
Modular Scheduling of Guarded Atomic Actions

Daniel L. Rosenband and Arvind
 Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{danlief, arvind}@csail.mit.edu

ABSTRACT
A modular synthesis flow is essential for a scalable and
hierarchical design methodology. This paper considers a
particular modular flow where each module has interface methods
and the internal behavior of the module is described in terms of a
set of guarded atomic actions on the state elements of the module.
A module can also read and update the state of other modules but
only by invoking the interface methods of those modules. This
paper extends the past work on hardware synthesis of a set of
guarded atomic actions by Hoe and Arvind to modules of such
actions. It presents an algorithm that, given the scheduling
constraints on the interface methods of the called modules,
derives the "glue logic" and the scheduling constraints for the
interface methods of the calling module such that the atomicity of
the guarded actions is preserved across module boundaries. Such
modules provide reusable IP which facilitates “correctness by
construction” design methodology. It also reduces compile-times
dramatically in comparison to the compilation that flattens all the
modules first.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
hardware description languages.

General Terms
Algorithms, Design, Languages, Verification.

1. ATOMIC ACTIONS: A BASIS FOR HDL
There has been a strong interest in high-level design languages
which can bridge the gap between behavioral modeling and
efficient hardware synthesis. Commercial efforts have focused
either on raising the level of RTL languages so that they are more
suitable for modeling (e.g., Verilog to Behavioral Verilog) or on
finding suitable extensions and restrictions on conventional
languages so that they are more appropriate as an HDL (e.g., C or
C++ to SystemC). Typically, Control Data Flow Graphs
(CDFG’s) are extracted from the source language program and
techniques for compiling SIMD and VLIW architectures are used
to generate register transfer logic[8, 9]. These efforts have yet to
provide a language that is widely accepted for hardware synthesis.
Another type of research has focused on synthesis of specialized
versions of programmable processors [10, 15]. These efforts are
only tangentially related to general purpose HDLs because the

primary focus is on processor issues such as instruction encodings
and the automatic generation of assemblers, compilers, etc.

In the research community two other types of languages have been
explored that have the potential to raise the level of HDL's. One
type of effort is based on synchronous specification languages
such as Esterel, Signal, and Lustre which were all designed to deal
with real-time issues[3]. Berry[4] and Edwards[7] have presented
methods to generate hardware from Esterel but these efforts have
yet to yield high quality hardware in comparison to synthesis from
Verilog RTL. The other effort is based on asynchronous
languages employing atomic actions, which have been used for
decades to describe distributed algorithms[5, 13]. Some of the
examples in the hardware domain are Dill's Murphi[6],
Straunstrup's Synchronous transactions[16], Sere's Action
systems[14], and Arvind & Shen’s TRS’s[1]. The main idea
underlying all such behavioral descriptions is that any hardware
system has a (structural) state component that can be captured by
a set of variables that represent registers or storage, and the
behavior is nothing but a set of rules, i.e. atomic actions with
guards, on this state. A precise and useful semantics emerges from
the fact that any legitimate behavior of the system can be
understood as a series of atomic actions on this state.

Hoe and Arvind have shown that such atomic descriptions are
also amenable to efficient hardware synthesis if the actions of a
rule are assumed to take effect in one clock cycle[11, 12]. Hoe's
compiler had three types of built-in state elements, i.e., registers,
arrays and FIFO's, and accepted as input a set of rules (guarded
atomic actions) on these state elements. It then performed analysis
based on "rule conflicts" to produce the update logic for state
elements as well as a hardware scheduler that allowed many of the
enabled rules to execute in parallel. The compiler generated RTL
Verilog which could be further synthesized to ASIC's or FPGA's
using standard commercial synthesis tools.

This work provided the basis for the development of Bluespec[2],
an object oriented HDL. In Bluespec an object represents a
hardware module with internal state, rules to manipulate the state,
and an interface (a set of methods) through which other modules
can observe and manipulate this state. In contrast to Hoe’s
compiler, Bluespec has the power to express FIFO’s, arrays and
any other hardware building-block as a user defined module using
only registers. However, the current Bluespec compilation process
is not modular because it flattens (i.e., merges) each non-primitive
module before using Hoe’s analysis to generate RTL Verilog.

The initial motivation for introducing a modular compilation flow
grew out of our work on microprocessor synthesis where we used
FIFO’s parameterized by recursive search functions. The search
functions returned values that could be bypassed to earlier

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

pipeline stages. These descriptions were more parameterized than
would be required for a specific processor implementation but our
expectation was that with proper synthesis algorithms the final
circuit would be equivalent to a hand-coded RTL implementation.
If successful, this highly-parameterized FIFO could be used
across many different designs. Unfortunately, without a modular
flow, synthesis times for the processor descriptions were
excessive and scheduling results were unsatisfactory because the
desired amount of concurrency was not achieved. We address
both of these issues in the modular flow described in this paper.

The biggest impact of modular compilation is that a designer can
build highly-parameterized modules whose interface scheduling
or concurrency properties are not left to the vagaries of the
compiler. For example, we can build a FIFO which permits
concurrent enqueue and dequeue operations on it, or we can build
a register file with two concurrent write ports where the outside
logic guarantees that the two write addresses are distinct. Such a
FIFO or a register file can then be used in larger designs without
having to worry about concurrency issues relating to its interface
methods. The current Bluespec compilation scheme does not
provide any such assurance except for primitive modules.
Modular compilation is also significantly faster than the flat flow.

Paper Organization: In Section 2, we introduce atomic
actions and present a synthesis approach that generates efficient
hardware from a set of atomic actions. Section 3 extends the ideas
from section 2 to produce a modular synthesis algorithm. Section
4 provides experimental results that illustrate some of the benefits
of the modular flow. We conclude in section 5.

2. SYNTHESIS OF ATOMIC ACTIONS
This section reviews the execution model of atomic actions and
outlines the synthesis approach of Hoe[11, 12].

2.1 Atomic Action Execution Model
Each atomic action (or rule) consists of a body and a guard. The
body describes the execution behavior of the rule if it is enabled.
The guard (or predicate) specifies the condition that needs to be
satisfied for the rule to be executable. We write rules in the form:

 rule Ri: when πi(s) ==> s := δi(s)

Here, πi is the predicate and s := δi(s) is the body of rule Ri.
Function δi is used to compute the next state of the system from
the current state s. The execution model for a set of rules is to
non-deterministically pick a rule whose predicate is true and then
to atomically execute that rule’s body. The execution continues as
long as some predicate is true:

 while (some π is true) do
 1) select any Ri , such that πi(s) is true
 2) s := δi(s)

2.2 Synthesizing Rules into RTL Hardware
There is a straightforward translation from rules into hardware.
Assuming all state is accessible (no port contention), each π and δ
can be implemented easily as combinational logic. A hardware
scheduler and control circuit then needs to be added so that in
every cycle the scheduler dynamically picks one δ function whose
corresponding π condition is satisfied and the control circuit
updates the state of the system with the result of the selected δ
function. The cycle time in such a synthesis is determined by the
slowest π and the slowest δ functions.

Although correct, such an implementation has unsatisfactory
performance because it is often possible to execute several rules
simultaneously such that the result of the execution matches an
execution in which the selected rules are applied in some
sequential order. Thus, the challenge in generating efficient
hardware from sets of atomic actions is to generate a scheduler
which in every cycle picks a maximal set of rules that can be
executed simultaneously. In this paper we assume that each rule
executes within a single cycle, but we are also investigating
implementations where the execution of a rule may stretch over
multiple cycles.

Both Staunstrup[16] and Hoe[11, 12] made the observation that
two rules can execute simultaneously if they are “conflict free”,
that is, they do not update the same state and neither updates the
state accessed (i.e., “read”) by the other rule. Arvind and Hoe
further observed that two rules (R1 and R2) can execute
simultaneously if one rule (R2) does not read any of the state that
the other rule (R1) writes. In this case, simultaneous execution of
R1 and R2 appears the same as sequential execution of R1
followed by R2. For this to hold, R2 writes must take precedence
over writes to the same state by R1 and the execution of R1 must
not disable R2. Such rules are called “sequentially composable”
in[12]. Hoe showed that from these pair-wise relationships
between rules one can deduce if a group of rules can be scheduled
concurrently. Figure 1 shows the circuit that is generated in Hoe’s
synthesis flow. The predicates (πi’s) are computed for each rule
using a combinational circuit. The scheduler is designed to select
a maximal subset of applicable rules with the constraint that the
outcome of a scheduling step can be explained as atomic firing of
rules in some sequence. Based on which rules the scheduler
chooses to enable (φi’s), the selector block then combines the
update functions (δi’s) from the chosen rules and updates the
current state with the resulting values.

Figure 1: Synthesized Atomic Actions

An aggressive “mutual exclusion” analysis of rules is required to
eliminate scheduling cases that cannot arise logically. Without
such an analysis one may unnecessarily commit resources, such as
ports. One also needs a policy for selecting among the maximal
schedules because different maximal sets can have different
resource requirements. Construction of good schedulers is the
most important problem in synthesis of atomic actions.

It is useful to contrast the synthesis from atomic actions with the
behavioral synthesis from CDFG’s. As we have seen, the
synthesis from atomic actions generates a dynamic scheduler to
re-evaluate (in every cycle) which of the enabled rules should be
executed concurrently. In contrast, compilation of CDFG’s
focuses on generating an efficient static schedule of operations
over a sequence of control steps. This in turn affects and is
affected by how physical resources are allocated to each of these

operations. We believe dynamic scheduling is important in
hardware systems because many designs have 1. a large number of
data dependant conditional paths, each with its own timing and
resource requirements, 2. subsystems with variable and
unpredictable latencies (due to caching and interference from
other processes, etc.), and 3. input events whose timing is often
unpredictable. If a hardware system has none of these properties,
synthesis from CDFG’s should work fine in principle. Otherwise,
one has to make many conservative assumptions about timing and
conditional paths to generate circuits from CDFG’s and such
circuits tend to be suboptimal.

3. MODULAR COMPILATION
In this section we first outline the basic semantics of modules and
then discuss interface annotations for scheduling. We then present
an algorithm to generate the glue logic inside a module that calls
other modules. Finally, we show how scheduling annotations can
be derived for the methods of a module.

3.1 Modules
Each module in Bluespec contains local state (i.e, instances of
primitive modules such as registers), local rules, and interface
methods that can be called by other modules. Methods, like rules,
contain a body that accesses primitive state elements and call
methods of other modules. Each method also contains a guard that
indicates to the caller that this method should not be invoked
unless the guard is true. For example, the dequeue method in a
FIFO has a guard to indicate that the FIFO is not empty.

In the flat compilation flow all modules are merged to form a
single module. Our modular flow is deemed to be correct if it
produces the same functional behavior as the completely flattened
design. Flattening of modules may be understood in terms of the
following procedure which merges two arbitrary modules m1 and
m2 to produce a new module m. Assume that all module names,
primitive state elements and method names are pair-wise unique:

 FLATTEN(m1 , m2) =
 1. define a new module m such that
 m.state = m1.state ∪m2.state;
 m.rules = m1.rules ∪m2.rules;
 m.methods = m1.methods ∪m2.methods;
 2. foreach method call mi.h in m where mi ∈ {m1, m2}
 - inline the body of mi.h
 - conjugate the guard of the method mi.h to the
 predicate of the rule or the method that calls mi.h
 3. Substitute module name m for all uses of module
 names m1 and m2 in other modules.

Notice, step 2 terminates as long as the method calls of m1 and m2
do not form a cycle. Also, after merging we can erase all methods
(except for those of the root module) which are no longer called
from other modules.

To better understand module flattening consider the following
example. Suppose we have rule R: when p ==> m.g(a) where
method g inside module m in turn invokes methods m1.h1 with
argument f1(a) and m2.h2 with argument f2(a) and is guarded by
predicate pg. After flattening, the compiler turns rule R into:
when p & pg ==> m1.h1(f1(a)); m2.h2(f2(a)). This indicates that the
rule must not fire unless pg and p are both true. Hence, we expose
the guard in the modular flow in the form of a ready signal.
Similarly, if the rule executes, all the methods that a rule calls

must in turn execute all the methods that they call. This is
signaled through the enable wire which must always be asserted
when the rule executes. Hence, each “action” method of a module
has two control signals: enable (en) and ready (rdy), while a
“read” method has only a ready control signal (see Figure 2). For
correctness, an enable signal should not be asserted unless the
corresponding ready signal is true.

Figure 2: FIFO Interface

A part of the modular compilation problem is how to generate a
scheduler and control circuit for a set of rules given only the
interface information about the modules whose methods these
rules call. For atomicity, if a rule invokes several action methods
then all those methods must be enabled whenever the rule is
elected for execution. Furthermore, if several rules are scheduled
for execution then all the methods invoked by them collectively
must be enabled. There are several reasons why this may not be
allowed by the scheduler. First, there may be resource conflicts –
in general, only one call can be made to any method, especially if
it has a parameter. Second, the scheduler needs to ensure that the
appearance of sequential and atomic execution among rules is
maintained. If a rule calls several methods, then their execution
must appear atomic with respect to all other rules that are
executing simultaneously, even if the called methods are from the
same module and may access shared state. Thus, the problem in
creating an efficient modular flow is deciding which rules can
execute simultaneously while preserving the atomic execution
property across module boundaries. The next subsection outlines
the scheduling annotations that need to be provided for each pair
of methods of a module for correct scheduling.

3.2 Scheduling Annotations
Scheduling annotations describe the effect of an action method
(g1) on the other read and action methods (g2) of the same module.
If two methods are mutually exclusive (ME) they obviously
cannot affect each other since they will never be called
simultaneously. We also assume that the methods of two different
modules do not affect each other. (This is true so as long as the
method call graph forms a tree of modules. If the call graph is not
a tree we can make it so by merging selective modules using the
FLATTEN procedure given in the previous section). Annotations
must specify 1. if g1 and g2 can be called from a single rule; 2. if
g1 and g2 are called from different rules can they be scheduled in
parallel, and if so, then do they impose any ordering on those
rules; and 3. if g1 can be called from two different rules
simultaneously. We do not permit the same action method to be
called more than once from a single rule. Read methods on the
other hand do not interfere with each other and can be called
multiple times from within a rule. (The only complication for read
methods is when they have arguments and then the read port
becomes a resource to be allocated).

Table 1 shows the scheduling annotations that we use in the
modular compilation flow. To understand this table one must keep
in mind that when several methods are invoked from a rule,

hardware will perform all the reads first and then perform all the
state updates simultaneously, all in the same cycle. We refer to
this as parallel composition and represent it as g1 ⊕ g2. The
meaning of g1 < g2 is that effects of both g1 and g2 are observable
but in case of any shared state the updates of g2 take precedence
(“sequential composition” discussed earlier). An “X” indicates
that no valid behavior will be observed. Since a module does not
know if two methods are being called from a single rule or from
two rules, the single rule and two rule behaviors must clearly be
equivalent if both are valid. We record these annotations for each
pair of methods of a module in a Conflict Matrix (CM).

Table 1: Interface Method Annotations

Annotation
1-Rule

Behavior
2-Rule

Behavior
Example

ME don’t care don’t care
g1 = e1 when (x == 0)
g2 = e2 when (x == 1)

CF g1 ⊕ g2
g1 < g2
≡ g2 < g1

g1 = x := 5
g2 = y := 6

< g1 ⊕ g2 g1 < g2
g1 = x := y
g2 = y := 5

> g1 ⊕ g2 g2 < g1
g1 = x := 5
g2 = y := x

P g1 ⊕ g2 X
g1 = x := y
g2 = y := x

<R , >R / EXT X
g1 < g2 ≠

g2 < g1
g1 = x := 5
g2 = x := 6

<R X g1 < g2
g1 = x := x+1
g2 = x := 6

>R X g2 < g1
g1 = x := 6
g2 = x := x+1

C X X
g1 = x := x+1
g2 = x := x+1

Several things are worth noting about the annotations. The P
annotation says that the parallel behavior of g1 and g2 (g1 ⊕ g2) is
not explainable as sequential behavior of g1 and g2. Hence, two
rules containing such method calls cannot be scheduled
simultaneously. Even though annotation (<R, >R) makes sense we
do not allow it for pragmatic reasons. It would require the
scheduler to pass the information into the module about what
order it has chosen for g1 and g2. We require the module to make
this choice and specify it in its CM as <R or as >R.

An action method is not allowed to be invoked more than once
from two different rules. However, there is one interesting case
which corresponds to the annotation EXT. Consider the action
method “g(a) = x := a”. Suppose one rule calls “g(3)” and another
rules calls “g(4)”. It is possible to wire the module externally so
that either argument 3 or 4 is passed to g and allow both rules to
be scheduled concurrently. We indicate this property of an action
method with the annotation EXT. EXT can only occur as a
diagonal entry in a CM. As an example of a module’s annotation,
Table 2 shows the annotations for the primitive register element.

Table 2: Register Annotations

g1 \ g2 read write

read CF <

write > EXT

3.3 Rule Scheduling Using Module Interface
Annotations
Before generating circuits and schedulers for a set of rules, we
need to verify that each rule is valid, i.e., it does not attempt to
modify the same state more than once. Hence, as long as all pairs
of methods in the rule have valid parallel (single rule) execution
behavior, the rule is valid. Thus, if CM[g1][g2] ∈ {C, <R, >R,
ME} for pairs of calls in a rule then the rule is not valid.
Technically ME is not invalid, but since it implies that the rule
will never execute, we flag it as an error. We apply the following
VALIDRULE? procedure to each rule to determine its validity.
ActionCalls(R) returns the set of action method calls made by rule
R.

VALIDRULE?(R) =
 foreach mi.ga ∈ActionCalls(R)
 foreach mj.gb ∈(ActionCalls(R) - mi.ga)
 if ((mi == mj) & (CMmi[ga][gb] ∈ {C, <R, >R, ME}) then
 return FALSE;
 return TRUE;

Next, we need to determine if each pair of rules R1 and R2 can be
scheduled simultaneously. Suppose we want to know if it will
appear as though R1 executes before R2. For this to hold, it must
be true that it will appear that every method that is called in R1
will occur before every method in R2. Thus, we start with the
assumption that such scheduling is possible, and constrain the
result as we examine each pair of method calls:

 DERIVEREL(R1, R2) =
 result = CF;
 foreach mi.ga ∈ Calls(R1)
 foreach mj.gb ∈ Calls(R2)
 if (mi == mj) then
 if (CMmi[ga][gb] == ME) then
 return ME;
 else
 result = LUB(result, CMmi[ga][gb]);
 return result;

The least-upper-bound (LUB) operator in this procedure is
defined over the lattice of annotations in Figure 3. The smallest
value in this lattice is CF, the largest is C.

Figure 3: Annotation Lattice

If the result of DERIVEREL(R1, R2) is an element of the set
{CF, <, EXT, <R}, then enabling R1 and R2 simultaneously will
appear as though R1 executes before R2 (provided of course, the
circuits to call the methods that R1 and R2 call are correct). Thus,
for each pair of rules, we can determine their sequential
scheduling relationship. This is precisely the information that
Hoe’s[11, 12] synthesis algorithm requires to generate a
scheduler. Thus, we can derive the pairwise rule information

using the procedure above and then feed it directly into Hoe’s
unmodified scheduler. Note: This works when we are just
compiling rules. We will see that some modifications are required
when scheduling a module’s rules together with the module’s
methods.

Circuit generation requires us to incorporate the ready signals of
the called methods and assert the enable signals and supply input
parameters for all the called methods. The outputs (results) of
method calls can be fed directly into combinational logic. The
circuits take the following form:

- πi_new = πi_old & mx.ga.rdy & my.gb.rdy & …
where mx.ga.rdy & my.gb.rdy & … is the conjunction of
all ready signals of the methods that rule Ri calls.

- mi.ga.en = φx | φy | …
where φx | φy | … is the disjunction of all φ’s of rules
that call method mi.ga

- if (DERIVEREL(mi.ga, mi.ga) == EXT) then
 mi.ga.data = parameter value that the last rule that is
 scheduled and that calls mi.ga contains.
else
 mi.ga.data = (φx & (Rx’s parameter to mi.ga)) |
 (φy & (Ry’s parameter to mi.ga)) | …
 where Rx, Ry, … are the rules that call method mi.ga

The use of the ready signals and generation of the enable signals
is straightforward. Input parameter value generation depends on
the type of method being called. If the method has an EXT
annotation, then the rule that appears to execute after all other
rules in the schedule passes the value to the method. Assuming a
fixed relative scheduling ordering among rules, this can be
implemented as a priority encoder. A multiplexor can be used for
all non-EXT methods.

It should be noted that method interfaces (ports) can be viewed as
resources in this scheduling / circuit generation approach. The
same method cannot be called twice in the same cycle except for
the EXT case. Another exception occurs when a purely
combinational method is called with the same arguments in two
rules. In this case, both rules can share the result of the return
value.

3.4 Deriving Module Interface Annotations
The same procedure that was used to derive the scheduling
relationship among rules (DERIVEREL) can be used to determine
the scheduling relationship (interface annotation) of interface
methods: DERIVEREL(g1, g2) returns the interface annotation for
methods g1 and g2. As with rules, we also need to perform a
validity check on every method to ensure that it does not invoke a
pair of methods that update the same state. We also need to select
between <r or >r in case a pair of methods can be scheduled in
either order since we do not permit the caller to chose the order
dynamically.

Sometimes the derived annotations are more restrictive than what
a designer had expected. This is usually due to the fact that the
designer has information which either a compiler does not have or
can not derive based on the procedures given here. We first
encountered this issue while designing processor pipelines using
FIFO’s. Our implementation allowed simultaneous enqueue and
dequeue operations but the compiler could not deduce that an
enqueue can never disable a dequeue. Even a tougher case was

encountered while designing the reorder buffer (rob) of a
microprocessor. Higher level logic ensured that the two
simultaneous writes into the rob could never be to the same slot
but this fact is not deducible from the rule analysis without a
theorem prover. In all such cases we found that the best solution
was to allow the designer to overrule the annotations deduced by
the compiler. This solution limits the scope of the design that
needs to be examined for verification. In fact we can use the FIFO
with our less strict annotations as part of the library without
causing any problems for the users of the FIFO module.

3.5 Module Compilation
An important observation when compiling rules together with a
module’s interface methods is that interface methods are nearly
identical to rules. The only difference is in the way they are
scheduled. Rule scheduling is a local operation within a module.
In contrast, methods are scheduled external to the module.
Whether or not the method executes is indicated through the
enable signal. Thus, the enable signal can be thought of as the
method’s φ signal.

Surprisingly, the module interface annotations have implications
for rule scheduling inside the module as well. In general a module
does not know if two methods are being invoked from one rule or
from two rules. The semantics must be such that the module
behaves correctly in either case, provided the external scheduler is
following the constraints imposed by the interface. When two
methods are called from one rule then it must appear as if the
external rule (together with the methods it calls) executes
atomically with respect to the rules inside the module. Thus, if we
do not know if the enabled methods are being called from a single
or from multiple rules (because both would be valid executions),
then the scheduler must assume that they are being called from a
single rule and schedule all internal rules to either occur before or
after the methods.

To complete the modular compilation flow we provide the
COMPILE procedure:

COMPILE(m) =
 1. Compile each module invoked by m (bottom-up)
 foreach module mi invoked by ,
 COMPILE(mi);
 2. Compile the module m
 foreach RorMa ∈ rules and interface methods of m
 if (!VALIDRULE?(RorMa)) then
 return ERROR!!!
 foreach RorMb ∈ rules and interfaces methods of m
 CMs[RorMa][RorMb] = DERIVEREL(RorMa,RorMb)
 3. GENERATESCHEDULER
 4. GENERATECIRCUIT

This procedure performs a bottom-up compile. After compiling all
child modules, it uses the child module annotations to generate
the scheduler and circuits for the parent module’s rules and
methods. The GENERATESCHEDULER procedure is equivalent to the
one described in section 3.3, with the slight modifications
outlined in this section. The GENERATECIRCUIT procedure is
equivalent to the circuit generation described in section 3.3 since
the interface method circuits are generated in exactly the same
way as rule circuits.

4. RESULTS
Table 3 summarizes scheduling and compile time results from
experimentation on several processor models. These examples
illustrate the dramatic improvement in compile times that we see
when using the modular flow. They also show that scheduling
improves over the flat approach if we allow the designer to alter
scheduling at some of the interfaces.

We worked with two ISA’s, one very simple design that contains
5 instructions (5I) and one that implements a MIPS-II core. The
MIPS core is implemented as a fully bypassed 5-stage pipeline. In
order to stress the synthesis, all designs used a complex, recursive
definition of a highly-parameterized FIFO as pipeline / bypass
registers. The only primitive module that was used in all designs
was the primitive register. Simulations of binaries running on
each processor were used to verify their functionality.

Each processor was synthesized using both the flat Bluespec flow
and the modular flow. The modular flow compiled the FIFO, and
in one case also the register file (RF), as a separate module.
Because of the complexity of the FIFO description, the compiler
could not derive optimal annotations in the modular flow, or rule
schedules in the flat flow. However, by allowing the designer to
alter the annotations of the FIFO module (something he only has
to do once and can then reuse in all processor designs), we were
able to achieve optimal schedules in all modular compilations.

Table 3: Flat vs. Modular Compilation

Processor
Optimal
Schedule

Partial
Eval.

Scheduler Total

5I 2-Stage Flat No 0.7s 1.0s 3.2s

5I 2-Stage Modular Yes 0.1s 0.1s 2.0s

5I 5-Stage Bypass Flat No 26.8s Opt. OFF 29.4s

5I 5-Stage Bypass Modular Yes 0.9s 0.2s 3.6s

MIPS Flat No 1036s Opt. OFF 1052s

MIPS Modular FIFO Yes 46.0s 218.1s 275.8s

MIPS Modular FIFO + RF Yes 21.9s 1.8s 35.7s

The two largest compilation phases are partial evaluation and
scheduling. The partial evaluation phase expands the code by
inlining functions and modules, performs partial evaluation
wherever possible, unrolls recursive calls, etc. The scheduling
phase of the compiler generates the scheduler -- decides which
rules are mutually exclusive, conflicting, etc. In both of these
phases the modular flow is significantly faster than the flat flow.
This is largely due to fewer rules needing to be compiled when
using the modular flow and due to the reduction in the size of
expressions. In the scheduling phase, not all optimizations could
be turned on in the flat flow because expression sizes got too large
for analysis that is exponential in its runtime. As expected, the
total compile time is dramatically less in the modular flow. We
should note that area and timing were nearly identical in the two
compilation approaches and closely matched results from a hand-
coded implementation.

5. CONCLUSION
In this paper we presented an algorithm for modular compilation
of atomic actions. This compilation strategy greatly improves

compile times, which in turn makes experimentation with larger
designs more practical. Through the use of scheduling annotations
at module boundaries we were also able to build libraries using
the full power of the Bluespec language, without relaxing
requirements on scheduling efficiency. The combination of
compile time improvements and ability to build libraries native to
the Bluespec language fundamentally strengthens the usability of
the infrastructure. We can now take full advantage of the
language, build libraries with significant intellectual property
using it, and still get the performance we expect.

6. REFERENCES
[1] Arvind and Shen, X. Using term rewriting systems to design

and verify processors. Micro, IEEE, 19 (3). 36-46.
[2] Augustsson, L. and others. Bluespec: Language definition,

Sandburst Corp., 2001.
[3] Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le

Guernic, P. and de Simone, R. The synchronous languages
12 years later. Proceedings of the IEEE, 91 (1). 64-83.

[4] Berry, G. Esterel on hardware. Philos. Trans. Roy. Soc.
London (Series A, 339). 87-104.

[5] Chandy, K.M. and Misra, J. Parallel program design : a
foundation. Addison-Wesley Pub. Co., Reading, MA, 1988.

[6] Dill, D.L. The Murphi verification system. in Proceedings of
the Eigth International Conference on Computer-Aided
Verification, Springer-Verlag, 1996.

[7] Edwards, S.A., High-level Synthesis from the Synchronous
Language Esterel. in Proceedings of the International
Workshop of Logic and Synthesis (IWLS), (New Orleans,
Louisiana, 2002).

[8] Gajski, D.D. High-level synthesis : introduction to chip and
system design. Kluwer Academic, Boston, 1992.

[9] Gupta, S., Dutt, N.D., Gupta, R.K. and Nicolau, A., SPARK:
A High-Level Synthesis Framework For Applying
Parallelizing Compiler Transformations. in International
Conference on VLSI Design, (2003).

[10] Hadjiyiannis, G., Hanono, S. and Devadas, S., ISDL: An
Instruction Set Description Language For Retargetability. in
Proceedings of the 34th Design Automation Conference
(DAC), (1997), 299-302.

[11] Hoe, J.C. Operation-centric hardware description and
synthesis Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 2000, 139 p.

[12] Hoe, J.C. and Arvind, Synthesis of operation-centric
hardware descriptions. in IEEE/ACM International
Conference on Computer Aided Design (ICCAD), (2000),
511-518.

[13] Lamport, L. Specifying Concurrent Program Modules. ACM
Trans. Program. Lang. Syst., 5 (2). 190-222.

[14] Plosila, J. and Sere, K., Action systems in pipelined
processor design. in Proceedings Third International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, (1997), 156-166.

[15] Schliebusch, O., Hoffmann, A., Nohl, A., Braun, G. and
Meyr, H., Architecture implementation using the machine
description language LISA. in Proceedings 7th Asia and
South Pacific Design Automation Conference (ASP-DAC),
(2002), 239-244.

[16] Staunstrup, J. and Greenstreet, M.R. From High-Level
Descriptions to VLSI Circuits. BIT, 28 (3). 620-638.

