
Secure Program Execution via Dynamic Information Flow Tracking

G. Edward Suh, Jaewook Lee, Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{suh,leejw,devadas}@mit.edu

Abstract

Dynamic information flow tracking is a hardware mech-
anism to protect programs against malicious attacks by
identifying spurious information flows and restricting the
usage of spurious information. Every security attack to take
control of a program needs to transfer the program’s con-
trol to malevolent code. In our approach, the operating sys-
tem identifies a set of input channels as spurious, and the
processor tracks all information flows from those inputs. A
broad range of attacks are effectively defeated by disallow-
ing the spurious data to be used as instructions or jump
target addresses. Our scheme is also transparent to appli-
cations because it does not require any modification of ex-
ecutables. Unlike software-only protection methods, which
may cause significant overheads, our scheme only requires
additional memory space of 4.5% and result in less than 2%
performance degradation on average.

1 Introduction

Malicious attacks often exploit program bugs to obtain
unauthorized accesses to a system. We propose an architec-
tural mechanism called dynamic information flow tracking,
which provides a powerful tool to protect a computer sys-
tem from malicious software attacks. With this mechanism,
higher level software such as an operating system can make
strong security guarantees even for vulnerable programs.

The most frequently-exploited program vulnerabilities
are buffer overflows and format strings, which allow an
attacker to overwrite memory locations in the vulnerable
program’s memory space with malicious code and program
pointers. Exploiting the vulnerability, a malicious entity can
gain control of a program and perform any operation that the
compromised program has permissions for. Since hijacking
a single privileged program gives attackers full access to
the system, vulnerable programs represent a serious secu-
rity risk.

Unfortunately, it is very difficult to protect programs by
stopping the first step of an attack, namely, exploiting pro-
gram vulnerabilities to overwrite memory locations. There
can be as many, if not more, types of exploits as there are
program bugs. Moreover, malicious overwrites cannot be
easily identified since vulnerable programs themselves per-
form the writes. Conventional access controls do not work
in this case. As a result, protection schemes which target
detection of malicious overwrites have only had limited suc-
cess – they block only the specific types of exploits they are
designed for.

To be effective for a broad range of security exploits, at-
tacks can be thwarted by preventing the final step, namely,
the malevolent transfer of control. In order to be success-
ful, every attack has to change a program’s control flow so
as to execute malicious code. Unlike memory overwrites,
there are only a few ways to change program’s control flow.
Attacks may change a pointer to indirect jumps, or inject
malicious code at a place that will be executed without re-
quiring malevolent control transfer. Thus, control transfers
are much easier to protect for a broad range of exploits. The
challenge is to distinguish malicious control transfers from
many legitimate ones.

We make the observation that potentially malicious input
channels, i.e., channels from which instructions (data) may
not be safe to be executed (used as a jump target), are rather
easy to identify. Operating systems manage input channels
for a program, and can mark spurious inputs so that these
inputs are not allowed to be used as instructions or jump tar-
gets. However, spurious input data are used in various ways
at run-time to generate new spurious data that may result in
malicious control transfers. Therefore, only restricting the
use of spurious input data is not sufficient to prevent many
attacks.

Dynamic information flow tracking is a simple hardware
mechanism to track spurious information flows at run-time.
On every operation, a processor determines whether the re-
sult is spurious or not based on the inputs and the type of
the operation. With the tracked information flows, the pro-

1

cessor can easily check whether an instruction or a branch
target is spurious or not, which prevents changes of con-
trol flows by potentially malicious inputs and dynamic data
generated from them.

Experimental results demonstrate our protection scheme
is very effective and efficient. A broad range of security
attacks exploiting notorious buffer overflows and format
strings are detected and stopped. In most cases, our restric-
tions do not cause any false alarms for real applications in
the SPEC CPU2000 suite. At the same time, the space and
performance overhead of our scheme is minimal. It only
incurs 4.5% memory space overhead and less than 2% per-
formance degradation, on average.

We describe our attack model and general approach for
protection in Section 2. Section 3 presents architectural
mechanisms to track information flow and Section 4 de-
tails how these mechanisms are used under various security
policies. Practical considerations in making our scheme ef-
ficient are discussed in Section 5, and our scheme is evalu-
ated in Section 6. Finally, we compare our approach with
related work in Section 7 and conclude the paper in Sec-
tion 8.

2 Security Exploits and Protection

This section discusses the types of security exploits that
we target for prevention, and gives an overview of our pro-
tection scheme. We present an attack model for targeted
security exploits and explain our approach to stop attacks
under this model. We also present a simple example.

2.1 Attack Model

I/O, other processes

Step 1. Inject malicious input

through legitimate channels

Program

Vulnerability

Malicious Code

Operating System

Step 2. Program vulnerability

- Inject malicious code

- Change jump/branch targets

Step 3. Execute unintended

(or malicious) code

- Injected code

- Unintended control transfer

Figure 1. Our security attack model.

Figure 1 illustrates how attacks which attempt to take
control of a vulnerable program work. A program has legit-
imate communication channels to the outside world, which

are either managed by the operating system as in most I/O
channels or set up by the operating system as in inter-
process communication. An attacker can control an input
to one of these channels.

Knowing a vulnerability in the program, attackers pro-
vide a malicious input that exploits the bug. This malicious
input makes the program change values in its address space,
in a way that is not intended in the original program func-
tionality.

Two frequently exploited bugs are buffer overflows and
format strings. The buffer overflow vulnerability occurs
when the bound of an input buffer is not checked. Attackers
can provide an input that is longer than an allocated buffer
size, and overwrite memory locations near the buffer. For
example, a stack smash attack can change a return address
stored in the stack [10] by overflowing a buffer allocated in
the stack.

The format string vulnerability [9] occurs when the for-
mat string of the printf family is given by input data.
Using the %n flag in the format, which stores the number of
characters written so far in the memory location indicated
by an argument, attackers can potentially modify any mem-
ory location to any value.

Finally, the modified values in the memory cause the pro-
gram to perform unintended operations. This final step of an
attack can happen in two ways. First, attackers may inject
malicious code exploiting the vulnerabilities and make the
program execute the injected code. Second, attackers can
simply reuse existing code and change the program’s con-
trol flow to execute code fragments that otherwise would
not have been executed by modifying one of the program
pointers in the memory.

For example, in the stack smash attack, attackers inject
malicious code into the overflown buffer as well as modify
a return address in the stack to point to the injected code.
When a function returns, the victim program jumps to the
injected code and executes it.

2.2 Protection

We protect vulnerable programs from malicious attacks
by restricting executable instructions and control transfers.
In order to take control of a program, every attack should
either make a processor execute injected malicious code
or change a program’s control flow to execute unintended
code. Attackers may still be able to make programs pro-
duce incorrect results, for instance, due to a buffer overflow
in Step 2 of Figure 1. However, they will not be able to
gain unauthorized access to a system as long as executable
instructions and control transfers are properly protected by
blocking program execution in Step 3 of Figure 1.

The key question in this approach is how to distinguish
malicious code from legitimate code, or malicious program

2

pointers from legitimate pointers. Because there are many
legitimate uses of dynamically generated instructions such
as just-in-time compilation, and legitimate uses of indirect
jumps, the question does not have a straightforward answer.

I/O, other processes

Program

Vulnerability

Detect

Malicious Code

Step 1. Operating systems
tag potentially malicious
data: spurious

Operating System

Step 2. Processors track
the flow of potentially
malicious inputs

Step 3. Detect attacks!!
- Spurious instructions
- Spurious jump targets

Figure 2. Our protection scheme against security
exploits.

Figure 2 shows our approach to identify and prevent ma-
licious instructions and control transfers. Since the oper-
ating system manages communication channels for a pro-
gram, it identifies potentially malicious channels such as
network I/O, and tags all data from those channels as spuri-
ous. On the other hand, other instructions and data includ-
ing the original program when it gets loaded are marked
as authentic. The operating system also specifies how the
spurious instructions may be used. Normally, spurious in-
structions will not be allowed to be executed and spurious
data will not be used as a jump target address.

During an execution, malicious data may be processed
by the program before being used as an instruction or a
jump target address. Therefore, the processor also tags the
data generated from spurious data as spurious. We call this
technique dynamic information flow tracking. There can be
different types of dependencies, and the types of dependen-
cies to be tracked can be specified as a part of a security
policy (cf. Section 4).

Finally, if the use of spurious data or execution of spu-
rious instructions violates a specified policy, the processor
detects it and generates an exception, which will be handled
by the operating system. In general, the exception indicates
an intrusion, and the operating system needs to terminate
the victimized process.

In the rest of the paper, we show that this approach is
very efficient in detecting many types of security attacks
without producing false positives.

2.3 Example 1: Stack Smashing

A simple example of the stack smashing vulnerability is
presented to demonstrate how our protection scheme works.
The example is constructed from vulnerable code reported
for Tripbit Secure Code Analizer at SecurityFocusTM in
June 2003.

int single_source(char *fname)
{

char buf[256];
FILE *src;

src = fopen(fname, "rt");

while(fgets(buf, 1044, src)) {
...

}

return 0;
}

Other variables

buf

(256 Bytes)

Return Address

Top of Stack

Attack

(a)

Other variables

Malicious

Input data

from

fget()

Top of Stack

Used for
return

Tagged
“spurious”

(b)

Figure 3. The states of the program stack before
and after a stack smashing attack.

The above function reads source code line-by-line from
a file to analyze it. The program stack at the beginning of
the function is shown in Figure 3 (a). The return address
pointer is saved by the calling convention and the local vari-
able buf is allocated in the stack. If an attacker provides
a source file with a line longer than 256 characters, buf
overflows and the stack next to the buffer is overwritten as
in Figure 3 (b). An attacker can modify the return address
pointer arbitrarily, and change the control flow when the
function returns.

Now let us consider how this attack is detected in our
scheme. When a function uses fgets to read a line from
the source file, it invokes a system call to access the file.
Since an operating system knows the data is from the file
I/O, it tags the I/O inputs as spurious. In fgets, these

3

values may be copied and processed to be put into the
buffer. Dynamic information flow tracking tags these pro-
cessed values as spurious (cf. computation dependency in
Section 3). As a result, the values written to the stack by
fgets are tagged spurious. Finally, when the function re-
turns, it uses the ret instruction. Since the instruction is a
register-based jump, the processor checks the security tag of
the return address pointer, and generates an exception since
the pointer is spurious.

2.4 Example 2: Format String Attacks

We also show how our protection scheme detects a for-
mat string attack with %n to modify program pointers in
memory. The following example is constructed based on
Newsham’s document on format string attacks [9].

int main(int argc, char **argv)
{

char buf[100];

if (argc != 2) exit(1);

snprintf(buf, 100, argv[1]);
buf[sizeof buf - 1] = 0;
printf(‘‘buffer: %s\n’’, buf);

return 0;
}

The general purpose of this example is quite simple:
print out a value passed on the command line. Note that the
code is written carefully to avoid buffer overflows. How-
ever, the snprintf statement causes the format string vul-
nerability because argv[1] is directly given to the func-
tion without a format string.

For example, an attacker can provide ’’aaaa%n’’ to
overwrite the address 0x61616161 with 4. First, the
snprintf copies the first four bytes aaaa of the input
into buf. Then, it encounters %n, which is interpreted as
a format string to store the number of characters written so
far in the memory location indicated by an argument. The
number of characters written at this point is four, and with-
out an argument specified, the pointer to buf is used as
the argument. The first four bytes of buf has the value
0x61616161, which corresponds to the copied aaaa.
Therefore, the program writes 4 into 0x61616161. Us-
ing the same trick, an attacker can simply modify a return
address pointer to take conrol of the program.

The detection of the format string attack is similar to
the buffer overflow case. First, knowing that argv[1]
is from a spurious I/O channel, the operating system tags
it as spurious. This value is passed to snprintf and

copied into buf. Finally, for the %n conversion specifica-
tion, snprintf uses a part of this value as an address to
store the number of characters written at that point (4 in the
example). All these spurious flows are tracked by our in-
formation flow tracking mechanism (cf. direct copy depen-
dency and store dependency in Section 3). As a result, the
value written by snprintf is tagged spurious. The pro-
cessor detects an attack and generates an exception when
this spurious value is used as a branch target.

3 Dynamic Information Flow Tracking

The effectiveness of our protection scheme largely de-
pends on the processor’s ability of tracking flows of spu-
rious data. An attack can be detected only if a malicious
information flow is tracked by the processor. This section
discusses the types of information flows that are relevant to
attacks under our attack model and explains how they can
be efficiently tracked in the processor.

3.1 Security Tags

We use a one-bit tag to indicate whether the correspond-
ing data block is authentic or spurious. It is straightforward
to extend our scheme to multiple-bit tags if there are many
types or sources of data. However, since we only have to
distinguish two types of data, one bit is sufficient for this
particular setting. In the following discussion, tags with
zero indicate authentic data and tags with one indicate spu-
rious data.

For our purposes, the term authenticity is used to indicate
whether the value is under a program’s control or not. For
example, a return address stored by the processor is under
the program’s control and safe to be used as a jump target.
On the other hand, a program cannot predict a value from
an I/O channel, and it will cause unpredictable behavior if
the value is used as a jump target.

In the processor, each register needs to be tagged. In
the memory, data blocks with the smallest granularity that
can be accessed by the processor are tagged separately. We
assume that there is a tag per byte since many architec-
tures support byte granularity memory accesses and I/O.
Section 5 shows how the per-byte tags can be efficiently
managed with minimal space overhead.

The tags for registers are initialized to be zero at program
start-up. Similarly, all memory blocks are initially tagged
with zero. The operating system tags the data with one only
if they are from a potentially malicious input channel.

The security tags are a part of program state, and should
be managed by the operating system accordingly. On a con-
text switch, the tags for registers are saved and restored with
the register values. The operating system manages a sepa-

4

rate tag space for each process, just as it manages a separate
virtual memory space per process.

3.2 Information Flow Types

Spurious data can affect the authenticity of other reg-
isters or memory locations in many different ways. We
categorize these dependencies into four types: direct copy,
computation dependency, load dependency, and store de-
pendency.

• direct copy dependency: If a spurious value is simply
copied into a different location, the value of the new
location is also spurious.

• computation dependency: A spurious value may be
used as an input operand of a computation. In this
case, the result of the computation directly depends on
the input value. For example, in an arithmetic instruc-
tion ADD Rd, Rs1, Rs2, the value in Rd directly
depends on the values of Rs1 and Rs2. If either of
the inputs are spurious, the output data is considered
spurious.

• load dependency: When a spurious value is used to
specify the address to access, the loaded value is con-
sidered spurious. Unless the bound of the value is ex-
plicitly checked by the program, the result could be
any value since it is from an unpredictable address.

• store dependency: Just as in the load dependency, the
stored value becomes spurious if the store address is
determined by a spurious value. If a program does not
know where it is storing a value, it would not expect
the value in the location to be changed when it loads
from that address in the future.

In general, a value can propagate to other locations
through a control dependency as well. For example, in the
following example, the value of v2 is determined by the
value of v1.

if (v1 == 1) {
v2 = 1;

} else {
v2 = 0;

}

However, we deem that the authenticity of v2 is not af-
fected by the authenticity of v1 because the value of v2 is
completely controlled by the program itself (there are only
two possible values). This is true for most control depen-
dencies and hence we do not consider control dependency
currently in our scheme.

In general, we note that a program can implement op-
erations with spurious information flows so that the flow

can only be detected through the control dependency. For
example, many arithmetic operations such as additions and
copying can be implemented with loops and comparisons
which do not cause actual computation dependency or di-
rect copy dependency. However, these implementations are
extremely inefficient compared to the ones that use the in-
structions for computations or data movement. Therefore,
reasonably good compilers are very unlikely to generate
such programs.

There is one case that we know of that cannot be done
efficiently with other dependencies and may cause spuri-
ous information flows: counting. For example, counting
the number of zeroes in an array will require going through
an array and checking each element. The result will only
have control dependency from the array, which may con-
tain spurious data. Fortunately, even attacks using this type
of untracked data can be detected by other dependencies. In
the format string attack (cf. Section 2.4), a spurious value is
not tracked because it is generated by counting the number
of characters written at a particular point. However, to use
this value for an attack, the value should be written to the
memory location specified by a spurious input. As a result,
the store dependency detects the attack.

3.3 Tracking Information Flows

Processors dynamically track spurious information flows
by tagging the result of an operation as spurious if it has a
dependency from spurious data. If a spurious data is directly
copied, a copy is always tagged as spurious. On the other
hand, for flexibility, other dependencies to be tracked are
specified by the operating system in a bit vector Mask. For
example, computation dependencies are tracked only if the
first bit in the vector Mask[0] is set. Similarly, Mask[1]
and Mask[2] indicate whether the processor tracks the
load dependency and the store dependency, respectively.

Table 1 summarizes how a new security tag is computed
for different operations. For arithmetic or logical opera-
tions, the result is spurious if any of the inputs are spurious
and computation dependency is specified to be tracked. For
load or store operations, the security tag of the source al-
ways propagates to the destination since the value is directly
copied. In addition, the result may also become spurious if
the accessed address is spurious.

Some operations may use processor states or immedi-
ate values encoded in a instruction to obtain the result. For
example, jump-and-link instructions update a register with
the program counter plus four. In these cases, the proces-
sor states and immediate values are considered authentic. In
our scheme a processor only executes authentic instructions,
therefore the immediate values must be authentic. Proces-
sor states are authentic because attackers do not have any
way to directly modify them.

5

Operation Example Meaning Tag Propagation

Computation ADD R1, R2, R3 <R1>←<R2>+<R3> T[R1]←(T[R2]|T[R3])&Mask[0]
ADDI R1, R2, #Imm <R1>←<R2>+Imm T[R1]←T[R2]&Mask[0]

Load LW R1, Imm(R2) <R1>←Mem[<R2>+Imm] Temp←T[Mem[<R2>+Imm]];
T[R1]←Temp|(T[R2]&Mask[1])

Store SW Imm(R1), R2 Mem[<R1>+Imm]←<R2> Temp←T[R2]|(T[R1]&Mask[2]);
T[Mem[<R1>+Imm]]←Temp

Branch/Jump JALR R1 <R31>←PC+4; PC←<R1> T[R31]←0

Table 1. Tag computations for tracking each type of dependencies. <Ri> represents the value in a general
purpose register. Mem[] represents the value stored in the specified address. T[] represents the security tag
for a register or a memory location specified.

3.4 Implementation Complexity

It is trivial to implement our information tracking
scheme in a processing core. In addition to security tags
for registers, our scheme only requires a simple one-bit ma-
nipulation for computing a new tag, which can be done in
parallel with the corresponding operation. Since this can be
performed completely separately from regular operations,
tag manipulation will not increase the latency of other op-
erations.

4 Security Policies

The presented information tracking mechanism provides
a powerful tool to make strong security guarantees. Po-
tentially malicious data can be identified, and restricted to
be used only for safe operations. Security policies specify
what should be identified as spurious, and what operations
are allowed (or not allowed) with the spurious data. In our
scheme, the security policy consists of 3 parts: spurious in-
put channels, dependencies to be tracked, and restrictions.

Good security policies are essential for the effectiveness
of our protection scheme. If the policy is too restrictive,
it may cause a lot of false alarms without intrusion. On
the other hand, if the policy is too loose, many attacks will
not be detected. This section discusses the possible design
space and other considerations for security policies.

In this paper, we assume the security policy is specified
in the operating system and enforced mostly by the proces-
sor. It is also possible to have other software layers such
as program shepherding [8] to enforce more complicated
security policies using information from the flow tracking
mechanism. However, the flexibility provided by an addi-
tional software layer comes with increased space and per-
formance overheads (cf. Section 7).

4.1 Input Channels

The security policy first needs to specify which input
channels should be tagged as spurious. A program can have

many different input channels such as network I/O, disk I/O,
user interfaces, and shared pages among processes. For
most privileged applications such as daemons, attacks are
mainly from network I/O and it will be sufficient to tag the
network input as spurious. However, it should be noted that
no attack through an input channel can be detected unless
the channel is specified as spurious.

4.2 Information Flow Types

The types of dependencies to be considered as spurious
information flow should also be specified in the security
policy. As discussed in the previous section, there are four
dependencies, each of which will be needed to detect differ-
ent types of attacks.

• direct copy: Simple attacks that directly modify values
to be used as instructions or jump targets can be de-
tected with just direct dependency. For example, sim-
ple forms of stack smashing attacks, which are some
of the most popular buffer overflow attacks, will be
detected.

• computation dependency: Detecting attacks that mod-
ify values before its malicious use requires that compu-
tation dependency be tracked. For example, if an over-
flown buffer gets processed before the value is used,
the dependency from direct copy alone will not detect
the attack.

• load dependency: Load dependency should be tracked
for attacks that modify a data pointer. For example,
an attack to corrupt a pointer in a double-linked list
of malloc header is reported in [7]. When free
is called, random memory locations are modified. In
order to track this malicious flow, load dependency is
required.

• store dependency: To detect %n format string attacks,
store dependency needs to be tracked. In this attack,

6

a malicious value can be generated without visible de-
pendency on spurious inputs. However, the location to
store the value is given by the spurious inputs.

4.3 Restrictions for Use

To defeat attacks that attempt to take control of a pro-
gram, we propose to restrict the use of spurious values as
executable instructions and jump targets. These restrictions
are enforced by a processor, and violations are reported as
exceptions.

• executable: Do not allow spurious instructions to be
executed. This restriction prevents attacks that inject
malicious code into a program’s address space.

• jump target: Do not allow spurious data to be used as
a branch/jump target address. This stops attacks from
changing the control flow.

The operating system can further restrict the use of spuri-
ous data in order to stop attacks with more subtle objectives
than simply hijacking a program.

• arguments of system calls: Do not allow spurious data
as arguments of selected system calls. On a system
call, the operating system can verify if the arguments
are authentic.

This restriction can limit the impact of attacks even if
they only modify data without attempting to change
the control flow. For example, the operating system
may not allow a program to make a system call open
with spurious arguments. If there is a malicious attack
that tries to corrupt the system’s files by changing file
names in the program, it will be detected.

• program results: Do not accept the results of a pro-
gram if they are spurious. If channels that should not
affect a certain result of a program can be identified,
those inputs are tagged spurious. The result will be
accepted only if tagged authentic. By checking the se-
curity tag, a user can be more confident of the integrity
of the results.

5 Efficient Tag Management

Dynamic information flow tracking only requires mini-
mal modification to the processing core as discussed in Sec-
tion 3. On the other hand, managing a tag for each byte in
memory can result in up to 12.5% storage and bandwidth
overhead if implemented naively. This section discusses
how security tags for memory can be managed efficiently.

Type value Meaning

00 all 0 (per-page)
01 per-quadword tags
10 per-byte tags
11 all 1 (per-page)

Table 2. Example type values for security tags and
their meaning.

5.1 Multi-Granularity Security Tags

Even though a program may manipulate values in mem-
ory with byte granularity, writing each byte separately is not
the common case. For example, programs often write a reg-
ister’s worth of data at a time, which is a word for 32-bit
processors or a quadword for 64-bit processors. Moreover,
a large chunk of data may remain authentic for the entire
execution. Therefore, allocating memory space and manag-
ing a security tag for every byte is likely to be a waste of
resources.

We propose to have security tags with different granu-
larities for each page depending on the type of writes to the
page. The operating system maintains two more bits in each
page table to indicate the type of security tags that the page
has. One example for 64-bit machines, which has four dif-
ferent types, is shown in Table 2.

Just after an allocation, a new authentic page holds a per-
page tag, which is indicated by type value 00. There is no
reason to allocate separate memory space for security tags
since the authenticity is indicated by the tag type.

Upon the first store operation with a non-zero security
tag to the page, a processor generates an exception for tag
allocation. The operating system determines the new gran-
ularity of security tags for the page, allocates memory space
for the tags, and initializes the tags to be all zero. If the gran-
ularity of the store operation is smaller than a quadword,
per-byte security tags are used. Otherwise, per-quadword
tags, which only have 1.6% overhead, are chosen.

If there is a store operation with a small granularity for a
page with per-quadword security tags, the operating system
reallocates the space for per-byte tags and initializes them
properly. Although this operation may seem expensive, our
experiments indicate that it is very rare (happens in less than
1% of pages).

Finally, the type value of 11 indicates that the entire page
is spurious. This type is used for shared pages writable by
other processes that the operating system identifies as po-
tentially malicious. Any value stored in these pages is con-
sidered spurious even if the value was authentic before.

7

Core

D$-L1

L2

I$-L1

D-TLB

I-TLB

T$-L2

T$-L1

Regs

Tag Types,
Pointers

Security
Tags

Memory Bus

Figure 4. On-chip structures to manage security
tags. Dark (blue) boxes represent additional struc-
tures.

5.2 On-Chip Structures

Figure 4 illustrates the implementation of the security
tag scheme in a processor. Dark (blue) boxes in the figure
represent new structures required for the tags. Each register
has one additional bit for a security tag. For cache blocks,
we introduce separate tag caches (T$-L1 and T$-L2)
rather than tagging each cache block with additional bits.

Adding security tags to existing cache blocks will require
a translation table between the L2 cache and the memory in
order to find physical addresses of security tags from physi-
cal addresses of L2 blocks. Moreover, this approach will re-
quire per-byte tags in the caches, which is wasteful in most
cases. Similarly, sharing the same caches between data and
security tags is also undesirable because it would prevent
parallel accesses to both data and tags unless the caches are
dual-ported.

TLBs contain the information about security tags in ad-
dition to regular virtual to physical translations. First, the
TLB returns two bits for the tag type of a page. If the se-
curity tags are not per-page granularity tags, the TLB also
provides the base address of the tags. Based on this infor-
mation, the processor can issue an access to the tag cache.

6 Evaluation

This section evaluates our protection scheme through de-
tailed simulations. We first study the functional effective-
ness of the scheme, and then discuss memory space over-
head and performance overheads.

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-cache 64KB, 2-way, 32B line
L1 D-cache 64KB, 2-way, 32B line

L2 cache Unified, 1MB, 4-way, 128B line
L1 T-cache 8KB, 2-way, 8B line
L2 T-cache 1/8 of L2, 4-way, 16B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

TLB latency 160
Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

Table 3. Architectural parameters.

Our simulation framework is based on the SimpleScalar
3.0 tool set [1]. For the functional evaluation and mem-
ory space overhead, sim-fast is modified to incorporate
our information flow tracking mechanism. For performance
overhead study, sim-outorder is used with a detailed
memory bus model. The architectural parameters used in
the performance simulations are shown in Table 3. Sim-
pleScalar is configured to execute Alpha binaries, and all
benchmarks are compiled on EV6 (21264) for peak perfor-
mance.

Policy Tracked information flows

1 Direct
2 Direct+Comp
3 Direct+Comp+LD
4 Direct+Comp+ST
5 Direct+Comp+LD+ST
6 Direct+LD
7 Direct+ST
8 Direct+LD+ST

Table 4. Security policies used for simulations.
Direct, Comp, LD, and ST represents direct
copying dependency, computation dependency,
load dependency, and store dependency.

We define eight security policies shown in Table 4 based
on the types of information flows to be tracked, and use
them in our simulations. In each security policy, all input
channels to a program are considered potentially malicious.
Thus, all input data from a system call are tagged spurious.
Note that this makes each policy as conservative as possible,
which implies potentially greater likelihood of false alarms
and overheads. The use of spurious values is not allowed in

8

executable instructions and branch/jump target addresses.

6.1 Effectiveness

To evaluate the effectiveness of our approach in detect-
ing malicious software attacks, we tested a set of bench-
marks with various vulnerabilities such as buffer overflows
and format strings.

• Stack buffer overflows: Stack smashing attacks
based on a “cookbook” [10] and Tripbit Secure Code
Analizer are detected and stopped by our protection
scheme. The experiments show that all policies with
direct copying dependency and computation depen-
dency (Policy 2 - 5) successfully detect the attacks.

• Heap buffer overflows: Attackers can also exploit
buffer overflows in the heap area. In most cases,
the attack involves injecting malicious code in the
heap. Thus, these attacks are stopped by not execut-
ing spuriuos instructions in our scheme with Policy
2 - 5. The following instances that are reported at
SecurityFocusTM are studied.

WSMP3, Tinyproxy, and Solaris xlock: Attackers can
inject the shell code and a program pointer into the
heap by providing long inputs. Attackers can execute
arbitrary code with effective privileges of the vulnera-
ble programs.

Null HTTPd: By passing a negative content length
value to the server, attacks can modify the allocation
size of the read buffer, which results in a heap over-
flow.

• vudo: As a heap buffer overflow attack, overwriting a
file of a linked list of malloc is suggested [7]. The
spurious values are tracked by load dependency and
the attack is stopped by our scheme with Policy 3 or 5.

• Format string attacks: Format string attack based on
Newsham’s document [9] is studied. This attack is de-
tected for the policies with store dependency (Policy 4
and 5) because it overwrites the memory location spec-
ified by spurious input.

The other concern for the effectiveness of a protection
scheme is whether it causes false alarms without intrusion.
To evaluate the false alarms, we simulated SPEC CPU2000
benchmarks [6] with our security policies. Each benchmark
is simulated for at least 100 billion instructions to obtain the
results.

Table 5 summarizes the number of false alarms that our
scheme causes in SPEC CPU2000 benchmarks. For all poli-
cies, there are no false alarms from executing spurious in-
structions. All false alarms were due to using spurious val-
ues for branch/jump target addresses.

Security policies
Benchmark 1 2 3 4 5 6 7 8

ammp 0 0 0 0 0 0 0 0
applu 0 0 4 0 4 0 0 0
apsi 0 0 8 0 8 0 0 0
art 0 0 0 0 0 0 0 0

crafty 0 0 0 0 0 0 0 0
eon 0 0 16 0 16 0 0 0

equake 0 0 0 0 0 0 0 0
gzip 0 0 0 0 0 0 0 0
mcf 0 0 0 0 0 0 0 0

mesa 0 0 0 0 0 0 0 0
mgrid 0 0 4 0 4 0 0 0
parser 0 0 0 0 0 0 0 0

sixtrack 0 0 18 0 18 0 0 0
swim 0 0 4 0 4 0 0 0
twolf 0 0 0 0 0 0 0 0
vpr 0 0 2 0 2 0 0 0

wupwise 0 0 4 0 4 0 0 0

total 0 0 42 0 42 0 0 0
ave 0 0 2.5 0 2.5 0 0 0

Table 5. The number of false alarms for SPEC
CPU2000 benchmarks with various security poli-
cies. All false alarms result from using spurious
values as branch target addresses.

As shown in the table, there are no false alarms if load
dependency is ignored (policy 1-2, 4, 6-8). The most re-
strictive policy (policy 5) can be enforced without false
alarms for nine out of seventeen benchmarks. In general,
the results demonstrate our security policies are reasonable
to enforce for most programs.

The load dependency can result in false alarms because
spurious data can be often used legitimately to access jump
tables. For example, to implement switch statements in
C, a compiler may generate code that simply checks the
bound of the case value and converts it to an index into a
jump table. In this case, the index is tagged spurious if the
case value is spurious, and with load dependency a pointer
from the jump table will also be tagged spurious.

Given the ways spurious values are used to load a pro-
gram pointer, it is straightforward for compilers or operat-
ing systems to distinguish false alarms from legitimate uses.
To enforce the restrictive policies with load dependencies
for applications that have false alarms, compilers or operat-
ing systems can specify those particular loads as legitimate
so that the spurious tag bit does not propagate. This will
eliminate all the false alarms of Table 5.

9

6.2 Memory Space Overhead

Dynamic information tracking only requires minimal
modifications to the processing core. The only noticeable
space overhead comes from storing security tags for mem-
ory. This subsection evaluates our tag management scheme
described in Section 5 in terms of actual storage overhead
for security tags compared to regular data.

Table 6 summarizes the space overhead of security tags
for two policies. Policy 1 has the least space overhead since
it only tracks the direct copying dependency. On the other
hand, Policy 5 has the most space overhead since it tracks
all four types of dependencies.

For security policies without the computation depen-
dency, the amounts of spurious data are often very limited.
As a result, most pages have per-page tags, and the space
overhead of security tags is almost negligible. For exam-
ple, Policy 1 in the table results in over 97.5% pages with
per-page tags and only 0.2% space overhead on average.

On the other hand, with the computation dependency
tracked, the amount of spurious data is often significant. In
fact, there may be more spurious data than authentic data as
indicated by only 27% per-page tags. However, even in this
case, most memory accesses are done in quadword granu-
larity and the space overhead of tagging can be kept small.
For example, ten out of seventeen benchmarks had less than
2% space overhead. On average, for Policy 5, the space
overhead is 4.5% for the chosen SPEC benchmarks.

6.3 Performance Overhead

Finally, we evaluate the performance overhead of our
scheme compared to the baseline case without any pro-
tection mechanism. Unlike the functional studies where
we simulated seventeen benchmarks, we selected 8 bench-
marks that have various characteristics of tag space over-
head and memory bandwidth usage. For each benchmark,
the first 1 billion instructions are skipped, and the next 100
million instructions are simulated. We will report results on
a more complete set in the final version of this paper (if ac-
cepted) – however, the provided results are representative.

In the experiments, the same cache sizes are used for
both our mechanism and the baseline case. We note that
our scheme has on-chip logic overhead of additional tag
caches. However, it is also not accurate to simply increase
the caches for the baseline to compensate it because larger
caches will have longer access latencies. At the same time,
the simulation framework did not allow us to increase the
cache size by just 12.5%. Therefore, we have ignored the
difference in cache sizes. Given diminishing performance
returns for larger caches, the error from this approximation
is unlikely to be significant.

applu art gzip mcf mesa swim twolf vpr
0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 IP
C

512KB
1MB
4MB

Figure 5. Performance overhead of our security
mechanism over various L2 cache sizes. The
worst-case performance degradation is about 6
percent (twolf).

applu art gzip mcf mesa swim twolf vpr
0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 IP
C

128KB
64KB
32KB

Figure 6. Performance degradation with small L2
tag caches. All IPCs were normalized to the IPC for
the baseline case without any security mechanism
(with 2 MB unified L2 cache).

Figure 5 shows that performance overhead of our mecha-
nism is modest with 1.2 percent on average over various L2
cache sizes. Note that even the benchmarks causing large
space overhead such as twolf and vpr have acceptable
degradation of IPCs (about 3 % on average).

Performance is also affected by the size of tag caches.
In the worst case, we should have a tag cache whose size
is one-eighth of the corresponding data/instruction cache in
order not to introduce a new overhead caused by tag cache
miss even in case of data/instruction cache hit. However,
our simulation results in figure 6 demonstrate that smaller
tag caches works in most cases without imposing a signifi-
cant performance cost. In the graph, we observe that IPCs
are stable with the size of L2 tag cache in the range of 1/8
(128 KB) to 1/32 (32 KB) of the unified L2 cache size. Only
when the program being executed has a large number of

10

Policy 1 (%) Policy 5 (%)
Benchmark Per-Page Per-QWord Per-Byte Overhead Per-Page Per-QWord Per-Byte Overhead

ammp 99.85 0.00 0.15 0.02 1.58 4.58 93.84 11.80
applu 99.99 0.00 0.01 0.00 0.94 99.02 0.03 1.55
apsi 99.97 0.00 0.03 0.00 60.38 39.55 0.07 0.63
art 82.46 0.00 17.54 2.19 6.45 75.60 17.94 3.42

crafty 99.02 0.00 0.98 0.12 97.70 0.00 2.30 0.29
eon 97.97 0.00 2.03 0.25 79.73 6.76 13.51 1.79

equake 99.71 0.00 0.29 0.04 3.44 31.93 64.64 8.58
gzip 82.25 14.10 3.65 0.68 52.53 43.72 3.75 1.15
mcf 99.99 0.00 0.01 0.00 0.09 99.88 0.03 1.56

mesa 99.62 0.00 0.38 0.05 46.26 0.08 53.66 6.71
mgrid 99.94 0.00 0.06 0.01 1.61 98.27 0.12 1.55
parser 99.82 0.00 0.18 0.02 1.55 0.11 98.34 12.29

sixtrack 99.69 0.00 0.31 0.04 79.13 19.66 1.21 0.46
swim 99.98 0.00 0.02 0.00 0.49 99.47 0.04 1.56
twolf 98.60 0.00 1.40 0.18 22.11 5.61 72.28 9.12
vpr 99.74 0.00 0.26 0.03 1.04 1.47 97.49 12.21

wupwise 99.98 0.00 0.02 0.00 0.53 99.43 0.04 1.56

ave 97.56 0.83 1.61 0.21 26.80 42.66 30.55 4.48

Table 6. Space overhead of security tags. For each policy, the percentages of pages with per-page tags, per-
quadword tags, and per-byte tags are shown. Finally, Overhead represents the space required for security
tags compared to regular data. All numbers are in percentages.

per-byte tags as in twolf, the size of tag cache affects the
performance significantly.

7 Related Work

There have been a number of other efforts to provide au-
tomatic detection and protection against buffer overflow and
format string attacks. We summarize some of the successful
ones for each type of possible approaches.

StackGuard [3], StackShield [14] are both compiler
patches that are targeted to prevent stack smashing attacks.
StackGuard places a “canary” next to a return address in a
stack, and ensures that it’s value is unchanged. Similarly,
StackShield keeps a copy of the actual return address sep-
arately, and checks the address before using it. Both tech-
niques only work for specific type of buffer overflow attacks
that modify a return address in a stack, and require recom-
pilation.

StackGhost [5] is a kernel patch that performs an xor
operation on the return address before it is written to the
stack and before it is used for control transfer. Return ad-
dress corruption results in a transfer unintended by the at-
tacker.

Enforcing non-executable permissions on IA-32 via ker-
nel patches has been done for stack pages [4] and for data
pages in PaX [11]. However, these techniques cannot be
used for applications with legitimate use of dynamically

generated code such as just-in-time compilation. Moreover,
attacks can simply reuse existing code and bypass these pro-
tection techniques.

FormatGuard [2] is a library patch for eliminating format
string vulnerabilities. It provides wrappers for the printf
functions that count the number of arguments and match
them to the specifiers. It is applicable only to functions that
use the standard library functions directly, and it also re-
quires recompilation.

Program shepherding [8] monitors control flow transfers
during program execution and enforces a security policy.
Our scheme also restrict control transfers based on their tar-
get addresses at run-time. However, there are significant
differences between our approach and program shepherd-
ing. First, program shepherding is implemented based on a
dynamic optimization infrastructure, which is an additional
software layer between a processor and an application. As a
result, program shepherding has high overheads. The space
overhead is reported to be 16.2% on average and 94.6% in
the worst case, compared to 4.5% and 12.5% in our case.
Program shepherding also incurs up to 7.6X performance
slowdown.

The advantage of having a software layer rather than a
processor itself checking a security policy is that the poli-
cies can be more complex. However, a software layer with-
out architectural support cannot determine a source of data
since it requires intervention on every operation. As a result,

11

the existing program shepherding schemes only allow code
that is originally loaded, which prevents legitimate use of
dynamic code. If a complex security policy is desired, our
dynamic information flow tracking mechanism can provide
sources of data that can be used as part of a security policy
in program shepherding.

Our tagging mechanism is similar to the ones used for
information flow control [12]. The goal of the information
flow control is to protect private data by restricting where
that private data can flow into. In our case, the goal is to
track a piece of information so as to restrict its use, rather
than restricting its flow as in [12]. Although the idea of tag-
ging and updating the tag on an operation is not new, the
actual dependencies we are concerned with are different,
and therefore our implementation is different. Recent work
uses a processor to remember and check a return address
to thwart stack smashing and related attacks [15]. This ap-
proach only works for very specific types of stack smashing
attacks that modify return addresses.

Static approaches for information flow control are pro-
posed as a more powerful way of ensuring information flow
security [13]. However, static analysis cannot be used for
our purpose because attacks exploit program bugs at run-
time.

8 Conclusion

The paper presented a hardware mechanism to track dy-
namic information flow and applied this mechanism to pre-
vent malicious software attacks. In our scheme, the operat-
ing system identifies spurious input channels, and a proces-
sor tracks the spurious information flow from those chan-
nels. A security policy concerning the use of the spuri-
ous data is enforced by the processor. Experimental results
demonstrate that this approach is effective in automatic de-
tection and protection of security attacks, and very efficient
in terms of space and performance overheads.

To enhance the security our mechanism, we plan to add
some forms of control flow dependencies in the flow track-
ing. Specifically, simply tracking control dependencies
within a loop will cover most cases that can generate spuri-
ous results.

In our current implementation, there are some legitimate
use of jumps that depends on spurious data such as an im-
plementation of switch statements. To be remain trans-
parent to an application, automated analysis of executable
code that can identify the legitimate jumps with potential
false alarms is required. Our current scheme is also lim-
ited to only one source since it only has one-bit tag. Studies
on more detailed security policies with multiple sources re-
main to be done.

We have only discussed how the information flow track-
ing can prevent attacks that try to take control of a vulner-

able program. However, the technique to identify spurious
information flow can be used to enhance other aspects of
security such as data integrity. For example, the current
approach only detects attacks with malicious control trans-
fers. If we can disallow changing a security-sensitive mem-
ory segment based on spurious data, it will be also possible
to protect the integrity of that segment. We plan to inves-
tigate other applications of information flow tracking with
more complicated security policies. We believe that this is
a promising direction for future research.

References

[1] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical report, University of Wisconsin-Madison
Computer Science Department, 1997.

[2] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
FormatGuard: Automatic protection from printf format
string vulnerabilities, 2001. In 10th USENIX Security Sym-
posium, Washington, D.C., August 2001.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. 7th USENIX Security Sym-
posium, pages 63–78, San Antonio, Texas, Jan. 1998.

[4] S. Designer. Non-executable user stack.
http://www.openwall.com/linux/.

[5] M. Frantzen and M. Shuey. Stackghost: Hardware facili-
tated stack protection. In Proc. 10th USENIX Security Sym-
posium, Washington, D.C., Aug. 2001.

[6] J. L. Henning. SPEC CPU2000: Measuring CPU perfor-
mance in the new millennium. IEEE Computer, July 2000.

[7] M. Kaempf. Vudo - an object superstitiously believed to
embody magical powers. Phrack, 8(57), Aug. 2001.

[8] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure ex-
ecution via program shepherding. In Proc. 11th USENIX
Security Symposium, San Francisco, California, Aug. 2002.

[9] T. Newsham. Format string attacks. Guardent, Inc., Septem-
ber 2000.
http://www.guardent.com/docs/
FormatString.PDF.

[10] A. One. Smashing the stack for fun and profit. Phrack,
7(49), Nov. 1996.

[11] PaX Team. Non executable data pages.
http://pageexec.virtualave.net/
pageexec.txt.

[12] H. J. Saal and I. Gat. A hardware architecture for controlling
information flow. In Proceedings of the 5th Annual Sympo-
sium on Computer Architecture, 1978.

[13] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1), Jan. 2003.

[14] Vendicator. Stackshield: A “stack smashing” technique pro-
tection tool for linux.
http://www.angelfire.com/sk/
stackshield/.

12

[15] J. Xu, Z. Kalbarczjk, S. Patel, and R. K. Iyer. Architecture
support for defending against buffer overflow attacks. In
Proc. 2nd Workshop on Evaluating and Architecting System
dependability (EASY), 2002.

13

