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Job-Speculative Prefetching: Eliminating Page
Faults From Context Switches in Time-Shared

Systems

Abstract

When multiple applications have to time-share limited physical memory resources, they can incur significant
performance degradation at the beginning of their respective time slices due to page faults. We propose a method
to significantly improve memory system and overall performance in time-shared computers using job-speculative
prefetching. While a given job or jobs are running, the operating system determines which job or jobs are going to
run next, and speculatively brings in data corresponding to the next set of jobs. This significantly reduces the cold-
start time for each job, ideally to zero. In fact, the goal of our work is to completely eliminate memory overhead
associated with context-switching, so users can obtain all the benefits of time-sharing as well as experience the
efficiency of batch processing.

Many problems have to be solved to optimize job-speculative prefetching. We have to determine the job that
will run next, predict the pages that the job will access, and predict which pages currently resident in physical
memory will not be accessed and can be replaced. Finally, we have to decide when, during the time slice of the
currently executing job, to begin job-speculative prefetching. We provide solutions to all these problems using
theoretical results and an analytical model of cache and memory behavior when multiple time-shared processes
share the cache or memory.

We have run preliminary experiments using model-based job-speculative prefetching and we show that memory
system performance can be significantly improved using our techniques. We show that the hit-rates achieved by
multiple timeshared processes correspond, in many cases, to an effective memory size twice as large as the actual
memory when using job-speculative prefetching.

1 Introduction

Even with the increasing size of physical memory in modern computing systems, there are many

applications that use up a significant fraction, if not all, of the available physical memory. Further,

when multiple applications have to time-share limited physical memory resources, they can incur

significant performance degradation at the beginning of their respective time slices due to page

faults.

We propose a method to significantly improve memory system and overall performance in time-

shared computers using job-speculative prefetching. While a given job or jobs are running, the

operating system determines which job or jobs are going to run next, and speculatively brings in



data corresponding to the next set of jobs. This significantly reduces the cold-start time for each

job, ideally to zero.

In fact, the goal of our work is to completely eliminate memory overhead associated with

context-switching, so users can obtain all the benefits of time-sharing as well as experience the

efficiency of batch processing.

Many problems have to be solved to optimize job-speculative prefetching. The job that will

run next has to be determined, and this information has to be propagated to the prefetch engine in

advance of job execution. The pages corresponding to the job that will be accessed first have to be

determined. The existing pages in the physical memory that will be replaced by the speculatively

prefetched pages have to be chosen. If any of the above decisions is made incorrectly, performance

may degrade rather than improve. Finally, we have to decide when, during the time slice of the

currently executing job, to begin job-speculative prefetching. Beginning too soon may result in

dramatic loss of performance for the currently-executing job, if the prefetched data replaces pages

that the job will access later on in the time slice.

We answer the crucial question of when, within a time slice, to begin the job-speculative prefetch

in two parts. Under certain assumptions, that include ideal, i.e., optimal replacement within mem-

ory, we give a condition that tells us how long we have to wait before beginning the job-speculative

prefetch to ensure no degradation of performance. This waiting period depends on whether the cur-

rently executing job fills up the entire physical memory with its pages during a time slice or only

a part of it. We then derive a general, analytical model that provides information as to when to

begin the job-speculative prefetch, what pages to bring in, and what pages to replace. This model

assumes the standard LRU replacement policy. In the cases where LRU is equivalent to ideal

replacement, the decisions made using the model are guaranteed to not degrade performance.

We have run preliminary experiments using model-based job-speculative prefetching and we

show that memory system performance can be significantly improved using our techniques. In

addition, the hit-rates achieved by multiple timeshared processes can be shown to correspond to an

effective memory size that is significantly larger than the actual memory size.

This paper is organized as follows. We formulate the problem and describe a simple modification

of scheduling methods in determining what job(s) will run next in Section 2. We present theoretical

results for ideal replacement in memory that shed light on a possible solution technique in Section



3. We present an analytical model for cache behavior under context switching and an algorithm for

job-speculative prefetching in Section 4. Experimental results using the model-based algorithm

are presented in Section 5. Related work is discussed in Section 6, and Section 7 concludes the

paper.

2 Problem Definition and Analysis

2.1 Problem Statement

We will assume a single processor system, however, the methods described are easily generalized

to multiple procesors, with distributed or shared memory systems. Consider a processor where N

processes P1; : : : ; PN are running. Exactly one of these processes, say Pi, is executing. A subset

R of processes are ready to run, and the remaining are waiting on some event, e.g., a keyboard

input or a page fault.

We will assume a multilevel memory beginning with the L1 cache and ending with disk. We

will refer to these memories as Lj; 1 � j � D. Thus, LD corresponds to disk. In the sequel,

we will speak generally of the current level of memory as being Lk with k < D, and we will be

prefetching from the next level, in this case Lk+1. The techniques we propose will work for any

level, 1 � k < D.

Consider a sequence of processes Pi1; Pi2 ; : : : ; Pit that execute on the processor during some

time duration. Note that processes may be repeated in the sequence. When Pij+1
begins running,

there may be data in Lk corresponding to Pi1 through Pij . The amount of data corresponding

to these processes depends on the footprint and memory reference characteristics, and the time

quantum assigned of these processes. Assume that Pi1 is the same as Pij+1
. Then, it is possible

that some amount of data that was accessed (and might again be accessed) by this process is still

in Lk. However, this typically is not the case. Therefore, the process Pij+1
will experience cold

misses at the beginning of its time quantum, and data will have to brought into Lk from Lk+1

through LD.

Our goal is to minimize performance degradation due to cold misses in the Lk memory and ide-

ally eliminate all cold misses experienced due to context switching. We will do this by prefetching



Pij+1
’s data into Lk while Pij is executing. To do this, we need to peform the following steps.

1. Know or predict Pij+1
.

2. Predict the data that Pij+1
will access at the beginning of its time quantum.

3. When Pij is executing, estimate how space Pij is using in Lk as a function of time (within

this time quantum).

4. Bring in the appropriate amount of Pij+1
data (determined in Step 2) at the appropriate time

during Pij ’s time quantum.

We describe how we handle Step 1 in Section 2.2. In Section 3, we provide analysis that helps

with the solution of problems posed by Steps 2-4. In Section 4, we present a model-based algorithm

for Steps 2-4.

Note that while we have focussed on a single processor in this section, the main change when

there are p > 1 processors is that there will be p jobs running at any given point of time, and we

have to determine the next p jobs that will run.

2.2 Process Schedulers

When multiple processes or jobs can run, the scheduler in the operating system typically decides

which one to run, and for how long. Operating systems implement a variety of schedulers that

target fairness, efficiency, response time for interactive jobs, job turnaround and throughput. Some

examples of scheduling algorithms are round-robin scheduling, priority scheduling, shortest job

first scheduling, and two-level scheduling [14].

If we treat the scheduler as a black box, then it is hard to guess what is going to happen next,

unless there is only one job in the pool of ready jobs. However, there is no reason to treat the

scheduler as a black box. The strategy we follow is to modify the scheduler such that, rather than

determining the very next job Pi to run, it determines the next two (or more) jobs, say Pi and

Pj, that will run. When the first of these jobs Pi begins execution, the prefetch engine is told to

assume that the next job will be Pj. We do not require that this decision of running Pj after Pi

be cast in stone, but obviously, we would like it to be case, since the prefetch engine will begin



prefetching Pj’s data. Therefore, while the scheduler is allowed to choose any pair of jobs that are

to its liking, a strong hint about what the first of these jobs should be is provided. Once P i has

finished executing, the scheduler is given a hint to select Pj and some other job, in that order, in

this scheduling step.

We now discuss how we can modify a scheduler to perform next-two-job scheduling. Clearly,

for a round robin scheduler this is trivial. Consider a priority scheduler with priority classes. If

there are runnable processes in the highest class, they are run for one time quantum in the least

recently run order. If there are no processes in the highest class, the runnable processes in the next

highest class are run for two time quanta, and so on. Whenever a process uses up all the time

quanta allocated to it, it is moved down one class. However, when a process does not finish its

assigned time quanta due to I/O interrrupts it is moved to the highest class, under the assumption

that it has become interactive. When the process does not finish its assigned time quanta due to a

page fault, it may be allowed to stay at the same class, or be moved up one class.

To decide the next two processes to run, the scheduler would first look at the highest class that

has at least one process in it, and choose it, call it Pi, to run next. Assuming that Pi would finish

its assigned time quanta, it would predict which process it would choose next, call it P j . If Pj is

in the highest class, then we are guaranteed that the scheduler will choose Pj to run next. If Pj is

not in the highest class, it means the highest class currently has no runnable processes. However,

while Pi is running, some other process may become runnable and be moved to highest class. In

which case this process rather than Pj will be run, strictly speaking. However, we can clearly quite

easily modify or force the scheduler to run Pj next.

Other types of schedulers can be modified as well. For example, the LINUX scheduler [6]

computes the “goodness” of all processes in the run queue – the process with the best goodness

is the one with the best claim to the CPU. The scheduler walks through the task list, tracking the

process with the best goodness. Instead, track the best two processes, and use the knowledge of

the second best process as described above.

The question of how far into the future the prefetch engine needs information about is related

to the time quantum, and the bandwidth and latency from the next level of memory to the current

level. It is also dependent on the footprint of the executing process and the amount of data that is

prefetched. This is not simple to analyze, and we discuss this in the next section.



3 Analysis for Ideal Replacement

3.1 Machine model

We shall model our system as a two-level memory hierarchy, where each of the C blocks in the

faster level (Lk) can be accessed in a K1 cycles, whereas blocks in the slower level (Lk+1) can be

accessed in K2 cycles, and an average of B of them can be accessed per cycle (we assume B to be

no larger then 1, but no smaller than 1=K2). We shall also initially assume a single-issue, in order

processor. Out of order execution can be modelled as an approximation by appropriately reducing

the average latencies K1 and K2; similarly multiple issue processors can be approximated with

single issue processor with a faster cycle (and therefore larger latencies in terms of cycles). Finally,

we shall assume that Lk is fully associative, i.e., any block of Lk+1 can be mapped anywhere in the

Lk.

Our objective is to understand the optimal point, during the time quantum, when to start prefetch-

ing. Starting too early will bring conflicts with the active process, while starting too late (or perhaps

performing no prefetching at all) will cause the next active process to begin its time quantum with

less useful data in Lk, and therefore experience a much higher initial miss rate.

We shall repeatedly use the notation miss[t1;t2](s) to denote the total number of misses during

the interval [t1; t2] on a Lk of size s.

Obviously, in order to be able to prefetch, there must be some “free” bandwidth that can be used

for this purpose, i.e., we must have B � (t2� t1) > miss[t1;t2](C) where B is the total bandwidth in

blocks per unit of time (part of this bandwidth will be consumed to service misses of the current

process). We shall assume this is always the case hereafter.

3.2 Ideal replacement

A statistic of interest is the Ideal Footprint (IF) of a process in a given time interval. Informally,

it is the number of blocks which, at any point in time, have already been accessed and will be

accessed again. Intuitively, the ideal footprint of a process between the beginning and the end of

a time quantum corresponds to the minimum Lk space required to experience only cold misses

during the time quantum if an optimal replacement policy is used.



Definition 1 The Ideal Footprint of a processP at time t during the time interval [t0; tf ], IF P
[t0;tf ]

(t)

is the number of variables which have been accessed (read or written) in between time t0 and time

t and will be read again between time t and time tf .

The IF of a stationary process can be computed analytically from the miss rate versus Lk size

curves ([10]).

We shall analyze the case in which the replacement policy is optimal. We shall assume that

the process which will become active after the context switch initially has no data in Lk. This

assumption can be removed, though we will not treat the general case here.

In the case of ideal replacement it is easy to prove that an optimal prefetch strategy will never

interfere with the active process P , i.e., will never prefetch so much that P will not hold, at any

given time, at least as much space in Lk as its IF at that time (or the whole of Lk if it is smaller

than the IF of P ). In fact, any further block prefetched will necessarily eject a block which P will

reuse before the end of the time quantum, causing at least one additional miss, while saving no

more than a single cold miss after the context switch. Let C be the size of the fast memory and

tswitch the time of the context switch. Then the amount of data prefetched by an optimal strategy

will be no greater than

max prefetch = C �max
t

(IF P
[t0;tf ]

(t) +miss[t;tswitch](C)�B � (tswitch � t)): (1)

Also, prefetching less data than max prefetch will not reduce the total number of misses (as

long as this data will be used in the next time quantum), since if P always holds at least as much fast

memory as its IF, it will only experience cold misses, which no extra space will avoid. Therefore,

if the total amount of data which will be used in the time quantum after the context switch and

is currently in Lk+1 is at least max prefetch, the optimal time to start prefetching is the time

tmax prefetch which will allow prefetching of exactly max prefetch data, satisfying the equation:

B � (tswitch � tmax prefetch)�miss[tmax prefetch;tswitch](C) = max prefetch (2)

which can be solved iteratively, or directly if the miss rate is independent of time, i.e., B �

(tswitch � tmax prefetch)�miss[tmax prefetch;tswitch](C) is proportional to (tswitch � tmax prefetch).



If the amount of data available to be prefetched (data) is less than max prefetch, then an

optimal time to start prefetching is any time no earlier than tmax prefetch and no later than the last

instant tmin prefetch which will still allow to prefetch all data, given by the equation

B � (tswitch � tmin prefetch)�miss[tmin prefetch;tswitch](C) = data (3)

which has the same form as equation 2 and can be solved in the same way.

3.3 Premature context switches

It is important to take into account the performance impact of prefetching in those cases when the

context switch occurs earlier than the time tswitch on which our prediction of the optimal prefetch

start time tprefetch is based - a common case being a page fault, which will cause the current process

to yield the processor to another process before the end of its allotted time quantum. Even though

tprefetch is probably no longer the optimal time to begin prefetching, we would at least like any

prefetching done beginning at tprefetch not to cause performance degradation compared to the case

of no prefetching at all. We can prove that this is true for the Ideal Replacement case:

Theorem 1 In the Ideal Replacement case, if the context switch occurs at time tswitch the total

number of misses incurred by starting prefetching at time tprefetch based on an estimated context

switch time t0switch > tswitch is no more than that incurred by not prefetching at all.

Proof 1 In the Ideal Replacement case, no data in the cache which will be used before t0switch is

ejected by prefetched data - therefore no data used before tswitch is ejected and the process active

before the context switch experiences no additional misses due to prefetching. On the other hand,

additional data in the cache for the process which becomes active after the context switch cannot

increase its miss rate. Prefetching in case of a premature context switch, in the Ideal Replacement

case, is therefore at least as efficient as no prefetching.

4 Model

Without an ideal replacement policy, it is nearly impossible to tell exactly when the last use of

each memory block for a time quantum is. However, it is possible to estimate the probability for



a memory block to be accessed. In this section, we take a probabilistic approach based on an

analytical memory model developed elsewhere [13] to evaluate the effect of prefeching memory

blocks of the next process and determine the best time to start the prefetching. First, we will

briefly summarize the memory model, which is the basis of our discussion. Then, the model will

be extended to a job prefetching problem.

4.1 The LRU Model Review

As briefly discussed in the theoretical analysis, the footprint of job i (si(t)), the amount of data in

the memory at time t, plays the central role in modeling the number of misses for each job when

multiple jobs time-share the memory. In this section, we make use of subscript i to represent job

i. Assuming the miss-rate of a job only depends on the memory space it has, the number of misses

for job i over one time qunatum (from time 0 to Ti) can be obtained as follows:

missi =

Z Ti

0
Mi(si(t))dt (4)

where Mi(s) is the miss-rate of job i as a function of memory space. Essentially, the memory space

for a job determines the probability for a memory reference to miss at a time, and the integral of

the probability results in the expected number of misses over time. Note that this equation assumes

that the time is measured in terms of the number of memory references. One time unit corresponds

to one memory reference.

When the memory is managed by the LRU replacement policy without prefetching, the footprint

of a job increases by one memory block on a miss assuming the job’s blocks are the MRU part of

the memory, and remains the same on a hit. With this insight, footprint s i(t) can be approximated

by

si(t) = MIN [K�1
i (t+Ki(s(0))); C] (5)

where Ki(s) is the integral of Mi(s), Ki(s) =
R s
x=0Mi(x)dx, and K�1

i (s) represents the inverse

function of Ki(s).

From the two equations above, the number of misses for job i over time Ti with the LRU re-

placement policy can be written as a function of the initial amount of data in the memory s i(0):

missLRU;i(si(0)) =

Z Ti

0
Mi(MIN[K�1

i (t + Ki(si(0)));C])dt: (6)



4.2 Tradeoffs in Prefetching

For job i that has a given miss-rate as a function of memory space curve (Mi(s)), the number

of misses for the job over a time quantum is given as a function of the initial amount of data

si(0) (Equation 6). Therefore, it is clear how prefetching reduces the number of misses. As we

prefetch more memory blocks, a job starts its time quantum with more memory blocks (s i(0)

increases), which results in less expected number of misses. The expected number of misses saved

by prefetching is written by

gaini(sLRU;i(0); sPF;i) = missLRU;i(sLRU;i(0))�missLRU;i(sLRU;i(0) + sPF;i): (7)

where sLRU;i(0) is the amount of job i’s data without prefetching, and sPF;i is the number of

memory blocks that are prefetched for job i.

Prefetching can cause additional misses if it evicts the active job’s memory block while loading

blocks for the next job. Let us consider a case when we prefetch sPF;i blocks for job i while job j

is executing. Assuming that we keep prefetched blocks until the context switch from job j to job

i, the memory space for the current job (j) is limited by the prefetched blocks and the current job

may experience additional misses compared to the case without prefetching.

To estimate this loss, we should first know the number of blocks that are prefetched over time.

If we simply ignore the accesses from the current job, the number of prefetched blocks at time t is

given by

fetchedi(t) =
0 if t < sPF;i=B

B � (t� Tj) + sPF;i otherwise.
(8)

Since the number of job j’s blocks is limited by the number of prefetched blocks at each time,

the number of misses for job j when prefetching for job i can be written by

missPF;j(sj(0); sPF;i) =

Z Tj

0
Mj(MIN[K�1

j (t + Kj(si(0)));C� fetchedi(t)])dt: (9)

Finally, the loss caused by prefetching the next job’s blocks is the difference between the number

of misses with prefetching and without prefetching:

lossj(sj(0); sPF;i) = missLRU;j(sj(0))�missPF;j(sj(0); sPF;i) (10)



4.3 Job-Prefetching Decision

Now, let us discuss how to decide the time to start prefetching for each time quantum based on the

model. Since it is intractable to consider the effect of prefetching over all following time quanta,

we make a decision only considering the effect on the current time quantum and the next time

quantum where prefetching has direct impact.

The problem is to decide the time to start prefetching blocks for the next job (i) at the beginning

of a time quantum (for job j). We assume that the miss-rate as a function of cache space curves

for both job i and j (Mi(s), Mj(s)) are known from previous time quanta. Also, the number of

memory blocks for each job can be easily counted. Therefore, sj(0) is given. Since the gain for

job i (Equation 7) and the loss for job j (Equation 10) are functions of sLRU;i(0), sj(0), and sPF;i,

the desired number of blocks to prefetch sPF;i can be easily determined by a linear search once we

know the number of job i’s memory blocks that remain in the memory at the end of the current

time quantum without prefetching, sLRU;i(0).

The value of sLRU;i(0) can be estimated from Equation 5. The equation tells us what is the

expected number of job j’s blocks at the end of the current time quantum. With this estimation and

the counted number of blocks for each job at the beginning of the current time quantum, we can

compute how many job i’s blocks would be evicted during the time quantum and left at the end

since we know the sequence of jobs executed before.

Finally, once we decide the number of blocks to prefetch, that can be directly converted to the

time we want to start prefetching using the following equation.

start timei;j = Tj � sPF;i=B: (11)

In summary, we decide the time to start prefetch as follows: First, count the number of memory

blocks for each job at the beginning of a time quantum. Second, estimate the expected number of

the next job’s blocks left in the memory at the end of the current time quantum. Third, decide the

desired number of blocks to be prefetched by a linear search based on Equation 7 and 10. Finally,

convert the number of blocks to the time.



Name Description Input Memory Usage (MB)

gzip Compression source 79.6

graphic 114.6

random 120.5

mcf Image Combinatorial Optimization 18.9

vortex Object-oriented Database lendian1 45.8

lendian3 47.9

vpr FPGA Circuit Placement and Routing 33.4

gcc C Programming Language Compiler 200 28.7

Table 1: The descriptions and memory usage of benchmarks used for the simulations.

5 Experimental Results

Simulation is a good way to understand the quantitative effects of job prefetching. This section

presents the results of trace-driven simulations for job-speculative prefetching from disk to main

memory. The results demonstrate that time-sharing can severely degrade the memory performance

when the memory cannot hold the entire working set of all concurrent jobs. Fortunately, it is

shown that these cold misses can be almost completely eliminated by speculatively prefetching

blocks for the next job when the prediction is perfect and memory space is enough for prefetching.

Even with prediction errors and the lack of memory space, the simulation results demonstrate that

job-speculative prefetching can still improve the memory performance noticeably.

Several programs from SPEC CPU2000 benchmark suite [5] have been used for the simulations

(See Table 1). There are multiple instances of gzip and vortex, however the input data sets

are different even for the same benchmark program. The benchmarks have various memory usage

ranging from 20 MB to 120 MB. The memory usage is the cache space that each benchmark con-

sumes when the memory is dedicated to the job. Note that this memory usage is for the case when

a job executes for a long time, thereC Programming Language Compilerfore jobs usually consume

less memory space over one time quantum. Memory traces are generated using SimpleScalar tool

set [3] assuming that processors have 4-way 16-KB L1 instruction and data caches and a 8-way



256-KB L2 cache.

First, we simulated cases when eight jobs execute concurrently with memory ranging from 128

MB to 512MB. The eight jobs are the benchmarks shown in Table 1, one instance per benchmark:

gzip-source, gzip-graphic, gzip-random, mcf, vortex-lendian1,

vortex-lendian3, vpr, and gcc. Jobs are scheduled in a round-robin fashion with three

million memory references per time quantum for large jobs (three instances of gzip) and one

million references per time quantum for the others. Disk to memory bandwidth is assumed to be

one page per memory access.

At the end of a time quantum, the simulator records the current job’s pages in the memory

with their LRU ordering. FoC Programming Language Compilerr each time quantum, pages for

a predicted next job are prefetched starting from the MRU page to the LRU page. To memorize

pages, we need 20 bits per page assuming that a page is 4 KB. Therefore, about 160 KB is required

for each job if the memory is 256 MB. However, this overhead is negligible since we only need

to have this data structure for the current job and the next job in the memory no matter how many

jobs are in memory.

Simulation results of eight-concurrent-job cases are summarized in Figure 1. For each memory

size, we compared three different prefetching strategies: no prefetching, prefetching with perfect

job prediction, and prefetching with 50% job prediction accuracy. No prefetching stands for the

standard LRU policy and its approximations, which are used by most modern systems. Prefetching

with perfect job prediction is an ideal case of job-speculative prefecthing where you always know

the next job for sure, yet this can be realistic when we have modified the scheduler as discussed in

Section 2. Finally, prefetching with 50% job prediction accuracy stands for cases where the next

job cannot be predicted accurately. We believe that 50% is a very pessimistic number, however, it

is worthwhile to see what the benefit of job-speculative prefetching is, in this case.

First of all, the simulation results demonstrate that time-sharing can severely degrade the mem-

ory performance. If we compare the miss-rate of no-prefetching cases for 128 MB and 512 MB

where there are no misses caused by context switching, the difference is significant. Even though

there are millions of memory references per time quantum, which means very long time quanta,

context switches cause significant amount of additional misses if the memory cannot hold the en-

tire working set. Although memory is becoming larger, so are programs. In fact, larger programs
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Figure 1: The effect of job-speculative prefetching on memory miss-rate: comparing miss-rates

for no prefetching (No Prefetching), prefetching with perfect job prediction (Prefetching 100), and

prefetching with 50% job prediction accuracy (Prefetching 50).



will cause more problems for context switching since they takes more cycles to reload a working

set.

Fortunately, simulations show that job-speculative prefetching can almost completely eliminate

the misses caused by context switching in some cases. For 256 MB memory, which is large enough

to hold the working sets of any two jobs but not large enough to keep the entire working set, job-

speculative prefetching achieves very close to the miss-rate of 512 MB memory. The miss-rate

is slightly higher because prefetched blocks can be evicted before a context switch. On the other

hand, if memory is too small to hold the working sets of both current job and the next job such

as 128 MB in this experiment, prefetching pages for the next job can harm the performance of

the current job and we cannot prefetch all blocks for the next job. However, we can still obtain

noticeable improvement of the miss-rate, by timing the prefetching properly using the methods

outlined in Section 4. The only case when job-speculative prefetching does not help is in the case

of a large memory that can hold the entire working set of all live processes.

Job-speculative prefetching increases the effective memory size. Since we can prefetch pages

that would not otherwise be kept in the memory, it is the same as having a larger memory that can

actually keep those pages. In this experiment, 256 MB memory effectively becomes close to 512

MB if blocks for the next job are spculatively prefetched.

Finally, the simulation results show that job-speculative prefetching can still eliminate a signifi-

cant portion of misses caused by context switches even if the next job prediction is not correct. This

implies that there is very little harm for the miss-rate of the current job even though we prefetch

blocks of the wrong job. This is because our algorithms are based on the conservative approach

described in Sections 3 and 4. First, if there are no blocks for the next job left in the memory,

prefetching can harm the performance only by evicting the current job’s blocks, which we very

carefully control using our analytical model. On the other hand, if blocks of the next job are left in

the memory, prefetching for a wrong job can do harm by evicting blocks that are going to accessed

in the next time quantum. However, the probability of this happening is very small.

Memory traces used in this experiment have memory usage smaller than 120 MB. As a result,

time sharing did not matter for memory larger than 512 MB. However, there are many applications

that have very large footprints sometimes even larger than main memory. Moreover, if the number

of concurrent jobs increases, the size of the entire working set also increases. Therefore, for larger
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Figure 2: The effect of job-speculative prefetching on memory miss-rate when the number of jobs

is doubled: comparing miss-rates for no prefetching (No Prefetching), prefetching with perfect job

prediction (Prefetching 100), and prefetching with 50% job prediction accuracy (Prefetching 50).



applications or a larger number of applications, the memory size where job-speculative prefetching

can help will scale up. For example, we just increased the number of jobs by duplicating the traces

used before. As the result in Figure 2 indicates, job-speculative prefetching significantly improves

the miss-rate even for 512 MB memory.

The key point is that job-speculative prefetching can increase the effective memory size, when

the running processes use up a significant fraction or all of the memory. The improvement in miss-

rates for memory are very significant because, for modern processors, there is a factor of 1000 in

the access time for memory versus disk. For example, an improvement in miss-rate from 0.60% to

0.07% (256MB memory in Figure 2), implies a performance improvement of 4.1X.

6 Related Work

6.1 Analytical Models

Several early investigations of the effects of context switches use analytical models. Thiébaut and

Stone [15] modeled the amount of additional misses caused by context switches for set-associative

caches. Agarwal, Horowitz and Hennessy [1] also included the effect of conflicts between pro-

cesses in their analytical cache model and showed that inter-process conflicts are noticeable for a

mid-range of cache sizes that are large enough to have a considerable number of conflicts but not

large enough to hold all the working sets. However, these models work only for long enough time

quanta, and require information that is hard to collect on-line.

Mogul and Borg [7] studied the effect of context switches through trace-driven simulations.

Using a timesharing system simulator, their research shows that system calls, page faults, and

a scheduler are the main sources of context switches. They also evaluated the effect of context

switches on cycles per instruction (CPI) as well as the cache miss-rate. Depending on cache pa-

rameters, the cost of a context switch appears to be in the thousands of cycles, or tens to hundreds

of microseconds in their simulations.

Stone, Turek and Wolf [12] investigated the optimal allocation of cache memory between two

competing processes that minimizes the overall miss-rate of a cache. Their study focuses on the

partitioning of instruction and data streams, which can be thought of as multitasking with a very



short time quantum. Their model for this case shows that the optimal allocation occurs at a point

where the miss-rate derivatives of the competing processes are equal. The LRU replacement policy

appears to produce cache allocations very close to optimal for their examples. They also describe a

new replacement policy for longer time quanta that only increases cache allocation based on time

remaining in the current time quantum and the marginal reduction in miss-rate due to an increase

in cache allocation. However, their policy simply assumes the probability for an evicted block to

be accessed in the next time quantum as a constant, which is neither validated nor is it described

how this probability is obtained.

Thiébaut, Stone and Wolf applied their partitioning work [12] to improve disk cache hit-ratios

[16]. The model for tightly interleaved streams is extended to be applicable for more than two

processes. They also describe the problems in applying the model in practice, such as approxi-

mating the miss-rate derivative, non-monotonic miss-rate derivatives, and updating the partition.

Trace-driven simulations for 32-MB disk caches show that the partitioning improves the relative

hit-ratios in the range of 1% to 2% over the LRU policy.

Our analytical model and partitioning differ from previous efforts that tend to focus on some

specific cases of context switches. Our model works for any specific time quanta, whereas the

previous models focus only on long time quanta. Also, our partitioning works for any time quanta,

whereas Thiébaut’s algorithms only works for very short time quanta. Moreover, the inputs of our

model (miss-rates) are much easier to obtain compared to footprints or the number of unique cache

blocks that previous models require.

6.2 Prefetching

Prefetching is an extensive area of research at each level in the memory hierarchy. Software and

hardware prefetch techniques targeting L1 and L2 caches largely focus on improving the perfor-

mance of a single job [17].

Research has also been done in giving control of memory management decisions to sophisticated

applications. The Mach operating system supports external pagers to allow applications to control

the backing storage of their data [11]. Prefetching and replacement decisions have been made in

tandem in the context for I/O prefetching for file systems [4] [9].



Mowry, Demke and Krieger [8] describe a fully-automatic technique where a compiler provides

information on future access patterns, and the operating system supports non-binding prefetch and

release hints for managing I/O. The scheme described targeted improved performance for a single

out-of-core application, and did not consider context switching and cold misses.

When multiple processes are running, with both out-of-core and interactive processes in the

mix, the out-of-core applications can severely degrade the performance of the interactive ones.

Brown and Mowry [2] show that carefully choosing the pages that are replaced by the out-of-

core application can significantly improve performance. The amount of memory that the out-of-

core application can use is restricted, since pages corresponding to interactive applications are not

replaced.

Our work differs from the above in that we allow the currently executing application to replace

any or all data in the current level of memory, but at the appropriate time, when it is clear that the

current process will be swapped out before it touches certain data, we prefetch the next applica-

tion’s data and replace this data. Further, our techniques are not restricted to any particular level of

memory.

7 Conclusion

We have proposed a method to significantly improve memory system and overall performance

in time-shared computers using job-speculative prefetching. We have shown that job-speculative

prefetching can significantly reduce cold misses that occur due to context switching.

A simple modification of an operating system scheduler to determine the next job that will run,

while the current job is executing, enables job-speculative prefetching. We used an analytical

model of cache/memory behavior to predict the pages that the next job will access, and predict

which pages currently resident in physical memory that will not be accessed by the currently-

executing job and can be replaced. We showed that memory system performance can be signif-

icantly improved using our techniques. Perhaps, more importantly, we have shown that we can

increase the effective memory size as viewed by multiple timeshared processes, in the case where

the sum total of the footprints of the live processes is greater than the actual available memory.

Our prefetching techniques can be applied even in the case where one or more processes use up



the entire available memory when they run.

Ongoing work includes applying this method to higher-level memories such as L1 and L2 cache,

as well as targeting improved performance for multiple interactive threads/processes such as those

found on a Web server.
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