

CSAIL
Massachusetts Institute

of Technology

Defining Store Atomicity
or Memory Operations without Memory

Computation Structures Group
Memo 477

July 19, 2004

Arvind (MIT), Jan-Willem Maessen (Sun)

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

CSAIL
Massachusetts Institute

of Technology

Defining Store Atomicity
or Memory Operations without Memory

Computation Structures Group
Memo 477

Arvind (MIT), Jan-Willem Maessen (Sun)

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Defining Store Atomicity

or Memory Operations without Memory

Abstract

We characterize atomicity based on observations by Load and Store instructions; a Load

observes the Store that supplies its data, and a Store observes itself. A memory model has

atomic storesif, when two observers observe two stores to the same location to be in a par-

ticular order, that ordering relationship is respected by all observers. We capture program ex-

ecution (including instruction reordering, aliasing, and branches) as a directed acyclic graph.

There is no explicit memory—instead, in the execution graph a Load is linked to the Store

which provides its value. We show that to maintain Store atomicity, Store-Store edges must

be introduced whenever a Store-Load edge reveals a new ordering relationship. Some actions

of cache coherence protocols can be understood as implementation of these edges. Store-

Store edges have subtle implications for the correct implementation of memory fences. They

also provide insight into the implementation requirements for synchronization primitives on

machines with non-atomic Stores.

1 Introduction

A memory model specifies the values which can be obtained by each Load instruction in a pro-

gram. In general, each such choice affects the values available to other instructions, including

future Load operations. Precise and yet abstract specification of memory models has persisted as

a problem both in computer systems and programming languages. It is not uncommon to bring

in “language lawyers” to argue whether the behavior of a multithreaded program written in the

1

JavaTM programming language conforms to the language specification [20, 9]. The situation in

this regard is no better for multiprocessors built out of modern microprocessors.

Store atomicity (or a lack of it) is at the heart of the memory model definitional problem.

Atomicity is typically defined by saying that, at any given point in time, every thread either sees

a particular Store, or no thread sees it. This definition is not so difficult to understand if one

imagines a system without caches. In such a system the memory model is defined using an explicit

global store (a mapping from addresses to values). This inevitably serializes memory accesses at

least to a particular memory address and makes the notion of “Store completion” precise and

clear. However, we know that any multiprocessor, multithreaded computer system is actually

distributed—there isn’t a well-defined notion of simultaneity of events in different threads. Even

within a thread, vagaries of compiler optimization and of instruction reordering by the processor

make it difficult to pin down a well-founded notion of time.

In order to free the memory model from an explicit notion of time, we propose amemoryless

memory modelbased on describing executions as directed acyclic graphs. Our graphs incorporate

a complete processor semantics, including data and control flow. Our graphs also incorporate

instruction reordering (or equivalently, compiler optimization) as specified by reordering axioms.

We give a full treatment of all operations, including branches (with speculation) and aliasing. In

doing so, we capture ordering constraints which have been widely ignored in prior formalizations

of memory models. These include data dependencies between Stores and Loads and aliasing

constraints among memory operations.

Between threads, the graph structure reflects the asynchronous nature of multithreaded compu-

tation. A inter-thread Store-Load edge is introduced whenever a Load observes a Store in another

thread. We show that a memory model with store atomicity also requires the introduction of inter-

thread Store-Store edges to enforce atomicity. Except for these edges (introduced by the memory

model), graphs are constructed in a purely local fashion. The memory model treats inter-thread

communication exactly as it would treat data dependency within the same thread.

The main contributions of this paper are a simple definition of store atomicity for both hard-

2

ware and software systems, and a method of maintaining store atomicity as a multithreaded com-

putation unfolds. This combination of declarative and operational specifications makes it easy to

see that 1. our definition is realizable and 2. it can be used to understand how various implementa-

tions in the past have enforced atomicity. This work may also lead to some new ways of enforcing

atomicity, especially in large systems with coarse-grained synchronization primitives and minimal

global cache coherence.

Paper organization: We begin with an informal discussion of the issues associated with store

atomicity using some simple examples. We also motivate our formal definition and offer an outline

of a solution to maintaining store atomicity as computation unfolds (Section 2). In Section 2.5 we

connect this definition of atomicity with typical memory consistency protocols. In Section 3 we

define execution graphs and give a formal definition of the@ ordering, which is needed to define

atomicity. We discuss some properties of our model in Section 3.5. In Section 4 we discuss related

work. We offer our conclusions in Section 5.

2 Informal Definition of Store Atomicity

2.1 The Problem

In the absence of atomicity, we can obtain executions such as the following:

Ld x = 6 Ld x = 7 St x, 6 St x, 7
FenceLLx, x FenceLLx, x
Ld x = 7 Ld x = 6?
FenceLLx, x
Ld x = 6?

(2.1)

In this example there are two independent (and hence, unordered) Stores tox from two differ-

ent threads. In the absence of atomicity, each Load is free to obtain its result from either one; the

result is that the apparent value ofx can alternate between the two, and that different threads can

see the stores in an inconsistent order. (The boldface after each Load indicates the value loaded.

A question mark indicates a questionable result, which should not happen.)

Suppose the first thread observes first6, then7. Having done so, it should no longer be

3

a, x, y, z ∈ Address = N

r ∈ Register ::= r1 . . . rn

c ∈ Constant ::= Z

Instruction ::= rd = c
| rd = ra + rb | . . .
| Br rc l
| rd = Ld ra

| St ra, rv

| FenceLL rx, ry | FenceLS rx, ry | FenceSL rx, ry | FenceSS rx, ry

l ∈ Instruction-Label ::= l1 | l2 | ...

Thread ::= a sequence of labeled instructions

Figure 1: Syntax of source programs

legal for the first thread to once again observe6. Similarly, the second thread, after the first two

observations of the first thread, should be able to load respectively,6 followed by6, or 6 followed

by 7 or 7 followed by7 but not7 followed by6—the observed ordering must be consistent across

all threads.

2.2 Preliminaries

In this paper we consider programs written in the simple assembly language described in Figure 1.

For readability, we take a few liberties with this syntax. We assume there are enough registers—

none of our examples requires more than four or five in total. We omit the register destination of

a Load when it is not subsequently used. The only operation which takes a non-register operand

is the constant moverd = c; however, for conciseness we use constant operands wherever it is

convenient to do so. Finally, we takex andy to be distinct addresses, store a distinct value in each

Store operation, and assume that there are no other Stores to the locations in question.

Within a thread, instructions may be freely reordered (modulo data dependency) with a few

exceptions, summarized in Figure 2. Branch operations are ordered, and stores cannot occur before

a preceding branch. Stores to the same address must occur in order, and Loads to the same address

may not pass them.

4

2nd → +, c Br Ld St FenceR− FenceW−
1st ↓ y y, w y, w y, w

+, c dep. dep. dep. dep. dep. dep.
Br X X

Ld x dep. dep. dep. x 6= y x 6= y dep.
St x, v x 6= y x 6= y x 6= y

Fence−R v, x x 6= y
Fence−W v, x x 6= y

Figure 2: Reordering Axioms. The table specifies the permitted reordering of instructions. The
first instruction in program order is listed on the left, the second is listed along the top. Blank
entries may always be reordered; no data dependency can exist. Entries marked with an ‘X’
indicate reordering is prohibited. Pairs markeddep. must respect data dependencies. Entries of
the formx 6= y must also respect data dependencies, and may be reordered only if the addresses
x andy do not alias. Finally, note that register name dependencies (write-after-read and write-
after-write) are not accounted for in this reordering table; our graph-based model does away with
them.

To control reordering, we make use of fine-grained Fence operations in the style of CRF [19,

16]. In Example 2.1, the Loads in the first two threads are separated by a Load/Load Fence—

if these Fences are removed, the Loads can be freely reordered and we learn nothing about the

relative order of the Store operations in the remaining two threads.

2.3 The interaction of multiple memory locations

Example 2.1 involved only a single memory location,x. But it must be possible to order memory

accesses to different locations, or a Fence operation will have very little meaning. For example:

St x, 1 Ld y = 3
St x, 2 FenceLLy, x
FenceSSx, y Ld x = 1?
St y, 3

(2.2)

Here, the Store-Load dependencyy should preventLd x from seeing1 (since it was overwrit-

ten by2). It seems that a Fence must have a non local effect in the sense that the Stores it guards

must be “completed” or made visible to other threads before those threads can observe anything

from the post fence region.

However, to obtain ordering guarantees, Store-Store dependencies uncovered by observation

5

must be respected as well:

St x, 1 St y, 2
FenceSSx, y FenceSSy, x
St y, 3 St x, 4
Ld y = 2 Ld x = 1?

(2.3)

HereLd y in the first thread proves thatSt y, 3 occurs beforeSt y, 2. We expect the fences to

imply thatSt x, 1 occurs beforeSt x, 4, and thus that it is impossible for theLd x to be1.

2.4 Store Atomicity and its Enforcement

Atomicity may be defined rigorously, but informally, as follows:

A memory model hasatomic storesif, when two observers observe two stores to the same

location to be in a particular order, that ordering relationship is respected by all observers.

To formalize this definition, we must define the notion of an observer and of ordering between

observers.

Definition (Observer): The only way to observe a memory location is to either Store to it (in

which case we observe the Store itself,observee(S) = S), or to Load from it (in which case we

observe the StoreS which supplied the value loaded,observee(L) = source(L) = S).

For the moment, we assume a partial orderA @ B (read “A beforeB”) between operations.

In our semantics (Section 3) this instruction reordering is captured by generating a directed acyclic

graph of dependencies between instructions.

LoadsL and StoresS to a single location must comply with the following two axioms:

Axiom (Causality): L 6@ source(L)

Axiom (Overwrite): S1 @ S2 @ L ⇒ source(L) 6= S1 (only a recent Store may be loaded.)

After a LoadL has executed, the following properties must hold:

Definition (Dependency): source(L) @ L, that is, there is a dependency between the source of

the data loaded and the Load itself.

Definition (Store Atomicity):

A @ B, address(A) = address(B),
observee(A) 6= observee(B) ⇒ observee(A) @ observee(B)

6

Ld x

Ld x

Ld x

Ld x

Ld x

St x,6 St x,7 St x,1

St x,2

St y,3
Ld x

Ld y

1.1

1.2

1.3

2.1

2.2

Ld y

St x,1

St y,3

Ld x

St y,2

St x,4

1.1

1.3

2.1

2.2

2.3

1.2 Ld y

Ld x

St x,4St x,2St x,1

St y,3

2.11.1

1.2

1.3

2.2

3.1

1.1

1.2

1.3

2.1

2.2

3.1 4.1

Example 2.1

Example 2.3 Example 2.4

Example 2.2

Figure 3: Load-Store graphs for the examples in the text. The solid lines result from the reordering
semantics (including Fences). The dashed lines indicate Store-Load dependencies. The dotted line
indicates a Store-Store edge.

In our semantics, when a Load observes a Store in another thread, we draw an edge from that

Store to the observing Load. But this Store-Load edge together with other intra-thread data and

control flow edges may not be sufficient to capture the ordering between the Stores as implied by

the atomicity definition. Hence, in our semantics, when a Load observes a Store in another thread,

we also draw a Store-Store edge (the dotted line) from every Store which precedes the Load to the

observed Store. Coupled with the overwrite rule, these Store-Store edges enforce atomicity while

keeping the graph acyclic. We explain this by drawing simplified graphs for the examples in this

Section. (We erase the Fence instructions, but preserve the connections they make between Loads

and Stores).

So in Example 2.1 in Figure 3, when the Load 1.2 observes the Store 4.1, we insert the edge

from 3.1 (previously observed by 1.1) to 4.1. This edge, together with the overwrite rule, prevents

1.3 and 2.2 from observing 3.1. Similarly, in Example 2.3 the Load 1.3 observes the Store 2.1,

and so we must add an edge from the prior Store 1.2 to 2.1. This will prevent the Load 2.3 from

observing the Store 1.1 (since Load 2.2 is later).

7

St x,2St x,1

Ld x Ld x

St x,3

Ld x

St x,n

Ld x

2.11.1

1.2 2.2

3.1

3.2

n.1

n.2

Figure 4: A chain of dependencies. A Load in the chain cannot observe any Store to its left due to
the insertion of Store-Store edges by the atomicity rule.

Sometimes no Store-Store edges are required, as seen in the graph for Example 2.2. The

following example demonstrates that more than one Store-Store edge may need to be drawn:

St x, 1 St x, 2 St x, 4
FenceSLx, y FenceSSx, y
Ld y = 3 St y, 3
FenceLLy, x
Ld x = 4

(2.4)

Here, the Load ofy creates a dependency between the second thread and the first thread. Thus,

the Store tox in both threads occurs before the Load ofx. WhenSt x, 4 is observed, we know it

must occur after the other Stores tox, but we still do not know their relative order.

Adding Store-Store edges ensures that chains of observations are respected. For example, in

Figure 2.4 we see a chain of stores and loads. The Store-Store edges guarantee that the rightmost

Load in the chain cannot observe the leftmost Store (or any Store to its left).

2.5 Connection to implementation

In order to understand the implications of our atomicity condition for implementations, it is im-

portant to grasp the theoretical flexibility offered by our model:

1. A Store-Store edge orders two Stores. It is always safe to draw a Store-Store edge between

two unordered Stores, as we prove in Section 3.5.

2. The Store-Store edges that must be drawn to preserve atomicity when a Load observes a

Store in another thread can be drawn any time prior to the observation, i.e., the drawing of

the Store-Load edge. In our model we draw Store-Store edges as lazily as possible, i.e., as

late, but no later, than the Store-Load edge.

8

Implementations invariably draw Store-Store edges (i.e., order Stores)muchearlier than the

Loads that require them are performed. Furthermore, implementations often impose Store-Store

edges not required by our semantics. Both of these actions are safe according to our model.

Implementations achieve the effect of a Store-Store edge on the same address within a thread

simply by overwriting the old value in the cache or memory. Across threads, this effect is achieved

by cache coherence; each Store causes invalidations of old copies in the other threads [2]. Keeping

clean or read-only copies of the latest Stored value in multiple caches is safe because the coherence

protocol guarantees the destruction of these copies when a Store-Store edge is drawn.

In the CRF model [19] the effect of a Store-Store edge is achieved via the “commit” operation,

which forces a dirty value in a cache to be written to the global memory, displacing the previous

value. A Load is guaranteed to see this new value after it performs the “reconcile” operation.

From the implementation point of view the role of Fences in inter-thread communication is

the most difficult thing to understand. As shown in Example 2.3, when Stores to two different

addressesx andy are separated by a Store-Store fence, any observation of addressy can potentially

affect the observations of addressx. This effect cannot be achieved by merely overwriting values—

x andy represent different locations. GivenLd y = 2 (node 1.3 in Figure 3), node 2.1 must have

overwritten the value of node 1.2. This much can be achieved by cache-coherence protocols. But

any observation ofx which comes after this event must be cognizant of the ordering between nodes

1.1 and 2.1.

Informally, the semantics of a store fence is often described as “all the stores before the fence

mustcompletebefore the fence is discharged”. This effect can be achieved by writing back all the

dirty copies before a fence and indeed this is what most systems do. This non-local effect makes

fences quite expensive to use in modern microprocessors. To further understand this cost of Fences

(really of Store atomicity), imagine that the first thread in Example 2.3 has exclusive copies ofx

andy. Variabley will be written back only when another thread Stores toy butx has to be written

back just to get past the Fence, even if no other thread ever requestsx.

9

One way of alleviating this cost is to resort to coarse-grain synchronization primitives (e.g.,

locks) and non-atomic stores. In a “properly synchronized program” [3] stores commit just before

leaving a locked region (or even later, after taking a lock [12]). The implementation underlying a

model like Location Consistency [8] must either provide the necessary synchronization primitives,

or have a strong enough memory model to permit them to be coded in terms of Load, Store, and

Fence. For example, a model which respects only Store-Load dependencies allows synchroniza-

tion betweenn threads inO(n) space and time using the algorithm of Dijkstra [4].

3 Execution Graphs

In the remainder of this paper, we present a detailed semantics for an atomic memory in the sense

of Section 2. We break program execution into three concurrent tasks:

1. Graph Generation: constructs the local dependency graph for a thread, based on the reorder-

ing semantics summarized in Figure 2. Graph generation suspends under some conditions and can

only be resumed by the actions of Graph Execution or Memory Action.

2. Graph Execution: performs the computations represented by the generated graph. A node

whose inputs are available isresolvedto a value. This process suspends if there are no nodes which

can be resolved, or if a Memory Action is required to resolve a node.

3. Memory Action: connects a Store instruction to a Load instruction. This process may also

require the introduction of inter-thread Store-Store edges. Memory action is the only aspect of our

semantics which affects the behavior of multiple threads.

After introducing the graph syntax, we describe of each of these tasks. In Section 3.5 we show

that our procedure indeed generates a partial order and is consistent with properties discussed in

Section 2.

3.1 Graph Syntax

An execution graph is a directed, acyclic graph which is built incrementally as execution proceeds.

The rules for generating the graph are designed to preserve the atomicity property of the generated

10

L ∈ Execution Tag ::= N

P ∈ Thread Tag ::= P1 | P2 | ...

V ∈ Value ::= Z | done

R ∈ Node Tag ::= P.L

C ∈ Control Edges ::= {P.L1, P.L2, . . .}

W ∈ Store-Load Edges ::= {P1.L1, P2.L2, . . .}

O ∈ Store-Store Edges::= {P1.L1, P2.L2, . . .}

Node ::= (c, Ra, V, {})
| (+, Ra, Rb, V, {})
| (. . . , Ra, Rb, V, {})
| (Br, Rc, V, C)
| (St1, Ra, V, {})
| (St2, RSt1 , Rv, V, C, O)
| (Ld1, Ra, V, {})
| (Ld2, RLd1 , Rg, V, C)
| (PreFenceL1, Ra, V, {})
| (PreFenceL2, RPFL1 , V, C)
| (PreFenceS1, Ra, V, {})
| (PreFenceS2, RPFSA, V, C)
| (PostFenceL1, Rb, V, C)
| (PostFenceL2, RPostFenceL1 , RPreFenceX2 , V, C)
| (PostFenceS1, Rb, V, C)
| (PostFenceS2, RPostFenceL1 , RPreFenceX2 , V, C)

Figure 5: Graph node syntax

graph at all times. Each node in the graph is uniquely identified by a node tag, which is a pair

of a thread name and an execution tag writtenP.L. Execution tagsL (not to be confused with

instruction labels in the source program) are integers that are assigned to each node in a thread

in increasing program order. Nodes are connected by three kinds of directed edges: data edges,

control edges, and memory edges. A data edge is used to indicate the passing of a value between

two nodes. A control edge is used to indicate ordering within a thread of execution (due to branches

or memory fences). A memory edge is either a Store-Load edge, used to indicate the flow of data

from a Store to a Load, or a Store-Store edge, used to enforce atomicity.

Node syntax is summarized in Figure 5. Nodes contain anoperation with one or more

operandsand avalue. The final entry in each node is the set of control edges. Many instruc-

11

tions do not require control edges; this is indicated by the empty set{} in the grammar. Note

that instructions involving addresses are split into multiple phases (nodes) to resolve aliasing; this

split-phase operation will be described in the Graph Generation process.

Each thread has anexecution stateconsisting of a program counter (PC) to keep track of the

current instruction, a node counter (NC) to keep track of the next available execution tag, and a

register table (RT) to record which node is responsible for computing the value of each register.

We update the mapping for registerr by writing RT [r] = L. Because nodes are uniquely tagged,

we use tags and nodes interchangeably in the semantics.

Two operators express the relationship between nodes:< and@. For P.L1 andP.L2 in the

same threadP , P.L1 < P.L2 is read as “L1 is beforeL2 in program order in threadP .” Program

order is determined by integer comparison between the execution tags, i.e.,L1 < L2. Nodes in

different threads are not ordered by<.

The@ operator indicatesexecution order. P1.L1 @ P2.L2 indicates that there is a path from

P1.L1 to P2.L2 in the graph. Thus,@ is simply transitive closure of the edge relation. Unlike<, @

can be applied to nodes from different threads of execution. Execution order and program order are

only loosely related. In particular, reordering may combine with interprocessor communication to

result in a situation whereP.L @ P.L′, butP.L′ < P.L. We say in this case that these instructions

have beenreordered. In the following example the instructions in the first thread are reordered

before execution:

Ld x = 3 Ld y = 5
St y, 5 FenceLSy, x

St x, 3
(3.1)

Note that two or more threads must interact in order for reordering to be visible to the program

in this way.

3.2 Graph Generation

To start graph generation for a thread we initialize the thread state:

1. Createn nodes (one for each register) with operationri = 0 and tagi.

12

2. SetRT [ri] = i

3. SetPC to 0.

4. SetNC to n.

We initialize memory by constructing a separateinitialization threadwhich traverses all of

memory writing a0 into each memory location. This thread contains no Fences or Loads.

During graph generation, an instruction is fetched at the current value of the PC and both NC

and PC are incremented by one unless the instruction is a split-phase or branch. For Loads and

Stores NC and PC are incremented by two and for Fences by 4. A branch resets the PC if it is

taken. The value in a node is initially⊥.

We describe graph generation for each instruction as follows:

Constant move: rd = c:

1. Create a node(c, ⊥, {}) with tagP.NC.

2. SetRT [rd] = NC.

Addition: rd = ra + rb:

1. Create a node(+, RT [ra], RT [rb], ⊥, {}) with tag P.NC.

2. SetRT [rd] = NC.

Branch: Br rc l branches to the static targetl if rc is less than or equal to zero:

1. Create a node(Br, RT [rc], ⊥, PriorBr(P.NC)) with tag P.NC,

2. Block on this node untilRT [rc] is resolved by graph execution and memory action.

3. Once resolved, ifrc ≤ 0, thenPC = l, otherwise PC is unchanged.

Loads and Stores are split into two phases, theaddress phaseand theoperation phase, such

that the latter is dependent upon the former. In order to guarantee that memory action respects

local execution order, a Load must stall until the address phase of preceding Store andFenceXL

operations are complete. Similarly, a Store must stall until the address steps of preceding Load,

Store, orFenceXS operations are complete. Control edges are added to the operation phase to

indicate any aliasing occurs.

13

PriorBr(P.L) = {P.L′ < P.L | operation(P.L′) = Br}

PriorLd1(P.L) = {P.L′ < P.L | operation(P.L′) = Ld1}
PriorSt1(P.L) = {P.L′ < P.L | operation(P.L′) = St1}
PriorLdSt1(P.L) = PriorLd1(P.L) ∪ PriorSt1(P.L)
PriorPostFenceL1(P.L) = {P.L′ < P.L | operation(P.L′) = PostFenceL1}
PriorPostFenceS1(P.L) = {P.L′ < P.L | operation(P.L′) = PostFenceS1}

PriorLd2(P.L) = {P.L′ < P.L | operation(P.L′) = Ld2 ∧ address(P.L′) = address(P.L)}
PriorSt2(P.L) = {P.L′ < P.L | operation(P.L′) = St2 ∧ address(P.L′) = address(P.L)}
PriorLdSt2(P.L) = PriorLd2(P.L) ∪ PriorSt2(P.L)
PriorPostFenceL2(P.L) = {P.L′ < P.L | operation(P.L′) = PostFenceL2 ∧ address(P.L′) = address(P.L)}
PriorPostFenceS2(P.L) = {P.L′ < P.L | operation(P.L′) = PostFenceS2 ∧ address(P.L′) = address(P.L)}

Figure 6: Prior functions for computing control dependencies. We writeoperation(P.L) and
address(P.L) for the operation and address parts of nodeP.L respectively.

To simplify the definition of control dependencies, we defineprior functions on a node tag

P.L, as shown in Figure 6.

Store: St ra, rv:

1. Create a node(St1, RT [ra], ⊥, C) with tagT = P.NC − 1,
whereC = PriorLdSt1(T) ∪ PriorPostFenceS1(T)

2. Block until nodeT is resolved.

3. Create a node(St2, T, RT [rv], ⊥, C ′) with tagP.NC,
whereC ′ = PriorLdSt2(T) ∪ PriorPostFenceS2(T) ∪ PriorBr(T)

Load: rd = Ld ra:

1. Create a node(Ld1, RT [ra], ⊥, C) with tagT = P.NC − 1, whereC = PriorSt1(T) ∪
PriorPostFenceL1(T).

2. SetRT [rd] = NC.

3. Block until nodeT is resolved.

4. Create a node(Ld2, T, ⊥, ⊥, C ′) with tagP.NC, whereC ′ = PriorSt2(T)∪PriorPostFenceL2(T).
Note that the memory edgeLg is initially absent (⊥); it must be filled in by a memory action.

The fence instruction imposes an ordering constraint between memory operations involving

the pre-addressrl and the post-addressrs. In addition to the split phases described above, we

split a Fence instruction into two halves with a control dependency between them, as shown in

Figure 7. The PreFence handles ordering with respect to prior instructions; the PostFence handles

ordering with respect to subsequent instructions. Each half of the fence operation is split-phase,

14

Prior Ld1

P.NC−3 PreFenceL1

x

PreFenceL2P.NC−2 PostFenceS1P.NC−1

y

Prior Ld2 to x

PostFenceS2

Later St2 to y

P.NC

x

y

Later St1

Figure 7: Graph unfolding forFenceLS rl, rs. Dotted edges indicate control arcs. Control arcs to
PreFenceL2 are determined byx. Control arcs fromPostFenceS2 are determined byy.

yielding a total of four graph nodes per fence instruction. The graph and associated constructs for

a Load-Store fence (FenceLS) will be shown; other fences are similar:

Fence: FenceLS rl, rs:

1. Create a node(PreFenceL1, RT [rl], ⊥, C) with tagT = P.NC − 3,
whereC = PriorLd1(T)

2. Block until nodeP.NC − 3 is resolved.

3. Create a node(PreFenceL2, L, ⊥, C ′) with tagP.NC − 2,
whereC ′ = PriorLd2(T) to nodeL + 1.

4. Create a node(PostFenceS1, RT [rs], ⊥, {}) with tagP.NC − 1.

5. Create a node(PostFenceS2, P.NC − 1, ⊥, {P.NC − 2}) with tagP.NC.

Simplifying Alias Dependencies: Our graph generation process introduces many redundant

edges. For example, every branch operation depends on the outcome of all previous branches

in the same thread; this means that there is a total order on branches in a single thread. As a result,

we need only insert a dependency between a branch instruction and the most recent branch in the

program. We can capture this by redefiningPriorBr as follows (Heremax selects the maximal

element of the set with respect to<):

PriorBr(P.L) = max{P.L′ < P.L | operation(P.L′) = Br}

15

St1 operations are totally ordered in a similar fashion. Furthermore,St1 operations are also

dependent on priorLd1 operations as well. When considering both sets of dependencies, we need

only considerLd1 operations since the previousSt1:

PriorLdSt1(P.L) = {P.L′ < P.L | operation(P.L′) = Ld1 ∧ PriorSt1(P.L) < P.L′}
∪ {PriorSt1(P.L)}

Finally, if we considerLd1 operations alone (as we must forPreFenceL1), we must look back

in time to the last Load. That Load will be dependent on a priorSt1, which will depend on prior

Ld1 operations. The important observation here is that theSt1 operation of interest is not the most

recent one, but the one which was most recent when the last Store occurred (in program order).

PriorLd1(P.L) = {P.L′ < P.L | operation(P.L′) = Ld1 ∧ PriorSt1(P.Lm) < P.L′}
where P.Lm = max{P.L′ < P.L | operation(P.L′) = Ld1}

Similar arguments apply to thePriorSt2, PriorLdSt2, andPriorLd2 functions.

3.3 Graph Execution

After graph generation, a node has the value⊥. When all its inputs (including its control edges)

become available, the value of nodeP.L is resolvedbased on the values of its data inputsP.Li as

follows:

Constant move: A constant move of constantc has no inputs and no control dependencies and

can execute immediately. We setvalue(P.L) = c.

Addition: value(P.L) = value(P.La) + value(P.Lb).

Branch: When input nodeP.Lc has been resolved,value(P.L) = done.

St1: value(P.L) = value(P.La). Similar rules apply to the other address phase operationsLd1,

PreFenceL1, PreFenceS1, PostFenceL1, PostFenceS1.

St2: value(P.L) = value(P.Lv). Note that the Store-Store edges need not be computed yet. The

value is only used by Load operations; no instruction is directly data dependent upon a Store.

Ld2: value(P.L) = value(P ′.Lg). Note thatP ′.Lg must be instantiated by the memory action

rules. This is the only non-local data dependency in instruction execution.

16

PreFenceL2: value(P.L) = done.

Similar execution rules apply toPreFenceS2, PostFenceL2, andPostFenceS2. Pre- and Post-

Fence instructions are distinguished by their data dependencies.

3.4 Memory Action

The memory action phase is guided by the rules identified in Section 2. The phase matches each

Load operationL to a corresponding Store instructionS as follows:

1. Identify a StoreS to the same address asL satisfying:

Causality:: L 6@ S

Overwrite:: S′ @ L ⇒ S 6@ S′

2. To preserve atomicity, for allS′ @ L whereS′ 6= S, add Store-Store edgeS′ @ S.

3. Then add Store-Load edgesource(L) = S

3.5 Properties

There is a standard algorithm to generate all possible executions of a given program. Note that,

with the exception ofLd operations, every instruction in a thread may be resolved purely locally.

Therefore, we can interleave a step of unfolding and execution with a single step of Load resolution

as follows:

1. Perform the graph generation and execution steps on every thread until no further unfolding
or execution is possible. At this point, all threads will be awaiting the outcome of some
Load instruction.

2. Generate a new execution for each possible valid combination of aLd instruction and a
correspondingSt instruction.

3. For each such execution, return to the first step.

To show that execution graphs are well founded, we prove that they must be acyclic, and that

they cannot get stuck—one of graph generation, graph execution, and memory action is always

possible. We also show that execution graphs are linearizable [15]. We can obtain sequentially

consistent execution [13] by placing an appropriate Fence between each adjacent pair of memory

operations.

17

3.1 Theorem (Acyclic) An execution graph is acyclic.

Proof: Causality ensures that a Store-Load edge does not introduce a cycle. A Store-Store edge

S′ @ S introduces a cycle only ifS @ S′ @ L. This would violate the overwrite rule. All other

edges connect to a newly created node later in program order.

3.2 Lemma (Load Progress)It is possible for memory action to find a Store to match any Load

operation in an arbitrary acyclic program graph with an initialization thread.

Proof: Call the LoadL. The initialization thread guarantees there will be at least one StoreS

to the same location. IfS @ L, there is at least one most recent store; this store will be legal

according to the overwrite rule. Otherwise we choose an unrelatedS.

3.3 Corollary (Store-Store Insertion) If S′ 6@ S are Stores to the same location, it is always

valid to insert the Store-Store edgeS @ S′.

Proof: Inserting the extra edge will not prevent Load Progress; Store-Store edges are ignored by

Graph Execution.

3.4 Theorem (Progress)It is always possible to make progress in one of the three phases.

Proof: Given load progress and acyclicity, progress follows from the definition of Graph Execu-

tion, and in particular the fact that store-store edges are ignored.

3.5 Theorem (Linearizability) Executions arelinearizable: Nodes can be totally ordered re-

specting@ such that each Load receives the value of the immediately preceding Store to the same

location.

Proof: The only thing preventing such a linearization would be a path fromsource(L) to L

containing another storeS to the same location. This contradicts the overwrite rule. Edges which

do not lie on such a path can be ordered immediately beforeS or afterL.

We can reduce any execution graph to aLoad-Storegraph, similar to the ones shown in Fig-

ure 3, as follows:

18

1. Completion: Transitively close the graph.

2. Erasure: Erase all nodes exceptLd2 andSt2 nodes.

3. Minimization: Remove all redundant edges, preferring data flow edges to control edges to

memory edges. For example, in Example 2.3 in Figure 3 the Store-Store edge from 1.1 to

2.1 is redundant (given the edges from 1.1 to 1.2 and 1.2 to 2.1) and has been erased.

4 Related work

The literature on memory models (see the tutorial by Adve and Gharachorloo [2] for an introduc-

tion) is a study in the tension between elegant, simple specification and efficient implementation.

As Adve et. al. [1] note, it is sufficient for a compiler or an architecture toappearto uphold the

rules of a particular memory model; the underlying coherence mechanism is unimportant.

Sequential Consistency [13] remains the standard against which memory models are com-

pared; it is arguably [10] the only model which is widely understood by programmers. The idea

of properly synchronized programs [3] and of release consistency [8, 12] is to present a program-

ming model which, if obeyed, appears to be sequentially consistent, even with a comparatively

weak underlying memory system.

An alternative is to attempt to provide a weak but easily-understood memory model, as in

location consistency [6, 7]. The CRF memory model [19] takes this to its logical conclusion,

by presenting a model rich enough to capture other consistency models, including SC, location

consistency, and a proposed memory semantics for the Java programming language [16].

The struggle to formalize a memory model for the Java virtual machine is a case study in

the difficulty of writing a model which permits aggressive compiler optimization. The initial

model [9, 14] had a number of shortcomings, described in detail by Pugh [18]. Five years of

discussion [11] have finally resulted in a preliminary specification [17] which makes use of at least

five different ordering relations in defining the memory model.

Like the present work, the computation-centric memory models of Frigo and Luchangco [6,

19

5, 15] use DAGs to capture ordering dependencies between memory operations. However, no

semantics is given for graph generation. Synchronization is implicit in the graph structure—several

of the models explored are not sufficiently strong in themselves to encode synchronization using

load and store operations.

5 Conclusions

The main contributions of this paper are the declarative specification of atomicity in the presence

of instruction reordering and the necessary conditions for maintaining atomicity operationally. The

original motivation for this work came from two different sources:

1. A desire to find a simple operational model—a way of enumerating all the legal behaviors

of a program—buried in the declarative specification of the memory model for the Java Pro-

gramming Language [17]. This problem is quite difficult in view of the commonly accepted

compiler optimizations that permit reordering.

2. A desire to define precisely the property of store atomicity in the presence of caches. For

example, in the CRF memory model [19] a clear distinction is made between the global

“commit” operator and a weaker version which commits data to a specific processor. The

latter is needed to define non-atomic behaviors. In spite of this clear difference, a definition

of atomicity was never given.

In an attempt to give an operational semantics for a simple multithreaded language with in-

struction reordering and fences we discovered that memory actions could not be defined properly

without a declarative specification of atomicity. This fact would not have emerged had we used a

global memory in our operational model. The resulting model of atomicity has proved surprisingly

easy to reason about.

It came as a surprise to us that the minimal set of dependencies required to implement an

atomic memory with Fences gives us a model that is strong enough to be linearizable, i.e., a model

in which all Loads and Stores to a location can be totally ordered. It may be that linearizability

20

is the property we want from a low-level memory model, just as Sequential Consistency is the

property programmers want.

We also gained some insight into the behavior of fences—they’re not as local as we previously

thought. The fact that fences are expensive to implement provides us motivation to look for alter-

natives. A system with non-atomic stores but with suitable synchronization primitives that enforce

atomicity at a transaction level may prove to be more useful.

References

[1] S. Adve, V. Pai, and P. Ranganathan. Recent Advances in Memory Consistency Models for
Hardware Shared Memory Systems.Proceedings of the IEEE, 87(3), March 1999.

[2] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.IEEE
Computer, pages 66–76, Dec. 1996.

[3] S. V. Adve and M. D. Hill. Weak Ordering – A New Definition. InProceedings of the 17th
International Symposium on Computer Architecture, pages 2–14. ACM, May 1990.

[4] E. W. Dijkstra. Solution of a problem in concurrent programming control.Commun. ACM,
8(9):569, 1965.

[5] M. Frigo. The weakest reasonable memory model. Master’s thesis, MIT, Oct. 1997.

[6] M. Frigo and V. Luchangco. Computation-centric memory models. InProceedings of the
10th ACM Symposium on Parallel Algorithms and Architectures, June/July 1998.

[7] G. R. Gao and V. Sarkar. Location Consistency – A New Memory Model and Cache Co-
herence Protocol. Technical Memo 16, CAPSL Laboratory, Department of Electrical and
Computer Engineering, University of Delaware, Feb. 1998.

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory
Consistency and Event Ordering in Scalable Shared-memory Multiprocessors. InProceed-
ings of the 17th International Symposium on Computer Architecture, pages 15–26. ACM,
May 1990.

[9] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, Menlo
Park, CA, 1996.

[10] M. D. Hill. Multiprocessors should support simple memory-consistency models.IEEE Com-
puter, 31(8):28–34, 1998.

[11] Java memory model mailing list. http://www.cs.umd.edu/ pugh/java/memoryModel.

[12] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Distributed
Shared Memory. InProceedings of the 19th International Symposium on Computer Archi-
tecture, pages 13–21. ACM, May 1992.

21

[13] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs.IEEE Transactions on Computers, C-28(9):690–691, Sept. 1979.

[14] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-Wesley, Menlo
Park, CA, 1997.

[15] V. Luchangco.Memory Consistency Models for High Performance Distributed Computing.
PhD thesis, MIT, Cambridge, MA, Sep 2001.

[16] J.-W. Maessen, Arvind, and X. Shen. Improving the Java memory model using CRF. In
Proceedings of the 15th AnnualConference on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 1–12, Minneapolis, MN, Oct 2000. ACM SIGPLAN. Also
available as MIT LCS Computation Structures Group Memo 428.

[17] J. Manson, W. Pugh, and S. Adve. The unified memory model proposal for Java.
http://www.cs.umd.edu/ pugh/java/memoryModel/unifiedProposal/, Apr. 2004.

[18] W. Pugh. Fixing the Java memory model. InProceedings of the ACM Java Grande Confer-
ence, June 1999.

[19] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A New Memory
Model for Architects and Compiler Writers. InProceedings of the 26th International Sym-
posium on Computer Architecture, Atlanta, GA, May 1999. ACM.

[20] G. L. Steele Jr. Memory models for programming languages. Invited talk, Harvard Univer-
sity., Mar. 2004.

22

