

At time t+ 1, let the element accessed is e.

6



Case 0: The element e results in a hit in C(LRU; t). From the assumption at time t, e

results in a hit in C(KIL; t) too. Let C(LRU; t) = fL1; e; L2g and C(KIL; t) = fM1; e;M2g.
From the assumption at time t, L1 �0 M1 and L2 �0 M2. From the de�nition of LRU and

Kill+LRU replacement, C(LRU; t+1) = fe; L1; L2g and C(KIL; t+1) = fe;M1;M2g. Since

fL1; L2g �0 fM1;M2g, C(LRU; t+ 1) �0 C(KIL; t+ 1).

Case 1: The element e results in a miss in C(LRU; t), but a hit in C(KIL; t). Let

C(LRU; t) = fL; xg and C(KIL; t) = fM1; e;M2g. From the assumption at time t, fL; xg �0

fM1; e;M2g and it implies that fLg �0 fM1; e;M2g. Since e 62 L, we have fLg �0 fM1;M2g.
From the de�nition of LRU and Kill+LRU replacement, C(LRU; t + 1) = fe; Lg and

C(KIL; t+ 1) = fe;M1;M2g. Since L �0 fM1;M2g, C(LRU; t+ 1) �0 C(KIL; t+ 1).

Case 2: The element e results in a miss in C(LRU; t) and a miss in C(KIL; t) and there is

no element with Kl bit set in C(KIL; t). Let C(LRU; t) = fL; xg and C(KIL; t) = fM;yg.

From the assumption at time t, there are two possibilities: (a) fL; xg �0 M , or (b) L �0 M

and x = y. From the de�nition of LRU and Kill+LRU replacement, C(LRU; t+1) = fe; Lg

and C(KIL; t + 1) = fe;Mg. Since L �0 M for both sub-cases (a) and (b), we have
C(LRU; t+ 1) �0 C(KIL; t+ 1).

Case 3: The element e results in a miss in C(LRU; t) and a miss in C(KIL; t) and there
is at least one element with the Kl bit set in C(KIL; t). There are two sub-cases (a) there
is an element with the Kl bit set in the LRU position, (b) there is no element with the Kl

bit set in the LRU position. For sub-case (a), the argument is the same as in Case 2. For
sub-case (b), let the LRU element with the Kl bit set is in position i, 1 � i < m. Let

C(LRU; t) = fL; xg and C(KIL; t) = fM1; y;M2g,M2 6= �. From the assumption at time t,
fL; xg �0 fM1; y;M2g, which implies fLg �0 fM1; y;M2g. Since y has the Kl bit set, y 2 L

using Lemma 2. Let fLg = fL1; y; L2g. So, fL1g �0 fM1g and fL2g �0 fM2g. Using Lemma

1, for the LRU policy y would be evicted from the cache before the next access of y. The next
access of y would result in a miss using the LRU policy. So, fL1; y; L2g �0 fM1;M2g when
considering the elements that do not have have the Kl bit set. From the de�nition of LRU

and Kill+LRU replacement,C(LRU; t+1) = fe; L1; y; L2g and C(KIL; t+1) = fe;M1;M2g.
Using the result at time t, we have C(LRU; t+ 1) �0 C(KIL; t+ 1).

4.2 Kill+Keep+LRU Replacement Policy

In this replacement policy, each element in the cache has two additional states associated

with it. One is called a kill state represented by a Kl bit and the other is called a keep state

represented by a Kp bit. The Kl and Kp bits cannot both be 1 for any element in the cache
at any time. The Kl and Kp bits can be set under software or hardware control. On a hit the
elements in the cache are reordered along with their Kl and Kp bits the same way as in an

LRU policy. On a miss, if there is an element with the Kp bit set at the LRU position, then

instead of replacing this LRU element in the cache, the most recent element with the Kl bit
set is chosen to be replaced by the element at the LRU position (to give the element with

the Kp bit set the most number of accesses before it reaches the LRU position again) and all

the elements are moved to bring the new element at the most recently used position. On a

miss, if the Kp bit is 0 for the element at the LRU position, then the elements in the cache

are reordered along with their Kl and Kp bits in the same way as in an LRU policy. There

are two variations of this policy: (a) Flexible Keep: On a miss, if there is an element at the

7



LRU position with the Kp bit set and if there is no element with the Kl bit set, then replace

the LRU element (b) Fixed Keep: On a miss, if there is an element at the LRU position with
the Kp bit set and if there is no element with the Kl bit set, then replace the least recent

element with its Kp bit equal to 0.

Theorem: Whenever there is an element at the LRU position with theKp bit set there is also

a di�erent element with theKl bit set, then the Fixed Keep variation of the Kill+Keep+LRU

policy is as good as or better than LRU. Similarly,Flexible Keep variation of the Kill+Keep+LRU
policy is as good as or better than the LRU policy.

Proof: We just give a sketch of the proof here, since the cases are similar to the ones in

the Kill+LRU Theorem. We assume a fully-associative cache C with associativity m. Let
C(KKL; t) indicate the cache state C at time t when using the Kill+Keep+LRU policy. A

di�erent case is where the current access of an element e results in a miss in C(KKL; t) and

the element x at the LRU position has its Kp bit set. Consider the Flexible Keep variation of
the Kill+Keep+LRU. If there is no element with theKl bit set, then the element x is replaced
and the case is similar to the Kill+LRU policy. If there is at least one element with the Kl

bit set in C(KKL; t). Let the most recent element with its Kl bit set is y. Let the cache

state C(KKL; t) = fL1; y; L2; xg. The new state is C(KKL; t+ 1) = fe; L1; x; L2g. There
is no change in the order of the elements in L1 and L2, so the relationship C(LRU; t+1) �0

C(KKL; t+1) holds for the induction step. For the Fixed Keep, if there is no element with
the Kl bit set, then the next more recently used element z than the element x with the Kp

bit 0 is replaced. This may result in more misses for the Kill+Keep+LRU policy depending

on when the element z is accessed next. So, for the Fixed Keep the condition in the theorem
should be satis�ed for it to be guaranteed to be as good as or better than the LRU policy.

5 Set-Associative Caches

SA Kill+LRU Theorem: For a set-associative cache with associativity m if the Kl bit for
any element e mapping to a cache-set i is set upon an access at time t1 only if the number of
distinct elements d mapping to the same cache-set i as e between the access at time t1 and
the next access of the element e at time t2 is such that d � m, then the Kill+LRU policy

variation (1) is as good as or better than LRU.

SA Kill+Keep+LRU Theorem: Whenever there is an element at the LRU position with

the Kp bit set in a cache-set i, there is a di�erent element with the Kl bit set in the cache-set
i, then the Fixed Keep variation of the Kill+Keep+LRU policy is as good as or better than
LRU. Similarly, Flexible Keep variation of the Kill+Keep+LRU policy is as good as or better

than the LRU policy.

6 Algorithm

The theoretical results presented in the previous section can be directly used if we can

determine or estimate the number of distinct memory references d between two given accesses

to a variable or data structure. For any pair of accesses, we do not, necessarily, have to

8



determine d precisely, but rather we need to determine if d is less than m, where m is the

associativity of the cache. We will de�ne d to be 1 for the last access to a variable.
We can use two basic strategies to determine if d � m, a trace-based pro�ling strategy

or a compiler-based static analysis strategy. In order to guarantee peformance better than

LRU, a lower bound on d can be used, in the cases where d is hard to estimate due to

conditionals in the program or other reasons.

Either strategy has to produce the kill and keep hints that can be incorporated into

the program source code or used during the compilation phase to insert appropriate kill
and keep instructions into the generated code. In the sequel a reference corresponds to the

source code expression or a load/store instruction that may result in di�erent accesses. For

example, given an array A, the expression A[i] in the program is a reference that would

generate di�erent accesses to A depending on the value of i.

6.1 Trace-Based Algorithm

The trace-based method will work with a trace (or traces) of the program obtained using

one (or more) representative input(s), and the kill and keep information obtained using the

representative trace is used for other data as well. This approach works well when the control


ow of the program or application does not have a signi�cant dependence on input data.
Input:

� Cache information: Cache size, Line size, and Associativity

� A trace of the program with a representative data input

� A set of address ranges for kill and keep { these ranges typically correspond to array
variables

Output:

� Hints to annotate the program with kill and keep commands or instructions

Algorithm:

1. Compute the kill hint data from the program trace

2. Map the kill hints to speci�c references in the program

3. Identify a reference and associate a kill command with the reference

4. Identify keep references

5. Generate the kill and keep hints for the above identi�ed references

Computing Kill hints: The program trace is run on the given cache organization with the

LRU replacement policy to derive the kill hint data. The kill hint is based on the condition
d � m outlined in the previous section. For every cache line, a time stamp, last o�set access,

and the reference instruction address information is maintained. On a miss the LRU cache

9



line being replaced is checked to see if it falls within a range of the kill address ranges. If

it falls within a kill address range, then a kill hint is counted for the matching kill address
range and this information is maintained for mapping the kill hints to references.

Mapping Kill hints to References: The kill hints generated in the previous step are in-

corporated into the program trace to generate an annotated trace with kill hints for analysis.

Using the kill hints in the annotated trace, the associated instruction address, and the kill

address ranges information, we generate the kill hint counts for distinct reference instruction
addresses.

Identifying References for Kill: We consider the kill hint count and the number of
accesses generated by a reference to identify a reference for a kill instruction. For a reference,

if the kill hint count is equal to the number of accesses generated, then that reference is

identi�ed as a kill reference. Otherwise, we identify the reference as a conditional kill or
no-kill reference. For a conditional kill reference, we choose the o�set(s) as the condition.
We look at the number of accesses and the kill hints associated with each o�set of the
cache line in the accesses generated by a reference. If the number of accesses associated
with an o�set value is equal to the kill hints associated with that o�set value, then the

o�set value forms part of the condition for a conditional kill. If no such o�set is found
for a reference, that reference is a no-kill reference. For a kill reference, all the accesses
generated from that reference would set the Kl bit of the corresponding cache line and for a

conditional kill reference, the accesses that match the o�set condition would set the Kl bit
of the corresponding cache line. For all the accesses generated from a no-kill reference, the

Kl bit is reset for the corresponding cache line.

Identify Keep References: In this algorithm we assume that critical variables in di�erent
parts of the program are determined based on a separate analysis for predictability (worst-
case performance) improvement. The references to these variables are the keep references.
For a reference that is identi�ed as a keep reference, all the accesses generated from that

reference would set the Kp bit of the corresponding cache line.

Generate Hints for References: Once the references are identi�ed as kill, conditional

kill, no-kill, or keep reference, the appropriate hints are generated for these references that

can be incorporated into the source code or used by the compiler during the code generation
process to generate the appropriate instructions.

6.2 Compiler Algorithm

The compiler algorithm peforms many of the steps of the trace-based algorithm, however,
static analysis is performed on an intermediate representation.

Algorithm:

1. Perform life-time analysis on variables in the program.

2. Choose variables as kill candidates that have a relatively short life-time or variables

that are accessed infrequently, and variables as keep candidates that are referenced

10



many times and have a long life-time.

3. Determine a lower bound on d between each adjacent pair of references of kill variables

and keep variables. For a fully associative cache, the lower bound on d is simply the

minimum number of distinct references along any (control-
ow) path from the �rst

reference to the second. In the case of a set-associative cache, we require information
about what cache set each reference is mapped to. The layout of variables assumed

by the compiler along with the sizes of the variables accessed along each (control-
ow)

path is used to determine a lower bound on d. This information can be augmented by

information collected from a trace using representative data as outlined in the previous

section.

4. For kill variables, if any adjacent pair of references has d � m, associate a kill command

with the reference. For keep variables, kill commands are generated after the last access
of these variables (d =1).

5. Identify keep references. In order to guarantee performance as good or better than
LRU, check to see that at each point the program, the number of killed references in
the cache is equal to or greater than the number of keep references for the �xed keep
method. We do not need to check this for the 
exible keep method. Amongst the
keep variables, the variables that are referenced more often are given higher priority

for selection.

6. Generate the kill and keep hints for the above identi�ed references

7 Preliminary Experimental Results and Analysis

We describe our experiments using the Spec95 Swim benchmark as an example. We chose
a set of arrays as candidates for the kill and keep related experiments. The arrays we
considered were u, v, p, unew, vnew, pnew, uold, vold, pold, cu, cv, z, h, psi. These variables

constitute 29:1535% of the total accesses. We did the experiment with di�erent associativity

of 2; 4; 8 and cache line size of 2; 4; 8 words and a cache size 16K bytes. The results are
shown in Figure 1. In Figure 1, the column a,b indicates the associativity and the cache

line size in words. The column labeled LRU shows the hit rate over all accesses (not just
the array accesses) with the LRU policy. The column labeled Kill shows the hit rate for the

Kill+LRU replacement policy. The columns labeled KK1, KK2, KK3 show the hit rate for

the Kill+Keep+LRU replacement policy with the Flexible Keep variation. In KK1, the array
variables unew, vnew, pnew are chosen as the keep candidates. In KK2, the array variables

uold, vold, pold are chosen as the keep candidates. In KK3, only the array variable unew is
chosen as the keep candidate. The hit rates of the variables of interest for the associativity

4 and cache line size 8 are shown in Figure 2 for the same columns as described above.

For this example, Kill Range and Keep Range instructions were not used implying that the

modi�ed program with cache control instructions does not have any more instruction or data
accesses than the original program. In Figure 2, the columns %Imprv show the percentage

improvement in hit rate for the variables over the LRU policy. Figure 3 shows the number of

11



a,b LRU Kill KK1 KK2 KK3

2,8 91.9342 93.6036 93.3598 92.5591 93.6505

2,4 95.2765 95.6255 95.6055 95.5335 95.6095

2,2 93.2034 93.3512 93.3265 93.2887 93.3439

4,8 91.1608 93.3711 93.8676 92.8791 93.5276

4,4 95.1871 95.6628 95.4459 95.5159 95.6368

4,2 93.0739 93.5748 93.5459 93.3225 93.5546

8,8 94.7166 96.1081 96.1470 96.0153 96.1037

8,4 95.5958 96.0604 95.9835 95.9373 96.0471

8,2 92.7306 93.2293 93.1855 93.1365 93.2134

Figure 1: Overall Hit Rates for the Spec95 Swim Benchmark

Kill (labeled as #Kill) and Conditional Kill (labeled as #Cond Kill) instructions generated
corresponding the number of references (labeled as #Ref) for the array variables of the

Spec95 Swim benchmark.
The results show that the performance improves signi�cantly in some cases with the

use of our software-assisted replacement mechanisms that use kill and keep instructions.
The results in Figure 2 show that the hit rates associated with particular variables can be
improved very signi�cantly using our method. The bold numbers in the KK1, KK2, and

KK3 columns in Figure 2 indicate the hit rate of the variables that were keep variables
for these columns. Choosing a particular variable and applying our method can result in
an substantial improvement in hit rate and therefore performance for the code fragments

where the variable is accessed. This is particularly relevant when we need to meet real-time
deadlines in embedded processor systems across code fragments, rather than optimizing
performance across the entire program.

Figure 4 shows the overall hit rate and performance for some Spec95 benchmarks. The
columns show hit rate and number of cycles assuming 10 cycles for o�-chip memory access
and 1 cycle for on-chip memory access. The last column shows the performance improvement
of Kill+Keep over LRU. Figure 5 shows the overall worst-case hit rate and performance for

some Spec95 benchmarks. The worst-case hit rate is measured over a range of input data.

The columns show hit rate and number of cycles assuming 10 cycles for o�-chip memory

access and 1 cycle for on-chip memory access. The last column shows the performance
improvement of Kill+Keep over LRU. Results for a large set of benchmarks will be generated

after our approach is fully automated.

8 Conclusions and Ongoing Work

The main contributions of our work are in laying theoretical groundwork for the development

of techniques for inserting cache control instructions into programs, and the development
of an algorithmic trace analysis method to automatically insert cache control instructions

for improved performance. This method guarantees that the performance of the modi�ed

12



Vars LRU Kill %Imprv KK1 %Imprv KK2 %Imprv KK3 %Imprv

u 85.9394 88.5739 3.06 86.4731 0.62 86.3232 0.44 86.6679 0.84

v 83.1306 88.1344 6.01 84.3722 1.49 84.1984 1.28 86.8634 4.49

p 84.2415 87.9287 4.37 85.4189 1.39 84.2730 0.03 86.7513 2.97

unew 28.6673 39.7238 38.56 74.1575 158.68 28.8033 0.47 84.7748 195.71

vnew 37.3741 47.1709 26.21 75.8599 102.97 42.8253 14.58 43.9683 17.64

pnew 31.1457 55.5108 78.22 75.2752 141.68 47.3057 51.88 48.2284 54.84

uold 42.6176 50.7793 19.15 47.5922 11.67 67.7411 58.95 47.5898 11.66

vold 54.9180 62.6039 13.99 62.4449 13.70 75.0524 36.66 62.4834 13.77

pold 47.3465 59.2494 25.13 55.5539 6.41 71.4052 33.56 55.7057 6.65

cu 75.8065 79.7312 5.54 79.3548 5.11 77.9570 3.19 79.7312 5.54

cv 75.7527 82.1505 10.28 82.1505 10.21 81.4516 7.58 82.1505 10.28

z 73.8131 84.5697 14.85 84.4955 14.85 78.2641 6.12 84.5697 14.85

h 74.1832 85.5334 18.38 85.5334 18.38 83.1595 12.28 85.5334 18.38

psi 92.3839 92.8408 0.49 92.8408 0.49 92.8408 0.49 92.8408 0.49

Figure 2: Hit Rates for the array variables in the Spec95 Swim Benchmark. The bold
numbers in the KK1, KK2, and KK3 columns indicate the hit rate of the keep variables for
these columns.

Vars #Ref #Kill #Cond Kill

u 28 6 10

v 28 5 12

p 24 2 11

unew 13 6 6

vnew 13 4 8

pnew 13 4 8

uold 13 5 7

vold 13 5 7

pold 13 5 7

cu 15 4 7

cv 15 2 10

z 13 5 5

h 13 4 5

psi 5 0 2

Figure 3: Number of Kill Instructions for the array variables in the Spec95 Swim Benchmark

13



Bench- LRU LRU KK KK % Imprv

mark Hit % Cycles Hit % Cycles Cycles

tomcatv 94.05 1105082720 95.35 1014793630 8.17

applu 97.88 113204089 97.89 113171529 0.02

swim 91.16 12795379 93.52 11188059 12.57

mswim 95.01 10627767 96.30 9715267 8.59

Figure 4: Overall Hit Rates and Performance for benchmarks. We assume o�-chip memory
access requires 10 processor clock cycles, as compared to a single cycle to access the on-chip
cache.

Bench- LRU LRU KK KK % Imprv

mark Hit % Cycles Hit % Cycles Cycles

tomcatv 93.96 122920088 95.17 113604798 7.58

applu 97.80 635339200 97.80 635200200 0.02

swim 90.82 100394210 93.19 88016560 12.33

mswim 94.92 81969394 96.15 75290924 8.15

Figure 5: Overall Worst Case Hit Rates and Performance for benchmarks. We assume o�-

chip memory access requires 10 processor clock cycles, as compared to a single cycle to access
the on-chip cache.

14



program is at least as good as the performance of the original program under the LRU

replacement policy, when performance is measured in terms of hit rate. While the method
described is based on the trace of the program, this method can be altered to work with

information derived from an analysis of the program during program compilation. The

use of cache control instructions improves the performance of a program when executed

using a cache, and it improves the predictability of the program by improving its worst-

case performance over a range of input data. The increased predictability a�orded by cache

control instructions makes caches more amenable to use in real-time embedded systems. Our
preliminary experiments show that signi�cant improvements are possible using our technique.

Many di�erent variants of this technique are possible, and we are currently exploring these

variants.

References

[1] D. Chiou, S. Devadas, P. Jain, and L. Rudolph. Application-Speci�c Memory Manage-

ment for Embedded Systems Using Software-Controlled Caches. In Proceedings of the

37th Design Automation Conference, June 2000.

[2] Cyrix. Cyrix 6X86MX Processor. May 1998.

[3] Cyrix. Cyrix MII Databook. Feb 1999.

[4] R. Kessler. The Alpha 21264 Microprocessor: Out-Of-Order Execution at 600 Mhz. In

Hot Chips 10, August 1998.

[5] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU) policies. In Proceedings of
the international conference on Measurement and modeling of computer systems, 1999.

[6] Y. Li and W. Wolf. A Task-Level Hierarchical Memory Model for System Synthesis
of Multiprocessors. In Proceedings of the 34th Design Automation Conference, pages

153{156, June 1997.

[7] N. Maki, K. Hoson, and A Ishida. A Data-Replace-Controlled Cache Memory System
and its Performance Evaluations. In TENCON 99. Proceedings of the IEEE Region 10

Conference, 1999.

[8] C. May, E. Silha, R. Simpson, H. Warren, and editors. The PowerPC Architecture: A

Speci�cation for a New Family of RISC Processors. Morgan Kaufmann Publishers, Inc.,

1994.

[9] S. McFarling. Program Optimization for Instruction Caches. In Proceedings of the 3rd

Int'l Conference on Architectural Support for Programming Languages and Operating

Systems, pages 183{191, April 1989.

[10] Sun Microsystems. UltraSparc User's Manual. July 1997.

[11] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-on-Chip:

Optimizations and Exploration. Kluwer Academic Publishers, 1999.

15



[12] Edward S. Tam, Jude A. Rivers, Vijayalakshmi Srinivasan, Gary S. Tyson, and Ed-

ward S. Davidson. UltraSparc User's Manual. IEEE Transactions on Computers,
48(11):1244{1259, November 1999.

[13] H. Tomiyama and H. Yasuura. Code Placement Techniques for Cache Miss Rate Reduc-
tion. ACM Transactions on Design Automation of Electronic Systems, 2(4):410{429,

October 1997.

[14] W. A. Wong and J.-L Baer. Modi�ed LRU policies for improving second-level cache

behavior. In Proceedings of the Sixth International Symposium on High-Performance

Computer Architecture, 1999.

16


