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ABSTRACT 
A modular synthesis flow is essential for a scalable and 
hierarchical design methodology. This paper considers a 
particular modular flow where each module has interface methods 
and the internal behavior of the module is described in terms of a 
set of guarded atomic actions on the state elements of the module. 
A module can also read and update the state of other modules but 
only by invoking the interface methods of those modules. This 
paper extends the past work on hardware synthesis of a set of 
guarded atomic actions by Hoe and Arvind to modules of such 
actions. It presents an algorithm that, given the scheduling 
constraints on the interface methods of the called modules, 
derives the "glue logic" and the scheduling constraints for the 
interface methods of the calling module such that the atomicity of 
the guarded actions is preserved across module boundaries. Such 
modules provide reusable IP which facilitates “correctness by 
construction” design methodology. It also reduces compile-times 
dramatically in comparison to the compilation that flattens all the 
modules first. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 
hardware description languages. 

General Terms 
Algorithms, Design, Languages, Verification. 

1. ATOMIC ACTIONS:  A BASIS FOR HDL 
There has been a strong interest in high-level design languages 
which can bridge the gap between behavioral modeling and 
efficient hardware synthesis. Commercial efforts have focused 
either on raising the level of RTL languages so that they are more 
suitable for modeling (e.g., Verilog to Behavioral Verilog) or on 
finding suitable extensions and restrictions on conventional 
languages so that they are more appropriate as an HDL (e.g., C or 
C++ to SystemC). Typically, Control Data Flow Graphs 
(CDFG’s) are extracted from the source language program and 
techniques for compiling SIMD and VLIW architectures are used 
to generate register transfer logic[8, 9]. These efforts have yet to 
provide a language that is widely accepted for hardware synthesis. 
Another type of research has focused on synthesis of specialized 
versions of programmable processors [10, 15]. These efforts are 
only tangentially related to general purpose HDLs because the 

primary focus is on processor issues such as instruction encodings 
and the automatic generation of assemblers, compilers, etc.  

In the research community two other types of languages have been 
explored that have the potential to raise the level of HDL's. One 
type of effort is based on synchronous specification languages 
such as Esterel, Signal, and Lustre which were all designed to deal 
with real-time issues[3]. Berry[4] and Edwards[7]  have presented  
methods to generate hardware from Esterel but these efforts have 
yet to yield high quality hardware in comparison to synthesis from 
Verilog RTL. The other effort is based on asynchronous 
languages employing atomic actions, which have been used for 
decades to describe distributed algorithms[5, 13]. Some of the 
examples in the hardware domain are Dill's Murphi[6], 
Straunstrup's Synchronous transactions[16], Sere's Action 
systems[14], and Arvind & Shen’s TRS’s[1]. The main idea 
underlying all such behavioral descriptions is that any hardware 
system has a (structural) state component that can be captured by 
a set of variables that represent registers or storage, and the 
behavior is nothing but a set of rules, i.e. atomic actions with 
guards, on this state. A precise and useful semantics emerges from 
the fact that any legitimate behavior of the system can be 
understood as a series of atomic actions on this state.  

Hoe and Arvind have shown that such atomic descriptions are 
also amenable to efficient hardware synthesis if the actions of a 
rule are assumed to take effect in one clock cycle[11, 12]. Hoe's 
compiler had three types of built-in state elements, i.e., registers, 
arrays and FIFO's, and accepted as input a set of rules (guarded 
atomic actions) on these state elements. It then performed analysis 
based on "rule conflicts" to produce the update logic for state 
elements as well as a hardware scheduler that allowed many of the 
enabled rules to execute in parallel. The compiler generated RTL 
Verilog which could be further synthesized to ASIC's or FPGA's 
using standard commercial synthesis tools. 

This work provided the basis for the development of Bluespec[2], 
an object oriented HDL. In Bluespec an object represents a 
hardware module with internal state, rules to manipulate the state, 
and an interface (a set of methods) through which other modules 
can observe and manipulate this state. In contrast to Hoe’s 
compiler, Bluespec has the power to express FIFO’s, arrays and 
any other hardware building-block as a user defined module using 
only registers. However, the current Bluespec compilation process 
is not modular because it flattens (i.e., merges) each non-primitive 
module before using Hoe’s analysis to generate RTL Verilog.  

The initial motivation for introducing a modular compilation flow 
grew out of our work on microprocessor synthesis where we used 
FIFO’s parameterized by recursive search functions. The search 
functions returned values that could be bypassed to earlier 
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pipeline stages. These descriptions were more parameterized than 
would be required for a specific processor implementation but our 
expectation was that with proper synthesis algorithms the final 
circuit would be equivalent to a hand-coded RTL implementation. 
If successful, this highly-parameterized FIFO could be used 
across many different designs. Unfortunately, without a modular 
flow, synthesis times for the processor descriptions were 
excessive and scheduling results were unsatisfactory because the 
desired amount of concurrency was not achieved. We address 
both of these issues in the modular flow described in this paper.  

The biggest impact of modular compilation is that a designer can 
build highly-parameterized modules whose interface scheduling 
or concurrency properties are not left to the vagaries of the 
compiler. For example, we can build a FIFO which permits 
concurrent enqueue and dequeue operations on it, or we can build 
a register file with two concurrent write ports where the outside 
logic guarantees that the two write addresses are distinct. Such a 
FIFO or a register file can then be used in larger designs without 
having to worry about concurrency issues relating to its interface 
methods. The current Bluespec compilation scheme does not 
provide any such assurance except for primitive modules. 
Modular compilation is also significantly faster than the flat flow.  

Paper Organization: In Section 2, we introduce atomic 
actions and present a synthesis approach that generates efficient 
hardware from a set of atomic actions. Section 3 extends the ideas 
from section 2 to produce a modular synthesis algorithm. Section 
4 provides experimental results that illustrate some of the benefits 
of the modular flow. We conclude in section 5. 

2. SYNTHESIS OF ATOMIC ACTIONS 
This section reviews the execution model of atomic actions and 
outlines the synthesis approach of Hoe[11, 12].  

2.1 Atomic Action Execution Model 
Each atomic action (or rule) consists of a body and a guard. The 
body describes the execution behavior of the rule if it is enabled. 
The guard (or predicate) specifies the condition that needs to be 
satisfied for the rule to be executable. We write rules in the form: 

        rule Ri:   when πi(s) ==> s := δi(s)  

Here, πi is the predicate and s := δi(s) is the body of rule Ri. 
Function δi is used to compute the next state of the system from 
the current state s. The execution model for a set of rules is to 
non-deterministically pick a rule whose predicate is true and then 
to atomically execute that rule’s body. The execution continues as 
long as some predicate is true: 

        while (some π is true) do 
 1)  select any  Ri , such that πi(s) is true 
 2)  s := δi(s) 

2.2 Synthesizing Rules into RTL Hardware 
There is a straightforward translation from rules into hardware. 
Assuming all state is accessible (no port contention), each π and δ 
can be implemented easily as combinational logic. A hardware 
scheduler and control circuit then needs to be added so that in 
every cycle the scheduler dynamically picks one δ function whose 
corresponding π condition is satisfied and the control circuit 
updates the state of the system with the result of the selected δ 
function. The cycle time in such a synthesis is determined by the 
slowest π and the slowest δ functions. 

Although correct, such an implementation has unsatisfactory 
performance because it is often possible to execute several rules 
simultaneously such that the result of the execution matches an 
execution in which the selected rules are applied in some 
sequential order. Thus, the challenge in generating efficient 
hardware from sets of atomic actions is to generate a scheduler 
which in every cycle picks a maximal set of rules that can be 
executed simultaneously. In this paper we assume that each rule 
executes within a single cycle, but we are also investigating 
implementations where the execution of a rule may stretch over 
multiple cycles. 

Both Staunstrup[16] and Hoe[11, 12] made the observation that  
two rules can execute simultaneously if they are “conflict free”, 
that is, they do not update the same state and neither updates the 
state accessed (i.e., “read”) by the other rule. Arvind and Hoe 
further observed that two rules (R1 and R2) can execute 
simultaneously if one rule (R2) does not read any of the state that 
the other rule (R1) writes. In this case, simultaneous execution of 
R1 and R2 appears the same as sequential execution of R1 
followed by R2. For this to hold, R2 writes must take precedence 
over writes to the same state by R1 and the execution of R1 must 
not disable R2. Such rules are called “sequentially composable” 
in[12]. Hoe showed that from these pair-wise relationships 
between rules one can deduce if a group of rules can be scheduled 
concurrently. Figure 1 shows the circuit that is generated in Hoe’s 
synthesis flow. The predicates (πi’s) are computed for each rule 
using a combinational circuit. The scheduler is designed to select 
a maximal subset of applicable rules with the constraint that the 
outcome of a scheduling step can be explained as atomic firing of 
rules in some sequence. Based on which rules the scheduler 
chooses to enable (φi’s), the selector block then combines the 
update functions (δi’s) from the chosen rules and updates the 
current state with the resulting values.  

 
Figure 1:  Synthesized Atomic Actions 

An aggressive “mutual exclusion” analysis of rules is required to 
eliminate scheduling cases that cannot arise logically. Without 
such an analysis one may unnecessarily commit resources, such as 
ports. One also needs a policy for selecting among the maximal 
schedules because different maximal sets can have different 
resource requirements. Construction of good schedulers is the 
most important problem in synthesis of atomic actions.  

It is useful to contrast the synthesis from atomic actions with the 
behavioral synthesis from CDFG’s. As we have seen, the 
synthesis from atomic actions generates a dynamic scheduler to 
re-evaluate (in every cycle) which of the enabled rules should be 
executed concurrently. In contrast, compilation of CDFG’s 
focuses on generating an efficient static schedule of operations 
over a sequence of control steps. This in turn affects and is 
affected by how physical resources are allocated to each of these 



operations. We believe dynamic scheduling is important in 
hardware systems because many designs have 1. a large number of 
data dependant conditional paths, each with its own timing and 
resource requirements, 2. subsystems with variable and 
unpredictable latencies (due to caching and interference from 
other processes, etc.), and 3. input events whose timing is often 
unpredictable. If a hardware system has none of these properties, 
synthesis from CDFG’s should work fine in principle. Otherwise, 
one has to make many conservative assumptions about timing and 
conditional paths to generate circuits from CDFG’s and such 
circuits tend to be suboptimal. 

3. MODULAR COMPILATION 
In this section we first outline the basic semantics of modules and 
then discuss interface annotations for scheduling. We then present 
an algorithm to generate the glue logic inside a module that calls 
other modules. Finally, we show how scheduling annotations can 
be derived for the methods of a module. 

3.1 Modules 
Each module in Bluespec contains local state (i.e, instances of 
primitive modules such as registers), local rules, and interface 
methods that can be called by other modules. Methods, like rules, 
contain a body that accesses primitive state elements and call 
methods of other modules. Each method also contains a guard that 
indicates to the caller that this method should not be invoked 
unless the guard is true. For example, the dequeue method in a 
FIFO has a guard to indicate that the FIFO is not empty. 

In the flat compilation flow all modules are merged to form a 
single module. Our modular flow is deemed to be correct if it 
produces the same functional behavior as the completely flattened 
design. Flattening of modules may be understood in terms of the 
following procedure which merges two arbitrary modules m1 and 
m2 to produce a new module m. Assume that all module names, 
primitive state elements and method names are pair-wise unique: 

   FLATTEN(m1 , m2) = 
      1. define a new module m such that 
               m.state   = m1.state ∪m2.state; 
               m.rules   = m1.rules ∪m2.rules; 
               m.methods   = m1.methods ∪m2.methods; 
      2.  foreach method call mi.h in m where mi ∈ {m1, m2}  
              - inline the body of mi.h 
              - conjugate the guard of the method mi.h to the 
                predicate of the rule or the method that calls mi.h  
      3.  Substitute module name m for all uses of module  
           names m1 and m2 in other modules. 

Notice, step 2 terminates as long as the method calls of m1 and m2 
do not form a cycle. Also, after merging we can erase all methods 
(except for those of the root module) which are no longer called 
from other modules. 

To better understand module flattening consider the following 
example. Suppose we have rule R: when p ==> m.g(a) where 
method g inside module m in turn invokes methods m1.h1 with 
argument f1(a) and m2.h2 with argument f2(a) and is guarded by 
predicate pg. After flattening, the compiler turns rule R into:  
when p & pg ==> m1.h1(f1(a)); m2.h2(f2(a)). This indicates that the 
rule must not fire unless pg and p are both true. Hence, we expose 
the guard in the modular flow in the form of a ready signal. 
Similarly, if the rule executes, all the methods that a rule calls 

must in turn execute all the methods that they call. This is 
signaled through the enable wire which must always be asserted 
when the rule executes. Hence, each “action” method of a module 
has two control signals: enable (en) and ready (rdy), while a 
“read” method has only a ready control signal (see Figure 2). For 
correctness, an enable signal should not be asserted unless the 
corresponding ready signal is true. 

 
Figure 2:  FIFO Interface 

A part of the modular compilation problem is how to generate a 
scheduler and control circuit for a set of rules given only the 
interface information about the modules whose methods these 
rules call. For atomicity, if a rule invokes several action methods 
then all those methods must be enabled whenever the rule is 
elected for execution. Furthermore, if several rules are scheduled 
for execution then all the methods invoked by them collectively 
must be enabled. There are several reasons why this may not be 
allowed by the scheduler. First, there may be resource conflicts – 
in general, only one call can be made to any method, especially if 
it has a parameter. Second, the scheduler needs to ensure that the 
appearance of sequential and atomic execution among rules is 
maintained. If a rule calls several methods, then their execution 
must appear atomic with respect to all other rules that are 
executing simultaneously, even if the called methods are from the 
same module and may access shared state. Thus, the problem in 
creating an efficient modular flow is deciding which rules can 
execute simultaneously while preserving the atomic execution 
property across module boundaries. The next subsection outlines 
the scheduling annotations that need to be provided for each pair 
of methods of a module for correct scheduling. 

3.2 Scheduling Annotations 
Scheduling annotations describe the effect of an action method 
(g1) on the other read and action methods (g2) of the same module. 
If two methods are mutually exclusive (ME) they obviously 
cannot affect each other since they will never be called 
simultaneously. We also assume that the methods of two different 
modules do not affect each other. (This is true so as long as the 
method call graph forms a tree of modules. If the call graph is not 
a tree we can make it so by merging selective modules using the 
FLATTEN procedure given in the previous section). Annotations 
must specify 1. if g1 and g2 can be called from a single rule; 2. if 
g1 and g2 are called from different rules can they be scheduled in 
parallel, and if so, then do they impose any ordering on those 
rules; and 3. if g1 can be called from two different rules 
simultaneously. We do not permit the same action method to be 
called more than once from a single rule. Read methods on the 
other hand do not interfere with each other and can be called 
multiple times from within a rule. (The only complication for read 
methods is when they have arguments and then the read port 
becomes a resource to be allocated).  

Table 1 shows the scheduling annotations that we use in the 
modular compilation flow. To understand this table one must keep 
in mind that when several methods are invoked from a rule, 



hardware will perform all the reads first and then perform all the 
state updates simultaneously, all in the same cycle. We refer to 
this as parallel composition and represent it as g1 ⊕ g2. The 
meaning of g1 < g2 is that effects of both g1 and g2 are observable 
but in case of any shared state the updates of g2 take precedence 
(“sequential composition” discussed earlier). An “X” indicates 
that no valid behavior will be observed. Since a module does not 
know if two methods are being called from a single rule or from 
two rules, the single rule and two rule behaviors must clearly be 
equivalent if both are valid. We record these annotations for each 
pair of methods of a module in a Conflict Matrix (CM). 

Table 1:  Interface Method Annotations 

Annotation 
1-Rule 

Behavior 
2-Rule 

Behavior 
Example 

ME don’t care don’t care 
g1 = e1 when (x == 0)  
g2 = e2 when (x == 1)  

CF g1 ⊕ g2 
g1 < g2  
≡ g2 < g1 

g1 = x := 5 
g2 = y := 6 

< g1 ⊕ g2 g1 < g2 
g1 = x := y 
g2 = y := 5 

> g1 ⊕ g2 g2 < g1 
g1 = x := 5 
g2 = y := x 

P g1 ⊕ g2 X 
g1 = x := y 
g2 = y := x 

<R , >R / EXT X 
g1  < g2  ≠ 

g2 < g1 
g1 = x := 5 
g2 = x := 6 

<R X g1 < g2 
g1 = x := x+1 
g2 = x := 6 

>R X g2 < g1 
g1 = x := 6 
g2 = x := x+1 

C X X 
g1 = x := x+1 
g2 = x := x+1 

Several things are worth noting about the annotations. The P 
annotation says that the parallel behavior of g1 and g2 (g1 ⊕ g2) is 
not explainable as sequential behavior of g1 and g2. Hence, two 
rules containing such method calls cannot be scheduled 
simultaneously. Even though annotation (<R, >R) makes sense we 
do not allow it for pragmatic reasons. It would require the 
scheduler to pass the information into the module about what 
order it has chosen for g1 and g2. We require the module to make 
this choice and specify it in its CM as  <R or as >R. 

An action method is not allowed to be invoked more than once 
from two different rules. However, there is one interesting case 
which corresponds to the annotation EXT. Consider the action 
method “g(a) = x := a”. Suppose one rule calls “g(3)” and another 
rules calls “g(4)”. It is possible to wire the module externally so 
that either argument 3 or 4 is passed to g and allow both rules to 
be scheduled concurrently. We indicate this property of an action 
method with the annotation EXT. EXT can only occur as a 
diagonal entry in a CM. As an example of a module’s annotation, 
Table 2 shows the annotations for the primitive register element.  

Table 2:  Register Annotations 

g1   \  g2 read write 

read CF < 

write > EXT 

3.3 Rule Scheduling Using Module Interface 
Annotations 
Before generating circuits and schedulers for a set of rules, we 
need to verify that each rule is valid, i.e., it does not attempt to 
modify the same state more than once. Hence, as long as all pairs 
of methods in the rule have valid parallel (single rule) execution 
behavior, the rule is valid. Thus, if CM[g1][g2] ∈ {C, <R, >R, 
ME} for pairs of calls in a rule then the rule is not valid. 
Technically ME is not invalid, but since it implies that the rule 
will never execute, we flag it as an error. We apply the following 
VALIDRULE? procedure to each rule to determine its validity. 
ActionCalls(R) returns the set of action method calls made by rule 
R.  

VALIDRULE?(R) = 
    foreach  mi.ga ∈ActionCalls(R) 
      foreach  mj.gb ∈(ActionCalls(R) - mi.ga) 
       if ((mi == mj) & (CMmi[ga][gb] ∈ {C, <R, >R, ME}) then 
              return FALSE; 
      return TRUE; 

Next, we need to determine if each pair of rules R1 and R2 can be 
scheduled simultaneously. Suppose we want to know if it will 
appear as though R1 executes before R2. For this to hold, it must 
be true that it will appear that every method that is called in R1 
will occur before every method in R2. Thus, we start with the 
assumption that such scheduling is possible, and constrain the 
result as we examine each pair of method calls: 

   DERIVEREL(R1, R2) = 
      result = CF; 
      foreach  mi.ga ∈ Calls(R1) 
         foreach  mj.gb ∈ Calls(R2) 
            if (mi == mj) then 
               if (CMmi[ga][gb] == ME) then 
                  return ME; 
               else 
                  result = LUB(result, CMmi[ga][gb]); 
      return result; 

The least-upper-bound (LUB) operator in this procedure is 
defined over the lattice of annotations in Figure 3. The smallest 
value in this lattice is CF, the largest is C. 

 

Figure 3:  Annotation Lattice 

If the result of DERIVEREL(R1, R2) is an element of the set  
{CF, <, EXT, <R}, then enabling R1 and R2 simultaneously will 
appear as though R1 executes before R2 (provided of course, the 
circuits to call the methods that R1 and R2 call are correct). Thus, 
for each pair of rules, we can determine their sequential 
scheduling relationship. This is precisely the information that 
Hoe’s[11, 12] synthesis algorithm requires to generate a 
scheduler. Thus, we can derive the pairwise rule information 



using the procedure above and then feed it directly into Hoe’s 
unmodified scheduler. Note: This works when we are just 
compiling rules. We will see that some modifications are required 
when scheduling a module’s rules together with the module’s 
methods. 

Circuit generation requires us to incorporate the ready signals of 
the called methods and assert the enable signals and supply input 
parameters for all the called methods. The outputs (results) of 
method calls can be fed directly into combinational logic. The 
circuits take the following form: 

- πi_new = πi_old & mx.ga.rdy & my.gb.rdy & … 
where mx.ga.rdy & my.gb.rdy & … is the conjunction of 
all ready signals of the methods that rule Ri calls. 

- mi.ga.en = φx | φy | … 
where φx | φy | … is the disjunction of all φ’s of rules 
that call method mi.ga 

- if (DERIVEREL(mi.ga, mi.ga) == EXT) then 
  mi.ga.data = parameter value that the last rule that is  
                      scheduled and that calls mi.ga contains. 
else 
  mi.ga.data = (φx & (Rx’s parameter to mi.ga)) |  
                      (φy & (Ry’s parameter to mi.ga)) |  … 
   where Rx, Ry, … are the rules that call method mi.ga 

The use of the ready signals and generation of the enable signals 
is straightforward. Input parameter value generation depends on 
the type of method being called. If the method has an EXT 
annotation, then the rule that appears to execute after all other 
rules in the schedule passes the value to the method. Assuming a 
fixed relative scheduling ordering among rules, this can be 
implemented as a priority encoder. A multiplexor can be used for 
all non-EXT methods. 

It should be noted that method interfaces (ports) can be viewed as 
resources in this scheduling / circuit generation approach. The 
same method cannot be called twice in the same cycle except for 
the EXT case. Another exception occurs when a purely 
combinational method is called with the same arguments in two 
rules. In this case, both rules can share the result of the return 
value.  

3.4 Deriving Module Interface Annotations 
The same procedure that was used to derive the scheduling 
relationship among rules (DERIVEREL) can be used to determine 
the scheduling relationship (interface annotation) of interface 
methods:  DERIVEREL(g1, g2) returns the interface annotation for 
methods g1 and g2. As with rules, we also need to perform a 
validity check on every method to ensure that it does not invoke a 
pair of methods that update the same state. We also need to select 
between <r or >r in case a pair of methods can be scheduled in 
either order since we do not permit the caller to chose the order 
dynamically. 

Sometimes the derived annotations are more restrictive than what 
a designer had expected. This is usually due to the fact that the 
designer has information which either a compiler does not have or 
can not derive based on the procedures given here. We first 
encountered this issue while designing processor pipelines using 
FIFO’s. Our implementation allowed simultaneous enqueue and 
dequeue operations but the compiler could not deduce that an 
enqueue can never disable a dequeue. Even a tougher case was 

encountered while designing the reorder buffer (rob) of a 
microprocessor. Higher level logic ensured that the two 
simultaneous writes into the rob could never be to the same slot 
but this fact is not deducible from the rule analysis without a 
theorem prover. In all such cases we found that the best solution 
was to allow the designer to overrule the annotations deduced by 
the compiler. This solution limits the scope of the design that 
needs to be examined for verification. In fact we can use the FIFO 
with our less strict annotations as part of the library without 
causing any problems for the users of the FIFO module. 

3.5 Module Compilation 
An important observation when compiling rules together with a 
module’s interface methods is that interface methods are nearly 
identical to rules. The only difference is in the way they are 
scheduled. Rule scheduling is a local operation within a module. 
In contrast, methods are scheduled external to the module. 
Whether or not the method executes is indicated through the 
enable signal. Thus, the enable signal can be thought of as the 
method’s φ signal.  

Surprisingly, the module interface annotations have implications 
for rule scheduling inside the module as well. In general a module 
does not know if two methods are being invoked from one rule or 
from two rules. The semantics must be such that the module 
behaves correctly in either case, provided the external scheduler is 
following the constraints imposed by the interface. When two 
methods are called from one rule then it must appear as if the 
external rule (together with the methods it calls) executes 
atomically with respect to the rules inside the module. Thus, if we 
do not know if the enabled methods are being called from a single 
or from multiple rules (because both would be valid executions), 
then the scheduler must assume that they are being called from a 
single rule and schedule all internal rules to either occur before or 
after the methods. 

To complete the modular compilation flow we provide the 
COMPILE procedure: 

COMPILE(m) = 
   1.  Compile each module invoked by m (bottom-up) 
        foreach module mi invoked by , 
            COMPILE(mi); 
   2.  Compile the  module m 
        foreach RorMa ∈ rules and interface methods of m 
          if (!VALIDRULE?(RorMa)) then 
             return ERROR!!! 
          foreach RorMb ∈ rules and interfaces methods of m 
            CMs[RorMa][RorMb] = DERIVEREL(RorMa,RorMb) 
   3.   GENERATESCHEDULER 
   4.   GENERATECIRCUIT 

This procedure performs a bottom-up compile. After compiling all 
child modules, it uses the child module annotations to generate 
the scheduler and circuits for the parent module’s rules and 
methods. The GENERATESCHEDULER procedure is equivalent to the 
one described in section 3.3, with the slight modifications 
outlined in this section. The GENERATECIRCUIT procedure is 
equivalent to the circuit generation described in section 3.3 since 
the interface method circuits are generated in exactly the same 
way as rule circuits. 



4. RESULTS 
Table 3 summarizes scheduling and compile time results from 
experimentation on several processor models. These examples 
illustrate the dramatic improvement in compile times that we see 
when using the modular flow. They also show that scheduling 
improves over the flat approach if we allow the designer to alter 
scheduling at some of the interfaces. 

We worked with two ISA’s, one very simple design that contains 
5 instructions (5I) and one that implements a MIPS-II core. The 
MIPS core is implemented as a fully bypassed 5-stage pipeline. In 
order to stress the synthesis, all designs used a complex, recursive 
definition of a highly-parameterized FIFO as pipeline / bypass 
registers. The only primitive module that was used in all designs 
was the primitive register. Simulations of binaries running on 
each processor were used to verify their functionality. 

Each processor was synthesized using both the flat Bluespec flow 
and the modular flow. The modular flow compiled the FIFO, and 
in one case also the register file (RF), as a separate module. 
Because of the complexity of the FIFO description, the compiler 
could not derive optimal annotations in the modular flow, or rule 
schedules in the flat flow. However, by allowing the designer to 
alter the annotations of the FIFO module (something he only has 
to do once and can then reuse in all processor designs), we were 
able to achieve optimal schedules in all modular compilations.  

Table 3:  Flat vs. Modular Compilation 

Processor 
Optimal 
Schedule 

Partial 
Eval. 

Scheduler Total 

5I  2-Stage Flat No 0.7s 1.0s 3.2s 

5I 2-Stage Modular Yes 0.1s 0.1s 2.0s 

5I 5-Stage Bypass Flat No 26.8s Opt. OFF 29.4s 

5I 5-Stage Bypass Modular Yes 0.9s 0.2s 3.6s 

MIPS Flat No 1036s Opt. OFF 1052s 

MIPS Modular FIFO Yes 46.0s 218.1s 275.8s 

MIPS Modular FIFO + RF Yes 21.9s 1.8s 35.7s 

 
The two largest compilation phases are partial evaluation and 
scheduling. The partial evaluation phase expands the code by 
inlining functions and modules, performs partial evaluation 
wherever possible, unrolls recursive calls, etc. The scheduling 
phase of the compiler generates the scheduler -- decides which 
rules are mutually exclusive, conflicting, etc. In both of these 
phases the modular flow is significantly faster than the flat flow. 
This is largely due to fewer rules needing to be compiled when 
using the modular flow and due to the reduction in the size of 
expressions. In the scheduling phase, not all optimizations could 
be turned on in the flat flow because expression sizes got too large 
for analysis that is exponential in its runtime. As expected, the 
total compile time is dramatically less in the modular flow. We 
should note that area and timing were nearly identical in the two 
compilation approaches and closely matched results from a hand-
coded implementation.  

5. CONCLUSION 
In this paper we presented an algorithm for modular compilation 
of atomic actions. This compilation strategy greatly improves 

compile times, which in turn makes experimentation with larger 
designs more practical. Through the use of scheduling annotations 
at module boundaries we were also able to build libraries using 
the full power of the Bluespec language, without relaxing 
requirements on scheduling efficiency. The combination of 
compile time improvements and ability to build libraries native to 
the Bluespec language fundamentally strengthens the usability of 
the infrastructure. We can now take full advantage of the 
language, build libraries with significant intellectual property 
using it, and still get the performance we expect. 
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