

CSAIL
Massachusetts Institute

of Technology

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

High-level synthesis: An Essential Ingredient

for Designing Complex ASICs

Computation Structures Group Memo 473
April 24, 2004

Arvind (MIT CSAIL)
Rishiyur S. Nikhil (Bluespec, Inc.)
Daniel L. Rosenband (MIT CSAIL)

Nirav Dave (MIT CSAIL)

Submitted for publication

This report describes research done at the Computer Science and Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology. Funding for this is provided in part by the Defence
Advanced Research Projects Agency under contract DARPA NBCH3039004.

High-level synthesis: An Essential Ingredient for Designing Complex ASICs

Abstract

It is common wisdom that synthesizing hardware from
higher-level descriptions than Verilog will incur a perfor-
mance penalty. We present a case study that shows that
this need not be the case. If the higher-level language has
suitable semantics, it is possible to synthesize hardware
that is competitive with hand-written Verilog RTL. Dif-
ferences in the hardware quality are dominated by archi-
tecture differences, and so it is more important to be able
to explore multiple hardware architectures easily, which is
enabled by using a higher-level language.

1 Introduction

Five to ten million-gate ASICs are commonplace today.
Their design typically takes 18 to 24 months and costs
somewhere between $10M to $20M. An ASIC has a selling
window of 6 to 8 months in the market place, and con-
sequently, if the chip is delayed by much more than six
months the customer is likely to leapfrog to the next gen-
eration chip, which is likely to be cheaper, faster, or have
more features. Currently, in spite of a myriad of verifica-
tion tools, three verification engineers are needed for each
designer in a typical ASIC team. The verification task is
exacerbated rather than abated by use of pre-existing IP
blocks. Only a small fraction of ASICs complete develop-
ment in time to make money. Consequently, ASIC devel-
opment has come to be viewed as an expensive and highly
risky proposition.
Another casualty of the increasingly compressed develop-
ment timeline is a thorough exploration of architectural
alternatives. An alternative microarchitecture can often re-
sult in far greater time and area savings than any tweaking
of a specific architecture. Consider adding a pipeline stage
or functional unit, multiplexing an expensive resource, or
doubling the datapath width while halving the clock rate.
Determining the impact of these alternatives would require
such a massive redesign as to be impractical using current
methodologies. Although adding or removing datapaths
and memories is relatively straightforward, the subsequent
redesign and re-verification of the control logic is not.
Commercial developments in CMOS technology make it
likely that 50 million gate ASICs will be feasible by 2010.
Such large ASICs will be common place only if EDA tools
can keep up with the growing size and complexity of de-
signs. What is needed is a high-level design methodology
and accompanying tools that will allow complex digital sys-
tems to be realized by reasonably sized teams in a short

time frame. The central themes of any such methodology
have to be correctness by construction, predictable function-

ality and predictable performance. The methodology should
make it as easy to use pre-existing IP blocks as it is to use
procedural and data abstraction libraries in software, and
should provide a framework that will simplify exploration
of a large architectural design space by automatically gen-
erating correct control logic for any composition of instan-
tiated library elements. To be successful, the quality of
hardware synthesis from these high-level descriptions must
approach that of hand-designed blocks so that designers are
not tempted to break the abstractions.

This paper partially evaluates the Bluespec hardware de-
sign methodology that purports to have most of the char-
acteristics described above. The methodology is based on
synthesis from high-level hardware descriptions expressed
as guarded atomic actions [10]. Guarded atomic actions
form the basis of Bluespec [2], which has been developed
over the last four years, first at Sandburst Corporation and,
now at Bluespec Inc.

Our method of evaluation is to take a small but non-
trivial design problem and explore many different micro-
architectures to implement it. We compare these micro-
architectures in terms of area, clock-cycle time, efficiency
in solving the problem, robustness to changes in compo-
nent characteristics and flexibility in dealing with changes
in problem specification. We also compare some of the
Bluespec generated results against hand-coded verilog. The
problem we have chosen is the much studied “Longest Pre-
fix Match” search engines which are present in all Internet
routers. A solution must pass the same test suite on the
same test bench to be acceptable.

Based on our study we conclude that 1. The differences in
area and timing between different micro-architectural so-
lutions are far greater than the differences in hand-written
Verilog and Bluespec generated Verilog; 2. If both Bluespec
and Verilog are written by the same designer, the Bluespec
compiler routinely generates code that is comparable to
hand-written Verilog; 3. If the Verilog design is cleverly op-
timized, the Bluespec designer can usually but not always
imitate the Verilog designer to produce comparable results;
and 4. Architectural exploration is easier and quicker in
Bluespec than in Verilog because the Bluespec methodol-
ogy preserves correctness at every step and encourages the
use of modules. 5. Though it is hard to quantify, Blue-
spec designs often take much less time to develop the first
working model than comparable Verilog designs. But this
advantage can be dissipated by the extra time needed for
”performance tuning”.

1

Paper Organization In Section 2, we provide a back-
ground on guarded atomic actions as an HDL and briefly
explain automatic synthesis from them. Sections 3, 4, and
5 discuss the “Longest Prefix Match” problem, alternative
design solutions, and how they are coded in Bluespec. Sec-
tion 6 presents results for designs using this methodology.
Related work in high-level hardware design is discussed in
Section 7. Section 8 provides our conclusions and some
ideas for further evaluation.

2 Guarded atomic actions as HDL

2.1 Guarded atomic actions and modules

In the Bluespec methodology, the designer first instantiates
the state elements of the system (registers, FIFOs, memo-
ries, etc.) explicitly. That is, in Bluespec there is no mys-
terious “inferencing” of state from the program. Every bit
of state (even a register) is a module instance, and clients
of a module interact with it using interface methods. A
call to an interface method looks like a procedure call, but
every method also involves an implicit condition: a “ready”
wire that specifies if the module can currently perform the
requested method’s action. For registers, the methods are
the usual read() and write() operations, and the implicit
conditions are always True (and will be optimized away).
For FIFOs, the methods are the usual enq() and deq() op-
erations. The implicit condition for enq() is True if the
FIFO is not full; the implicit condition for deq() is True if
the FIFO is not empty. A FIFO module may be visualized
as shown in Figure 1.

FIFOs
enq deq first

en
q_

rd
y enq_en

enq_data de
q_

rd
y deq_en

fir
st

_r
dy

fir
st

_d
at

a

Figure 1: A FIFO Module.

Next, the designer describes the behavior of the system us-
ing a collection of guarded atomic actions or rules, which
express the conceptual operations on the state of the sys-
tem. Each rule specifies the condition under which it is
enabled, and a consequent allowable (i.e., not compulsory)
state transition. Two rules may access and update common
state, but rules are written without regard to such interac-
tion. In particular, rules have atomic semantics, i.e., the
effect of each rule can be expressed and reasoned about in
isolation, as if the rest of the system was frozen (see, for
example, Arvind and Shen[1]). A precise and useful seman-
tics emerges from the fact that any legitimate behavior of
the system can be understood as a series of atomic actions
on the state. Indeed, this is key to the high-level nature
of rules: all the control circuitry and muxing needed to

manage potential interactions between rules is produced
by automatic synthesis as discussed in the next section.

2.2 Synthesis from guarded atomic actions

We briefly outline the synthesis approach of Hoe and
Arvind [9, 10]. A rule consists of a guard and a body and
may be written in the following form:

Rule Ri : when π(s) ==> s := δ(s)

where π is the guard (predicate) and s := δ(s) is the body of
rule Ri. Function δ is used to compute the next state of the
system from the current state s. The execution model for
a set of rules is to non-deterministically pick a rule whose
predicate is true and then to atomically execute that rule’s
body. The execution continues as long as some predicate is
true:

while (some π is true) do
1) select any Ri, s.t. π(s) is true
2) s := δ(s)

There is a straightforward translation from rules into hard-
ware as shown in Figure 2. Assuming all state is accessible
(no port contention), each π and δ can be implemented
easily as combinational logic. A hardware scheduler and
control circuit then needs to be added so that in every cy-
cle the scheduler dynamically picks one δ function whose
corresponding π condition is satisfied and the control cir-
cuit updates the state of the system with the result of the
selected δ function. The cycle time in such a synthesis is
determined by the slowest π and the slowest δ functions.
Although correct, such an implementation has unsatisfac-
tory performance because it is often possible to execute
several rules simultaneously such that the result of the ex-
ecution matches an execution in which the selected rules
are applied in some sequential order. Thus, the challenge
in generating efficient hardware from sets of atomic actions
is to generate a scheduler which in every cycle picks a max-
imal set of rules that can be executed simultaneously.

Compute Predicates
for Each RuleS

T
A
T
E Compute Next State

for Each Rule

Read

Scheduler

Update

Selector

(Mux’s &
Priority

Encoders)

1

2

n

1

2

n

1

2

n

Figure 2: Synthesis from Guarded Atomic Actions.

It is easy to see that two rules can execute simultaneously if
they are“conflict free”, that is, they do not update the same
state and neither updates the state accessed (i.e., “read”)

2

by the other rule. Arvind and Hoe further observed that
two rules (R1 and R2) can execute simultaneously if one
rule (R2) does not read any of the state that the other
rule (R1) writes. In this case, simultaneous execution of
R1 and R2 appears the same as sequential execution of
R1 followed by R2. For this to hold, R2 writes must take
precedence over writes to the same state by R1 and the
execution of R1 must not disable R2. Such rules are called
“sequentially composable” in [9, 10]. Hoe showed that from
these pair-wise relationships between rules one can deduce
if a group of rules can be scheduled concurrently. Figure 2
shows the circuit that is generated in Hoe’s synthesis flow.
The predicates (π’s) are computed for each rule using a
combinational circuit. The scheduler is designed to select a
maximal subset of applicable rules with the constraint that
the outcome of a scheduling step can be explained as atomic
firing of rules in some sequence. Based on which rules the
scheduler chooses to enable (φ’s), the selector block then
combines the update functions (δ’s) from the chosen rules
and updates the current state with the resulting values.
An aggressive “mutual exclusion” analysis of rules is per-
formed to eliminate scheduling cases that cannot arise log-
ically. Without such an analysis one may unnecessarily
commit resources, such as ports. One also needs a pol-
icy for selecting among the maximal schedules because dif-
ferent maximal sets can have different resource require-
ments. Construction of good schedulers is the most im-
portant problem in the synthesis of atomic actions. Recent
work has made it possible to provide much better control
over scheduling via modular composition and scheduling
annotations (see, for example, Rosenband and Arvind[15],
Nordin and Hoe[12] and Rosenband[14]).

3 A Design Problem: Longest Pre-

fix Match Function

The Longest Prefix Match (LPM) function is used in Inter-
net Protocol (IP) packet routers to determine the output
port to which an input packet should be forwarded based
on the destination IP address (IPA) in the packet’s header.
For IPv4 packets the IPA is 32 bits while for IPv6 it is 128
bits. We will consider solutions for IPv4 packets with an
eye towards generalization to IPv6 packets.
LPM is based on a routing table which conceptually con-
sists of an ordered set of prefixes, each associated with
an output port. Each prefix is a string of length ≤ 32
bits. High-end routers can contain more than 100K pre-
fixes. Since more than one prefix can match an incoming
IPA, the port associated with the longest matching prefix
is selected as the output port. Thus, in a properly ordered
table, the first prefix match on a sequential search produces
the correct output port. It is a requirement that the router
maintain the ordering of packets between the same source
and destination.
Packets must be processed at line rate (10 Gb/s today).
This leaves a budget of typically < 10 memory references

per packet. Memory size must be kept small for cost, board
area, access rate and power reasons. A flat table would con-
tain 232 entries and is not feasible; sparse data structures
are necessary. Finally, routes may change while the system
is online.

Although many clever data structures have been devised
for LPM function, we use a simplified but representative
example to illustrate our design approach. The lookup ta-
ble is organized into three levels as shown in Figure 3. The
first 16 bits of the IPA selects an entry from a root table
containing 64K entries. If we find a leaf (output port num-
ber), we’re done. Otherwise, we find a pointer to a 2nd-level
table of 256 entries, which is indexed with the next 8 bits
of the IPA. Again, we either find a leaf or a pointer to a
3rd-level table of 256 leaves indexed by the remaining 8 bits
of the IPA. Each packet thus requires from 1 to 3 memory
accesses. The data structure can be computed offline from
any given routing table containing prefixes with lengths ≤

32 bits.

Figure 3: Data structure for Longest Prefix Match.

Figure 4 shows a software implementation of LPM, written
in a variant of C, extended with a Verilog-like bit extrac-
tion facility. Automatic generation of hardware from such
a specification is close to impossible if the hardware is re-
quired to sustain 10Gbps line rate.

int lpm(IPA ipa)

{

int p;

p = RAM [rootTableBase + ipa[31:16]];

if (isLeaf(p)) return p;

p = RAM [p + ipa [15:8]];

if (isLeaf(p)) return p;

p = RAM [p + ipa [7:0]];

return p; // must be a leaf

}

Figure 4: Software version of LPM algorithm.

3

4 Some architectural alternatives

We now describe three radically different architectural al-
ternatives for a hardware implementation of LPM, and dis-
cuss their attributes, strengths and weaknesses. A key
point is that the entire data structure must be kept in a
single memory because of pin limitations and memory man-
agement flexibility. Assume that the memory is pipelined,
and has a fixed multi-cycle latency L. Thus in a pipelined
implementation, the memory port is a shared resource
across different stages of the pipeline, and at any given time
the memory pipe will contain requests interleaved from dif-
ferent packets.

Statically scheduled pipeline The first design, whose
schema is shown in Figure 5 and Figure 6, is a “rigid”
pipeline architecture. For the first L cycles, we launch the
first memory requests from each of the first L IPAs (assum-
ing packets are available). Since each packet makes three
memory access, no new packet is injected for the next 2L

cycles. This guarantees that when the first memory re-
sponse arrives, we can launch the second memory request
for the first IPA (if it needs a second access), and so on.
In summary, we completely statically schedule the pipeline,
knowing the memory latency L and the maximum number
of memory requests (three) for each IPA.

Figure 5: Statically scheduled memory references

Figure 6: Rigid pipeline architecture

There are several issues with this design. The memory
is fully utilized only if packets arrive at the highest rate
(minimum-sized packets at line rate) and if they all need
three memory references. Thus, the memory bandwidth is
sized for the worst case, instead of the expected case. The
latency and throughput in processing packets is fixed at
the worst case (the length of the pipe) even if the actual

workload contains packets requiring fewer memory refer-
ences. The whole pipeline must be re-planned if we are
given a memory with a different latency. Finally, additional
complex control is required to insert memory accesses for
routing software to update the data structure online.
As we shall see in Section 6.2, even for statically scheduled
pipeline there are several alternatives for organizing the
state elements with very different implications for area and
timing.

Flexible pipeline Figure 7 shows the second design,
which has a “flexible” pipeline architecture. As each IPA
arrives on ififo, Stage0 launches its first memory request
into mport0 and keeps the IPA in fifo0. Stage1 collects
this IPA and the corresponding response from mport0. If
done, it places the result and a “done” bit into fifo1, else
it launches the second memory request into mport1 and
places the IPA and a “not done” bit into fifo1. Stage2

and Stage3 act in a similar manner to Stage 1 and the re-
sult finally ends up in ofifo. Notice, all fifo’s except ififo
must be of size L for full memory utilization.

Figure 7: Flexible pipeline architecture.

The single memory is accessed through a “port replica-
tor” module that takes requests as they arrive in any order
on mport0, mport1 and mport2 and forwards them to the
memory. Results from the memory are distributed back to
mport0, mport1 and mport2. Since the order of request
arrivals is unpredictable, book-keeping circuitry (e.g., tag-
ging) is required to return memory responses to the correct
ports.
Although this design possibly requires more hardware and
control logic (FIFOs, a port replicator with tagging, etc.),
in many ways it is more robust than the previous design.
For example, it is robust to changes in memory latency. It
is relatively straightforward to extend it to a fourth port for
updating the routing data structure online. Packets that
require fewer memory accesses can traverse the pipeline
faster, and so the design can exhibit a better latency and
throughput than the worst case.

Circular pipeline Finally, Figure 8 shows a circular
pipeline architecture, which in a way is a folded version
of the flexible pipeline. The Input stage takes an arriving

4

IPA from ififo and a “ticket” from the Completion Buffer
and launches a memory request using the high 16 bits of
the IPA and places a (ticket,IPA[15:0],State0) tuple into
cfifo. Based on the memory response p and the first tu-
ple (ticket,IPA,Statej) in cfifo, either the Completion or
Circulate stage executes. If the lookup is done the Com-

pletion stage forwards (ticket,p) to the Completion Buffer
else the Circulate stage places (ticket,IPA,Statej +1) into
cfifo and launches another memory request.
Thus, each IPA goes around the pipe as many times as
the number of memory references it needs, and the result
finally goes to the Completion Buffer. Since IPAs need
varying numbers of memory references, results may arrive
at the Completion Buffer out of order; the tickets allow
it to output them into ofifo in the right order. In the
worst case, for 100% memory utilization, the size of the
Completion Buffer must be 2L, though in practice a smaller
buffer may do. The number of IPA’s in the circular pipeline
must not exceed the capacity of cfifo to avoid deadlocks
and thus, a new IPA should have a lower priority to enter
cfifo than an IPA already in the pipeline. The size cfifo
must be L for 100% memory utilization.

Figure 8: Circular pipeline architecture.

This last design arguably has the simplest memory archi-
tecture (single port, no interleaving issues), but the most
complex control (Completion Buffer with tickets and re-
ordering). On the other hand it is very robust to different
memory latencies and it generalizes easily to LPM on IPv6
(128-bit) addresses which require more memory references.

5 Coding in Bluespec: Correctness

by Construction

We now give examples of how pieces of the above designs
are coded in Bluespec. These examples illustrate how de-
signing with guarded atomic actions frees designers from
worrying about global coordination allowing them to focus
on the much simpler task of local correctness.
The Input stage in the Circular Pipeline is expressed as
follows:

Input:

when (True) {

ipa = ififo.pop();

tkt = compBuf.getTicket();

cfifo.enq {tkt, ipa[15:0], State0};

RAM.request(base_addr + ipa[31:16]);

}

Although the explicit condition in the rule is True, the rule
is not enabled until all the implicit conditions are also True,
i.e., until ififo contains an IP address, the completion
buffer is willing to yield a ticket, and cfifo has room (is not
full). In one succinct rule we have expressed a conceptual
operation controlled by a complex set of conditions.
The completion and re-circulate rules are expressed as fol-
lows:

p = RAM.getResult();

Complete:

when (isLeaf(p)) {

{tkt,ipa,s} = cfifo.pop();

compBuf.done {tkt, p};

}

Circulate:

when (!isLeaf(p)) {

{tkt,ipa,s} = cfifo.pop();

cfifo.enq {tkt, ipa, s+1};

RAM.request(compute_addr(p,s,ipa));

}

Both the Input and the Circulate rules enqueue into
cfifo. To avoid deadlocks, the Circulate rule has to be
given priority, or some other mechanism (such as an up-
down counter) is needed to ensure that no more than L
requests are enqueued into the circular pipeline. Given the
priority between the rules, the Bluespec compiler automat-
ically synthesizes the appropriate control logic. Similarly,
control circuitry to manage the concurrent access to the
shared completion buffer by the Input and Complete rules
is automatically generated.
Atomicity of the actions in a rule plays a crucial role in
avoiding races between enqueuing and dequeuing of cfifo
and sending a request to the memory. The designer can
reason about each rule in isolation to ensure that it is doing
the right thing, without worrying about interactions with
other rules. The synthesis method is guaranteed to preserve
these atomic semantics while producing highly concurrent
clocked synchronous hardware.
As another example, we consider the port replicator for
shared access to a RAM from the Flexible Pipeline archi-
tecture of Figure 7. Figure 9 shows the organization of a
2-way port replicator. When a request arrives on port0

and port1, respectively, the In0 or In1 stages forward it
to the shared port and place the tag “0” or tag “1” into the
FIFO. When a response arrives from the shared port and
“0” is at the head of the FIFO, the Out0 stage forwards the
result to port0. If “1” is at the head of the FIFO, the Out1

stage forwards the result to port1.

5

Figure 9: 2-way port replicator.

The behavior of In0 and Out0 are expressed as follows (In1
and Out1 have similar rules):

In0:

when (True) {

req0 = port0.deq();

sharedPort.enq (req0);

fifo.enq (Tag0);

}

Out0:

when (fifo.first() == Tag0) {

resp0 = sharedPort.deq();

fifo.deq();

port1.enq (resp0);

}

Note that In0 and In1 can conflict: if requests arrive simul-
taneously on ports 0 and 1, both attempt to forward their
requests into the shared port, and both attempt to enqueue
a tag into the FIFO. Similarly, Out0 and Out1 both examine
the shared port response and the head of the FIFO, and one
of them dequeues from the FIFO. All the control circuitry
for managing this interaction is synthesized automatically.
How does the designer assure himself that the identity of
memory requests is accurately reflected in the tag FIFO,
i.e., that In0 and In1 don’t send requests to the memory
in one order and enqueue their tags in the opposite order?
Once again, atomicity comes to the rescue. It ensures that
the order in the FIFO is exactly the same as the order of
memory requests. Assuming the memory itself maintains
FIFO order, the desired property is obtained.
Now suppose we wish to generalize the port replicator to
have the following features:
• N -way replication (not just 2 or 3)
• Requests of arbitrary type T1
• Responses of arbitrary type T2
• Parameterized by memory latency L

Bluespec solves this by allowing powerful composition of
circuit elements which include Actions, Rules, Interfaces
and Modules. Bluespec permits arbitrary programming
with these objects, and thus, uses software expressivity only
to describe circuit structure; behavior is specified entirely
by Atomic Rules. In this approach, software expressivity
does not face any ad hoc limits such as “synthesizable sub-

sets.” This approach is in sharp contrast with Behavirol
Verilog and other C-based high-level synthesis approaches
which use software expressivity to describe circuit behavior.

6 Experimental Results

All the Bluespec and Verilog codes for various designs were
written by the authors. All designs were simulated using
a shared test-bench. The memory to which the designs in-
terface is fully pipelined and has a latency of 4 cycles. Re-
quests are inserted into the LPM design whenever possible,
results are dequeued whenever possible. A simple compiler
was used to translate prefix tables into appropriate data
structures. The test data consisted of 9920 requests with
an average of 1.908 dependent memory references per re-
quest.

Bluespec designs were compiled using the Bluespec Com-
piler version 3.8.12, available from Bluespec Inc. The gen-
erated verilog was compiled to the TSMC 0.18µm library
using Synopsys Design Compiler version 2003.12. So as to
achieve accurate timing and area results, the timing con-
straints were tuned to be within 500ps of the timing that
the design could achieve. The worst case (slow process, low
voltage) timing model was used. We divide area results by
the area of a two input NAND2X1 gate (9.98µm2) to obtain
the reported gate counts.

6.1 Bluespec versus hand written Verilog

comparison

The table in Figure 10 shows the best Bluespec and Verilog
synthesis results for each of the three previously described
longest prefix match architectures. The designs are nearly
identical in both area and cycle times. The number of reg-
ister bits varies slightly between the Verilog and Bluespec
implementations because of small design choice differences
and because the Bluespec compiler generates slightly dif-
ferent data and state machine encodings. The total gate
count (combinational logic and registers) is within 8% in
all designs, cycle time is within 7%, and as expected, sim-
ulation results between the Bluespec and Verilog designs
match exactly.

The differences we observe are within the noise margin
of what we obtain from repeated compilation with Syn-
opsys design-compiler with slightly different timing con-
straints. In general, the Bluespec results indicate slightly
faster designs and slightly larger area. This can be ex-
plained through the generation of lower level code by the
Bluespec compiler which in some cases makes the designs
slightly faster and, because of differing logic structuring,
marginally larger. In comparison to the Verilog vs. Blue-
spec tradeoffs, area, cycle time and execution performance
vary far more between designs with differing high-level and
micro-level architectural choices.

Comparing the architectures we find that the smallest de-
sign, the static pipeline, is one seventh the size of the largest

6

Language
Timing
Constraint

Reg
Bits

Comb
Gates

% diff Total
Gates

% diff
Cycle
Time
(ns)

% diff

Through-
put
(cycles/
lookup)

Avg
Latency
(cycles)

Memory
Utilization

Static BS 3.3ns 252 837 2% 2391 5% 3.32 -7% 3.001 17.0 63.5%
Static Verilog 3.3ns 240 818 2271 3.56 3.001 17.0 63.5%
Flexible BS 4.7ns 1219 6190 9% 15910 8% 4.7 0% 1.908 20.972 99.9%
Flexible Verilog 4.7ns 1144 5685 14759 4.7 1.908 20.972 99.9%
Circular BS 3.6ns 778 2391 3% 8170 1% 3.67 2% 1.908 14.814 99.9%
Circular Verilog 3.6ns 778 2331 8103 3.62 1.908 14.814 99.9%

Figure 10: Results table 1

Comments
Reg
Bits

Comb
Gates

% diff
from
best

Total
Gates

% diff
from
best

Cycle
Time
(ns)

% diff
from
best

Static BS; Initial; 3.3ns 252 1719 105% 3375 41% 3.69 11%
Static BS; Data alignment; 3.3ns 252 1038 24% 2606 9% 3.48 5%
Static BS; No type conversion; 3.3ns 252 948 13% 2478 4% 3.61 9%
Static BS; Nest case (BEST); 3.3ns 252 837 0% 2391 0% 3.32 0%
Static Verilog; Replicated; 3.3ns 243 7151 775% 8898 292% 3.60 1%
Static Verilog; BEST; 3.3ns 240 818 0% 2271 0% 3.56 0%

Figure 11: Results table 2

design, the flexible pipeline. Also, as expected, both the
flexible and circular pipeline execute more efficiently than
the static pipeline. In our test case 99.9% of the available
memory bandwidth is utilized by the flexible and circular
pipeline whereas the static architecture achieves only 63.5%
memory utilization. These results are not entirely surpris-
ing, but we were impressed with how much smaller the
circular pipeline is than the flexible pipeline. Our initial ex-
pectation was that the flexible and circular pipeline would
be roughly equal in size. Because an optimized circulating
loop and more efficient register allocation could be used in
the circular design, using the Bluespec language we were
quickly able to determine that the circular pipeline is the
superior design compared to the flexible pipeline. Through
simulation the designer can then choose whether the static
pipeline provides sufficient performance, or whether an area
penalty should be incurred and the circular design be cho-
sen.

6.2 Tweaking the Bluespec code

We also implemented two Verilog implementations of the
static pipeline: one replicated much of the computation
that occurs in the pipeline by unfolding the feedback of
Fig. 6 into a linear pipe, the other (BEST) was highly op-
timized. Figure 11 shows, even in Verilog it is easy for two
reasonable implementations to have dramatically different
results. In this example the replicated implementation uses
almost nine times the combinational logic! The replicated
design could easily have been the implementation of choice
by a non-expert designer, and encourages the notion that
micro-architecture is far more important than language re-
sults.

The initial Bluespec implementation of the static pipeline
had over two times the combinational logic than the op-
timized verilog implementation. Although better than the

replicated design, a factor of two is usually an unacceptable
penalty to pay knowingly for the use of a higher-level lan-
guage. They illustrate that in some cases the abstractions
that the language provides can introduce an overhead, but
that this overhead can be overcome by carefully crafting of
the code. Our steps: 1) By carefully laying out data types
several muxes and adders could be removed. 2) By simpli-
fying types we can eliminate type-conversion logic. 3) A
case statement was restructured to clarify that it was ex-
haustive. The circular pipeline took similar optimizations
to achieve comparable performance to the verilog imple-
mentation.

7 Related work

7.1 Designing using atomic actions

The approach advocated in this paper was first used for
verification by Arvind and Shen [1]. Synthesis was later
explored by Hoe and Arvind [9, 10]. Augustsson developed
the Bluespec language [2] which introduced the notion of
modules and a two-level language. In addition to internal
work at Sandburst and Bluespec, this approach has been
used by at James Hoe and his student, Roland Wunderlich,
at the Carnegie Mellon University. In cooperation with In-
tel, they have developed a version of the Itanium microa-
chitecture running at 100MHz on a 6M-gate FPGA. The
FPGA board is housed in a dual processor PC chassis and
can exchange data with the other processor over the sys-
tem bus at the rate of 800MBytes/s. In another effort,
Nirav Dave has used Bluespec in the design and synthesis
of reorder buffer [6].

Though the use of guarded atomic actions in verification
has been much explored [4, 11, 5, 16, 3], there are only a
few attempts at synthesis [13].

7

7.2 Modelling using C-based HDLs

There are several approaches to synthesis based on sequen-
tial and parallel C, e.g., [17], [7, 8]. These approaches have
rarely approached the quality of synthesis that one gets
from Verilog. There are myriad reasons for this gap. As
one example, consider the difficulty of synthesizing control
from parallel C.
Suppose we code an architecture such as the Circular
pipeline of Figure 8 in some dialect of parallel C, i.e., C
extended with a notion of processes, together with some
constructs for process synchronization such as semaphores,
events and channels. (Such dialects include SystemC).
Each of the stages – input, circulation, and completion –
becomes a separate sequential process. But still two major
sources of complexity remain.
First, there is the issue of managing concurrent access to
shared resources, such as the enqueues into cfifo by the
Input and Circulate rules. When writing just for sim-
ulation this is not a problem – a simple lock will do the
job. But when writing for synthesis, data paths must be
properly multiplexed and controlled.
Second, there is the issue of complex control. Both the in-
put and circulate/completion stages interact through cfifo

and through the Completion Buffer. The input stage is
only active if ififo is not empty, cfifo is not full, and
the Completion Buffer has a ticket to issue. The circu-
late/completion stage is only active if a result from the
RAM is available, if cfifo is not empty, and, depend-
ing on the RAM result, if either the Completion Buffer
is ready to accept a result or if cfifo is not full. It is
easy to make synchronization errors when using primitives
like semaphores, events and channels. Furthermore it is not
clear if such complex synchronization code in C can be syn-
thesized automatically. These synchronization issues were
handled automatically in our approach based on guarded
atomic actions.
In summary, while we believe that the parallel C can be
a fine medium to express behavior for simulation and per-
haps, for hardware-software co-verification, it is not a good
vehicle for expressing high-quality synthesizable hardware
designs.

8 Conclusions

This study shows that high-level synthesis from guarded
atomic actions as embodied in Bluespec provides a use-
ful tool for microarchitectural exploration in the design of
complex ASICs. The differences in area and time between
different micro-architectures dominate differences between
Bluespec-generated Verilog and hand-written Verilog.
Bluespec also provides a way of capturing the idioms com-
monly used in hardware design in a form that allows per-
vasive reuse. Existing hardware description languages only
allow reuse at the level of fixed RTL modules with in-
terfaces defined by sets of wires and cycle-level timing.
Bluespec supports factoring of concepts such as buffered

pipelines, completion buffers, and arbiters, into standard
libraries. A designer can then instantiate these concepts
with application-specific data types and connect them arbi-
trarily. The compiler will then synthesize an optimized de-
sign, including automatic generation of control logic. This
approach raises the level of abstraction in hardware design
without sacrificing hardware efficiency and may turn out
to be the most crucial ingredient in designing large and
complex ASICs in the future.

References

[1] Arvind and X. Shen. Using term rewriting systems to de-
sign and verify processors. IEEE Micro, 19(3):36–46, 1998.

[2] L. Augustsson, J. Schwarz, and R. S. Nikhil. Bluespec
Language definition, 2001. Sandburst Corp.

[3] R. Back and R. Kurki-Suonio. Decentralization of process
nets with centralized control. In Proc. 2nd. Ann. ACM
Symp. Principles of Distributed Computing, pages 131–142,
1983.

[4] K. Chandy and J. Misra. Parallel Program Design: A Foun-
dation. Addison Wesley, 1988.

[5] D. L. Dill. The Murphi verification system. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the
Eighth International Conference on Computer Aided Verifi-
cation CAV, volume 1102, pages 390–393, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

[6] N. Dave. Designing a Reorder Buffer in Bluespec. In Proc.
MEMOCODE’04, June 2004.

[7] D. Gajski. High-level synthesis: introduction to chip and
system design. Kluwer Academic, Boston, 1992.

[8] D. Gajski. SpecC : specification language and methodology.
Kluwer Academic, Boston, 2000.

[9] J. C. Hoe. Operation-Centric Hardware Description and
Synthesis. PhD thesis, MIT, June 2000.

[10] J. C. Hoe and Arvind. Synthesis of operation-centric hard-
ware descriptions. In IEEE/ACM Intl. Conf. on Computer
Aided Design (ICCAD), pages 511–518, 2000.

[11] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addison-
Wesley Professional (Pearson Education), 2002.

[12] G. Nordin and J. C. Hoe. Synchronous Extensions to
Operation-Centric Hardware Description Languages. In
Proc. MEMOCODE’04, June 2004.

[13] J. Plosila and K. Sere. Action systems in pipelined pro-
cessor design. In Proc. 3rd. Intl. Symp. on Adv. Res. in
Asynchronous Circuits and Systems, pages 156–166, 1997.

[14] D. L. Rosenband. The Ephemeral History Register: Flex-
ible Scheduling for Rule-Based Designs. In Proc. MEM-
OCODE’04, June 2004.

[15] D. L. Rosenband and A. 2003. Modular Scheduling of
Guarded Atomic Actions. In Proc. 41st DAC, June 2004.

[16] J. Staunstrup and M. Greenstreet. From High-Level De-
scriptions to VLSI Circuits. BIT, 28(3):620–638, 1988.

[17] Synopsys. Behavioral Compiler/Behavioral Synthesis. See:
www.synopsys.com/products/beh syn/beh syn.html.

8

Acknowledgements

Daniel Rosenband was supported under a grant from Compaq
Computer Corporation.

Nirav Dave was supported under a grant from the De-
fence Advanced Research Projects Agency (contract DARPA
NBCH3039004).

We would also like to thank Ravi Nanavati and Jacob Schwartz
for their assistance in Bluespec coding; Jacob Schwartz for his
assistence with LATEX; and Winnie Cheng for her help in coding
an earlier version of the circular pipeline in Verilog.

9

