
 

 

CSAIL 
Massachusetts Institute of Technology

Dynamic Cache Partioning for 
Simultaneous Multithreading Systems

Ed Suh, Larry Rudolph, Srinivas Devadas

2001, March

Computation Structures Group 
Memo 438

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Dynamic Cache Partitioning for Simultaneous

Multithreading Systems

Computation Structures Group Memo 438
March 2001

G. Edward Suh, Larry Rudolph and Srinivas Devadas

email: fsuh,rudolph,devadasg@mit.edu

This paper describes research done at the Laboratory for Computer Science of the

Massachusetts Institute of Technology. Funding for this work is provided in part

by the Defense Advanced Research Projects Agency under the Air Force Research

Lab contract F30602-99-2-0511.





Dynamic Cache Partitioning for Simultaneous

Multithreading Systems

G. Edward Suh, Larry Rudolph and Srinivas Devadas

Laboratory for Computer Science

MIT

Cambridge, MA 02139

email: fsuh,rudolph,devadasg@mit.edu

Abstract

This paper proposes a dynamic cache partitioning method for simultaneous multi-

threading systems. Unlike previous works, our method works for set-associative caches

and at any partition granularity. Further, threads can have overlapping partitions in

our method. The method collects the miss-rate characteristics of threads that are exe-

cuting simultaneously at run-time, and dynamically partitions the cache among those

threads. Trace-driven simulation results show a relative improvement in the L2 hit-rate

up to 40.5% over those generated by the standard least recently used replacement pol-

icy. The partitioning also improves IPC up to 17%. Our results show that smart cache

management and scheduling is essential for SMT systems to achieve high performance.

1 Introduction

Modern computer systems exploit two forms of parallelism, instruction-level (ILP) and
thread-level (TLP) [10], however, performance is limitted by competition for processing
resources. Simultaneous multithreading (SMT) [19, 13, 6] has been proposed as a way to
better utilize resources. SMT converts TLP to ILP by executing multiple threads simulta-
neously and since it dynamically allocates processing resources to both forms of parallelism,
it tends to achieve higher performance than conventional multiprocessors. Since multiple
threads simultaneously execute, the working sets of those threads may interfere in the cache
and the increased processor throughput places greater demands on the memory system. We
have found that to achieve the best utilization of the functional resources, it is crucial to
properly manage the memory system

It is easy to address this problem by having L2 and L3 caches that are large enough to
hold all the working sets of executing threads. Studies have shown that a 256-KB L2 cache,
which is reasonable size for modern microprocessors [8, 5, 14], is large enough for a particular
set of workloads [13]. Unfortunately, we believe that workloads have become much larger and
it is impractical to have a cache large enough to hold the entire working sets. Multimedia
programs such as video or audio processing software often consume hundreds of MB. Even

1



many SPEC CPU2000 benchmarks now have memory footprints larger than 100 MB [11].
Therefore, to achieve high performance for modern workloads, SMT systems should optimize
the cache performance by proper allocation of cache space and careful selection of executing
threads.

This paper presents a dynamic cache partitioning algorithm for SMT systems that mini-
mizes the total cache misses. The algorithm estimates the miss-rate of each process on-line.
Based on the information, a cache is partitioned to each thread dynamically. We develop
two di�erent approaches to cache partitioning. First, the standard LRU replacement unit
is modi�ed to consider the number of cache blocks for each thread deciding the block to be
replaced. Second, column caching [3] which allows the threads to be assigned to overlapping
partitions is used to partition the cache. Simulation experiments shows that the partitioning
algorithm can signi�cantly improve both the miss-rate and the instructions per cycle (IPC)
of overall workload.

This paper is organized as follows. In Section 2, we describe related work. In Section
3, we study the optimal cache partitioning for the ideal case, and extend the study to real
set-associative caches. Section 4 evaluates the partitioning method by simulations. Finally,
Section 5 concludes the paper.

2 Related Work

Stone, Turek and Wolf [15] theoretically investigated the optimal allocation of cache memory
between two competing processes that minimizes the overall miss-rate of a cache. Their
study focuses on the partitioning of instruction and data streams, which can be thought
of as multitasking with a very short time quantum. Their model for this case shows that
the optimal allocation occurs at a point where the miss-rate derivatives of the competing
processes are equal. The LRU replacement policy appears to produce cache allocations very
close to optimal for their examples.

Suh [16] proposed an analytical cache model for multitasking, and also studied the cache
partitioning problem for time-shared systems based on the model. That work is applicable
to any length of time quantum rather than just short time quantum, and shows that the
cache performance can be improved by partitioning a cache into dedicated areas for each
process and a shared area. However, the partitioning was done by collecting the miss-rate
information of each process o�-line. The study did not investigate how to partition the cache
memory at run-time.

Thi�ebaut, Stone and Wolf applied their theoretical partitioning study [15] to improve disk
cache hit-ratios [17]. The model for tightly interleaved streams is extended to be applicable
for more than two processes. They also describe the problems in applying the model in prac-
tice, such as approximating the miss-rate derivative, non-monotonic miss-rate derivatives,
and updating the partition. Trace-driven simulations for 32-MB disk caches show that the
partitioning improves the relative hit-ratios in the range of 1% to 2% over the LRU policy.

Our partition work di�ers from previous e�orts that tend to focus on some ideal cases.
First, our partition method works for set-associative caches with multiple threads, whereas
Thi�ebaut, Stone and Wolf [17] only focused on disk caches that are fully-associative. More-
over, our work also covers cases when partitioning is only possible in coarse granularity.

2



Previous works only considered partitioning in cache block granularity. Finally, our work
discusses an on-line method to partition the cache, whereas the previous work only covered
partitioning based on o�-line pro�ling [16].

3 Partitioning Algorithm

This section discusses the cache partitioning algorithm and its implementation for set-
associative caches. Section 3.1 discusses the optimal cache partitioning for the ideal case.
This is mostly a review of work suitable for disk caching where the cache is fully-associative
and miss-rate information is easy to collect. The ideal algorithm is extended to real set-
associative processor caches in the following three sections. First, the method to estimate
each thread's miss-rate (or the number of misses) curve is presented. The search algorithm
for convex miss-rate curves is also extended to non-convex curves. Then, coarse granularity
partitioning is discussed focusing on evaluating the e�ect of overlapping partitions. Finally,
the mechanisms to actually allocate cache blocks to each thread are presented.

3.1 Optimal Cache Partitioning

In conventional time-shared systems, where each thread executes for a while and then the
context switches, cache partitioning depends not only on the memory reference pattern of
each thread but also the thread that is active at the moment. On the other hand, SMT
systems execute multiple threads at the same time, and as a result, interleave memory
references from each thread very tightly. In this case, all threads can be considered active
at any given moment. Therefore, cache partitioning in SMT systems depends only on the
memory reference characteristics of executing threads.

Consider the case when N excuting threads simultaneously sharing C blocks. If the cache
partition can be controlled in a cache block granularity, the problem can be thought of as a
resource allocation problem that allocates each cache block to one of the executing threads to
minimized the overall miss-rate. In our study, the miss-rate of each thread is assumed to be
a function of partition size (the number of cache blocks). Note that the replacement policy
tries to keep the same data no matter which physical cache blocks are available. Therefore,
a cache partition is speci�ed by the number of cache blocks allocated to each thread. We
use the notation cn to represent the number of cache blocks allocated to the nth thread.

Since it is unreasonable to repartition the cache every memory reference, we de�ne a time
period during which the partition remains �xed. The time period should be long enought to
amortize the cost of repartitioning. Assuming that the number of misses for the nth thread's
over a period is given by a function of partition size (mn(x)), the optimal partition for the
period is the set of integer values fc1; c2; :::; cNg that minimizes the following expression.

misses =
NX

i=1

mi(ci) (1)

where
PN

i=1 ci = C. This partition is optimal in a sense that it minimizes the total number
of misses.

3



For the cases when the number of misses for each thread is a strict convex function
of cache space, Stone, Turek and Wolf [15] pointed out that �nding the optimal partition,
fc1; c2; :::; cNg, falls into the category of separable convex resource allocation problems. The
problem has been heavily studied, and the following simple greedy algorithm can solve it
[15, 7].

1. Compute the marginal gain gn(x) = mn(x� 1)�mn(x). This function represents the
additional hits for the nth thread, when the allocated cache blocks increases from x�1
to x.

2. Initialize c1 = c2 = ::: = cN = 0.

3. Assign a cache block to the thread that has the maximum marginal gain. For each
thread, compare marginal gain gn(cn + 1) and �nd the thread that has the maximum
marginal gain nmax. Increase the allocation for the thread cnmax by one.

4. Repeat step 3 until all cache blocks are assigned (C times).

3.2 Extension to Set-Associative Caches

To perform dynamic cache partitioning, the marginal gains of having one more cache block
(gn(x)) should be estimated on-line. As discussed in the previous section, gn(x) is the number
of additional hits that the nth thread can obtain by having x+1 cache blocks compared to the
case when it has x blocks. Assuming the LRU replacement policy is used, gn(0) represents
the number of hits on the most recently used cache block of the nth thread, gn(1) represents
the number of hits on the second most recently used cache block of the nth thread, and so
on.

Ideally, we should know the LRU ordering of all blocks in the cache to estimate the
exact values of gn(x). Unfortunately, standard set-associative caches only maintain the LRU
ordering of cache blocks within a set, and it is very expensive to maintain the global LRU
ordering. Therefore, we approximate gn(x) based on the LRU ordering within a set.

For each thread, a cache has counters, one for each associativity (way) of the cache. On
every cache hit, the corresponding counter is increased. That is, if the hit is on the most
recently used cache block of the thread, the �rst counter is increased by one, and so on. Now
the kth counter value represents the number of additional hits for the thread by having kth

way. If we ignore the degradation due to low associativity, the kth counter value can also
be thought of as the number of additional hits for a cache with k � S blocks compared to a
cache with (k� 1) �S blocks, where S is the number of cache sets. Therefore, gn(x) satis�es
the following equation.

k�S�1X

x=(k�1)�S

gn(x) = countn(k) (2)

where countn(k) represents the k
th counter value of the nth thread.

To estimate marginal gains from Equation 2, a certain form of gn(x) should be assumed.
The simplest way is to assume that gn(x) is a straight line for x between k�S and (k+1)�S�1.
This approximation is very simple to calculate and yet shows reasonable performance in

4



0 1 2 3 4 5 6 7

x 10
4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Cache Blocks

M
is

s−
ra

te

Figure 1: The miss-rate of art as a function of cache blocks.

partitioning. Especially, large L2 (level 2) caches only see memory references that are �ltered
by L1 (level 1) caches, and often show the miss-rate that is proportional to cache size. To
be more accurate, gn(x) can be assumed to be a form of an power function(a �xb). Empirical
studies showed that the power function often well estimates the miss-rate [4].

Since characteristics of threads change dynamically, the estimation of gn(x) should reect
the changes. This is achieved by giving more weight to the counter value measured in more
recent time periods. After every T memory references, we multiply each counter by Æ, which
is between 0 and 1. As a result, the e�ect of hits in previous time periods exponentially
decays.

Once the marginal gains for each thread are estimated, the optimal partition should be
decided based on the information. The previous work presented the algorithm for strictly
convex miss-rate curves. Unfortunately, the number of misses for a real application is often
not strictly convex as illustrated in Figure 1. The �gure shows the miss-rate curve of art
from the SPEC CPU2000 benchmark suite [11] for a 32-way 1-MB cache. In theory, every
possible partition should be compared to obtain the optimal partition for non-convex miss-
rate curves. However, non-convex curves can be approximated by a combination of a few
convex curves. For example, the miss-rate of art can be approximated by two convex curves,
one before the steep slope and one after that. Once a curve only has a few non-convex points,
the convex resource allocation algorithm can be used to guarantee the optimal solution for
non-convex cases.

1. Compute the marginal gain gn(x) = mn(x�1)�mn(x), and remember the non-convex
points fpn;1; pn;2; :::; pn;Png for each thread, gn(pn;i) < gn(pn;i + 1).

5



2. Perform the convex algorithm starting cn initialized with 0 or pn;i.

3. Repeat step 2 for all possible initialization, and choose the partition that results in the
maximum

PN

n=1mn(cn).

3.3 Coarse Granularity Partitioning

Previous sections discussed cache partitioning assuming that it is possible to partition the
cache in cache block granularity. Although this assumption simpli�es the discussion, most
practical partitioning mechanisms does not have control over each cache block. Since it is
rather expensive to control each cache block, existing mechanisms often have a chunk of
cache blocks that should be allocated together. We call this chunk as a partition block,
and de�ne D as the number of cache blocks in a partition block. Since a partition block
consists of multiple cache blocks, partitioning mechanisms often allow the allocation of one
partition block to multiple threads and let the replacement policy decide the cache block
level partition.

First, let us consider the case without sharing a partition block among threads. Each
partition block is allocated to only one thread. In this case, the algorithm for cache block
granularity partitioning can be directly applied. In the algorithm, the marginal gain is
de�ned as gn(x) = mn((x � 1) � D) � mn(x � D). With a new marginal gain, the greedy
algorithm can be used to assign one partition block at a time. This algorithm results in the
optimal partition without sharing. However, sharing a partition block is essential to achieve
high performance with coarse granularity partitioning. For example, imagine the case when
there are many more threads than partition blocks. It is obvious that threads must share
partition blocks in order to use the cache.

Knowing the number of misses for each thread as a function of cache space, the e�ect of
sharing partition blocks can be evaluated once the allocation of the shared blocks by the LRU
replacement policy is known. Consider the case when Nshare threads share Bshare partition
blocks. Since each partition block consists of D cache blocks, the case can be thought of as
Nshare threads sharing Bshare �D cache blocks. Since SMT systems tightly interleave memory
references of the threads, the replacement policy can be thought of as random.

De�ne Bdedicate;n as the number of partition blocks that are allocated to the nth thread
exclusively, and xn as the number of cache blocks that belongs to the nth thread. Since the
replacement can be considered as random, the number of replacements for a certain cache
region is proportional to the size of the region. The number of misses that replaces the cache
block in the shared space mshare;n(x) can be estimated as follows.

mshare;n(x) =
Bshare

Bdedicate;n +Bshare

�mn(x): (3)

Under the random replacement, the number of cache blocks belongs to each process for
the shared area is proportional to the number of cache blocks that each process brings into
the shared area. Therefore, xn can be written by

xn = Bdedicate;n � S +
mshare;n(xn)PN

i=1mshare;i(xi)
� (Bshare � S): (4)

6



Since there are xn in both left and right sides of Equation 4, an iterative method can be
used to esimate xn starting with a initial value of xn that is between Bdedicate;n � S and
(Bdedicate;n +Bshare) � S.

3.4 Partitioning Mechanisms

For set-associative caches, various partitioning mechanisms can be used to actually allocate
cache space to each thread. One way to partition the cache is to modify the LRU replace-
ment policy. This approach has an advantage of controlling the partition at cache block
granularity, but could be complicated. On the other hand, there are mechanisms that oper-
ate at coarse granularity. Page coloring [1] can restrict virtual address to physical address
mapping, and as a result restrict cache sets that each thread uses. Column Caching [3] can
partition the cache space by restricting cache columns (ways) that each thread can replace.
However, it is relatively expensive to change the partition in these mechanisms, and the
mechanisms support only several partition blocks. In this section, we describe the modi�ed
LRU mechanism and column caching to be used in our experiments.

3.4.1 Modi�ed LRU Replacement

In addition to LRU information, the replacement decision depends on the number of cache
blocks that belongs to each thread (bi). On a miss, the LRU cache block of the thread (i)
that caused the miss is chosen to be replaced if its allocation (xi;k) is larger than its current
use (xi;k � bi). Otherwise, the LRU cache block of another over-allocated thread is chosen.
For set-associative caches, there may be no cache block of the desired thread in the set. In
this case, the LRU cache block of a randomly chosen thread is replaced.

For set-associative caches, this modi�ed replacement policy may result in replacing re-
cently used data to keep useless data. Imagine the case when a thread starts to heavily access
two or more addresses that happens to be mapped to the same set. If the thread already
has many cache blocks in other sets, our partitioning will allocate only a few cache blocks
in the accessed set for the thread, causing lots of conict misses. To solve this problem, we
can use (i) better mapping functions [18, 9] or (ii) a victim cache [12].

3.4.2 Column Caching

Column caching is a mechanism to allow partitioning of a cache at cache column granularity,
where each column is one \way" or bank of the n-way set-associative cache. A standard cache
considers all cache blocks in a set as candidates for replacement. As a result, a process' data
can occupy any cache block. Column caching, on the other hand, restricts the replacement
to a sub-set of cache blocks, which is essentially partitioning the cache.

Column caching speci�es replacement candidacy using a bit vector in which a bit indicates
if the corresponding column is a candidate for replacement. A LRU replacement unit is
modi�ed so that it replaces the LRU cache block from the candidates speci�ed by a bit
vector. Each partitionable unit has a bit vector. Since lookup is precisely the same as for a
standard cache, column caching incurs no performance penalty during lookup.

7



Name Thread Benchmark Suite Description

Mix-1 art SPEC CPU2000 Image Recognition/Neural Network
mcf SPEC CPU2000 Combinatorial Optimization

Mix-2 vpr SPEC CPU2000 FPGA Circuit Placement and Routing
bzip2 SPEC CPU2000 Compression
iu DIS Benchmark Suite Image Understanding

Mix-3 art1 SPEC CPU2000 Image Recognition/Neural Network
art2

mcf1 SPEC CPU2000 Combinatorial Optimization
mcf2

Table 1: The benchmark sets simulated.

4 Experimental Results

Simulation is a good way to understand the quantitative e�ects of cache allocation. This
section presents the results of a trace-driven simulation system. An 8-way 32-KB L1 cache is
used to �lter the memory references. The simulation system concentrates on the a�ects of an
8-way set-associative L2 caches with 32-Byte blocks by varying the size of the L2 cache over
a range of 256 KB to 4 MB. We focus on L2 caches because the partitioning is more likely
to be applicable to L2 caches due to large space and long latency. However, the algorithm
itself works as well as or better on L1 caches than on L2 caches.

Three di�erent sets of benchmarks are simulated, see Table 1. The �rst set (Mix-1) has
two threads, art and mcf both from SPEC CPU2000. The second set (Mix-2) has three
threads, vpr, bzip2 and iu. Finally, the third set (Mix-3) has four threads, two copies of
art and two copies of mcf, each with a di�erent phase of the benchmark.

4.1 Hit-rate Comparison

The simulations compare the overall hit-rate of a standard LRU replacement policy and the
overall hit-rate of a cache managed by our partitioning algorithm. The partition is updated
every two hundred thousand memory references (T = 200000), and the weighting factor is
set as Æ = 0:5. These values have been arbitarily selected; more carefully selected values of T
and Æ are likely to give better results. The hit-rates are averaged over �fty million memory
references and shown for various cache sizes (see Table 2).

The simulation results show that the partitioning can improve the L2 cache hit-rate
signi�cantly: for cache sizes between 1 MB to 2 MB, partitioning improved the hit-rate up
to 40% relative to the hit-rate from the standard LRU replacement policy. For small caches,
such as 256-KB and 512-KB caches, partitioning does not seem to help. We conjecture
that the size of the total workloads is too large compared to the cache size. At the other
extreme, partitioning cannot improve the cache performance if the cache is large enough
to hold all the workloads. Thus, the optimal cache size depends on both the number of
simultaneous threads and the characteristics of the threads. Considering that SMT systems
usually support eight simultaneous threads, cache partitioning can improve the performance

8



Cache Size LRU L1 LRU L2 Partition L2 Absolute Relative
(MB) Hit-Rate(%) Hit-Rate(%) Hit-Rate(%) Improvement(%) Improvement(%)

art + mcf

0.25 15.61 15.37 -0.24 -1.54
0.5 17.29 16.48 -0.81 -4.68
1 71.99 26.27 36.90 10.63 40.46
2 50.01 51.13 1.12 2.24
4 76.73 75.04 -1.69 -2.20

vpr + bzip2 + iu

0.25 22.99 22.16 -0.83 -3.61
0.5 27.58 28.27 0.69 2.50
1 95.47 33.52 35.87 2.35 7.01
2 59.69 66.38 6.69 11.21
4 81.31 81.52 0.21 0.26

art1 + mcf1 + art2 + mcf2

0.25 12.04 12.68 0.64 5.31
0.5 14.22 14.33 0.11 0.77
1 71.50 16.95 19.07 2.12 12.51
2 26.67 34.94 8.27 31.01
4 50.59 51.35 0.76 1.50

Table 2: Hit-rate Comparison between the standard LRU and the partitioned LRU.

9



0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(a)

Cache Size (MB)

IP
C

art
mcf

0 0.5 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(b)

L2 Hit−rate

IP
C

art
mcf

Figure 2: IPC of art and mcf under 32-KB 8way L1 caches and various size 8-way L2 caches.
(a) IPC as a function of cache size. (b) IPC as a function of L2 hit-rate.

of caches in the range of up to tens of MB.
The results also demonstrate that the benchmark sets have large footprints. For all

benchmark sets, the hit-rate improves 10% to 20% as the cache size doubles. This implies
that these benchmarks need a large cache, and therefore executing benchmarks simultaneous
can degrade the memory system performance signi�cantly.

4.2 E�ect of Partitioning on IPC

Although improving the hit-rate of the cache also improves the performance of the system,
modern superscalar processors can hide memory latency by executing other instructions that
are not dependent on missed memory references. Therefore, the e�ect of cache partitioning
on the system performance, and in particular on IPC (Instructions Per Cycle), is evaluated
based on entire system simulations.

The simulation results in this section are produced by SimpleScalar tool set [2]. Sim-
pleScalar is a cycle-accurate processor simulator that supports out-of-order issue and exe-
cution. Our processor model for the simulations can fetch and commit 4 instructions at a
time, and has 4 ALUs and 1 multiplier for integers and oating points respectively. To be
consistent with the trace-driven simulations, 32-KB 8-way L1 caches with various size of
8-way L2 caches are simulated. L2 access latency is 6 cycles and main memory latency is 16
cycles.

Figure 2 (a) shows the IPC of two benchmarks (art and mcf) as a function of L2 cache

10



Cache LRU Partition Abs. Rel.
Size Hit-rate(%) IPC Hit-rate(%) IPC Improv. Improv.
(MB) art mcf art mcf (%) (%)

art + mcf

0.25 8.8 20.4 1.064 8.0 20.5 1.065 0.001 0.09
0.5 10.3 22.2 1.067 14.5 17.8 1.070 0.003 0.28
1 25.7 26.6 1.080 61.6 19.5 1.167 0.087 8.06
2 63.7 40.3 1.189 76.8 33.1 1.347 0.158 13.29

art1 + mcf1 + art2 + mcf2

0.25 6.4/6.7 16.4/15.2 2.123 6.5/3.5 29.8/11.3 2.126 0.003 0.14
0.5 7.3/7.6 19.5/18.2 2.128 7.7/4.6 30.7/15.2 2.131 0.003 0.14
1 9.3/10.1 22.1/21.4 2.134 9.1/32.4 31.1/13.5 2.161 0.027 1.27
2 25.1/25.5 28.1/25.1 2.160 57.2/73.2 32.0/16.0 2.456 0.307 14.21
4 63.9/63.6 41.7/41.2 2.382 73.9/86.7 49.5/26.6 2.786 0.404 16.96

Table 3: IPC Comparison between the standard LRU and the partitioned LRU for the case
of executing art and mcf simultaneously (Some results are missing due to the extensively
long simulation time, and results for all benchmark sets will be included in the �nal version).

size. Each benchmark is simulated separately and is allocated all system resources including
all the L2 cache. L1 caches are assumed to be 32-KB 8-way for all cases. For various L2
cache sizes, IPC is estimated as a function of the L2 hit-rate (Figre 2 (b)).

The �gures illustrate two things. First, the IPC of art is very sensitive to the cache size.
The IPC almost doubles if the L2 cache is increased from 1 MB to 4 MB. Second, the IPCs
of these two benchmarks are relatively low considering there are 10 functional units (5 for
integer, 5 for oating point instructions). Since the utilization of the functional units are so
low, executing these two benchmarks simultaneous will not cause many conict in functional
resources.

When executing the threads simultaneously the IPC values are approximated from Fig-
ure 2 (b) and the hit-rates are estimated from the trace-driven simulations (of the previous
subsection). For example, the hit-rates of art and mcf are 25.79% and 26.63% respectively
if two threads execute simultaneously with a 32-KB 8-way L1 cache and a 1-MB 8-way L2
cache from the trace-driven simulation. From Figre 2 (b) the IPC of each thread for the
given hit-rates can be estimated as 0.594 and 0.486. If we assume that there is no resource
conicts, the IPC with SMT can be approximated as the sum, 1.08. This approximation
tells you the maximum IPC that can be achieved by SMT.

Table 3 summarizes the approximated IPC for SMT with a L2 cache managed by the
standard LRU replacement policy and the one with a L2 cache managed by our partitioning
algorithm. The absolute improvement in the table is the IPC of the partitioned case sub-
tracted by the IPC of the standard LRU case. The relative improvement is the improvement
relative to the IPC of the standard LRU, and calculated by dividing the absolute improve-
ment by the IPC of the standard LRU. The table shows that the partitioning algorithm
improves IPC for all cache sizes up to 17%.

11



The table also clearly shows that SMT should manage caches carefully for threads that
are sensitive to the performance of the memory system. In the case of a 2-MB L2 cache, SMT
can only achieve IPC of 2.160 whereas executing art alone can achieve IPC of 1.04. Although
SMT can still achieve a higher IPC than the case when only one thread is executing, the
IPC of art is only 0.594. Moreover, the performance degradation by cache interference will
become even more severe as the latency to the main memory increases. This problem can
be solved by smart partitioning of cache memory for some cases. If the cache is too small,
the thread scheduling should be changed.

5 Conclusion

Low IPC can be attributed to two factors, data dependency and memory latency. SMT ex-
ploits the �rst factor but not the second. We have discovered that SMT only exacerbates the
problem when the executing threads require large caches. That is, when multiple executing
threads interfere in the cache, even SMT cannot utilize the idle functional units.

We have studied one method to reduce cache interference among simultaneously executing
threads. Our on-line cache partitioning algorithm estimates the miss-rate characteristics
of each thread at run-time, and dynamically partition the cache to the threads that are
executing simultaneously. The algorithm estimates the marginal gains as a function of cache
size and �nds the partition that minimizes the total number of misses. To apply theory to
practice, some problems have been solved. First, the search algorithm has been modi�ed to
deal with non-convexity. Second, partitioning period T and aging factor Æ have been decided.
Finally, the e�ect of sharing cache space has been studied for partitioning mechanisms with
coarse granularity.

The partitioning algorithm has been implemented in a trace-driven cache simulator. The
simulation results show that partitioning can improve the cache performance noticeably over
the standard LRU replacement policy for a certain range of cache size for given threads. Using
a full-system simulator, the e�ect of partitioning on the instructions per cycle (IPC) has also
been studied. The preliminary results show that we can also expect IPC improvement using
the partitioning algorithm.

The simulation results have shown that our partitioning algorithm can solve the problem
of thread interference in caches for a range of cache sizes. However, partitioning alone
cannot improve the performance if caches are too small for the workloads. Therefore, threads
that execute simultaneously should be selected carefully considering their memory reference
behavior. The cache-aware job scheduling remains to be done.

Even without SMT, one can view an application as multiple threads executing simultane-
ously where each thread has memory references to a particular data structure. Therefore, the
result of this investigation can also be exploited by compilers for a processor with multiple
functional units and some cache partitioning control.

References

[1] B. K. Bershad, B. J. Chen, D. Lee, and T. H. Romer. Avoiding conict misses dynam-
ically in large direct-mapped caches. In ASPLOS VI, 1994.

12



[2] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. Technical report,
University of Wisconsin-Madison Computer Science Department, 1997.

[3] D. T. Chiou. Extending the Reach of Microprocessors: Column and Curious Caching.
PhD thesis, Massachusetts Institute of Technology, 1999.

[4] C. K. Chow. Determining the optimum capacity of a cache memory. IBM Tech. Dis-
closure Bull., 1975.

[5] Compaq. Compaq alphastation family.

[6] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen.
Simultaneous multithreading: A platform for next-generation processors. IEEE Micro,
17(5), 1997.

[7] B. Fox. Discrete optimization via marginal analysis. Management Science, 13, 1966.

[8] C. Freeburn. The hewlett packard PA-RISC 8500 processor. Technical report, Hewlett
Packard Laboratories, Oct. 1998.

[9] A. Gonz�alez, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating cache conict
misses through XOR-based placement functions. In the 1997 international conference

on Supercomputing, 1997.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture a Quantitative Approach.
Morgan Kaufmann, 1996.

[11] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millennim.
IEEE Computer, July 2000.

[12] N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch bu�ers. In the 17th Annual International Symposium on

Computer Architecture, 1990.

[13] J. L. Lo, J. S. Emer, D. M. T. Henry M. Levy, Rebecca L. Stamm, and S. J. Eggers.
Converting thread-level parallelism to insruction-level parallelism via simultaneous mul-
tithreading. ACM Transactions on Computer Systems, 15, 1997.

[14] MIPS Technologies, Inc. MIPS R10000 Microprocessor User's Manual, 1996.

[15] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory. IEEE

Transactions on Computers, 41(9), Sept. 1992.

[16] G. E. Suh. Analytical cache models with applications to cache partitioning in time-
shared systems. Master's thesis, Massachusetts Institute of Technology, 2001.

[17] D. Thi�ebaut, H. S. Stone, and J. L. Wolf. Improving disk cache hit-ratios through cache
partitioning. IEEE Transactions on Computers, 41(6), June 1992.

13



[18] N. Topham and A. Gonz�alez. Randomized cache placement for eleminating conicts.
IEEE Transactions on Computers, 48(2), Feb. 1999.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In 22nd Annual International Symposium on Computer Architec-

ture, 1995.

14


