
Development of a Programming Model for the

AEGIS Secure Processor

by

Ishan Sachdev

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2005

Certified by. .
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Development of a Programming Model for the AEGIS

Secure Processor

by

Ishan Sachdev

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, a high level programming model for the AEGIS secure processor is
designed and implemented. The AEGIS processor enables developers to create trusted
systems, while only needing to trust the AEGIS processor. In order for developers to
utilize the processor, there was a need for high level access to the low level AEGIS
constructs. There was also a need for a practical programming model to describe
how to correctly design and develop applications utilizing the AEGIS system. The
implementation of this programming model was done using a combination of C, Java,
and Assembly.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Professor Devadas for giving me the opportunity to work in

CSG and on this project. I would like to thank Ed Suh and Charlie O’Donnell for

answering my never-ending barrage of questions. Without them, this thesis never

would have gotten off of the ground. I would like to thank Russ Cox for being an

all-around guru and unravelling the mysteries of GCC for me. Finally, I would like

to thank Chris Leung for reminding me that there is such a thing as too much free

time.

5

6

Contents

1 Introduction 11

1.1 Motivation for AEGIS Secure Processor 11

1.2 Motivation For High Level Programming Model 13

1.3 Motivation for Mid-Level Toolchain 13

1.4 Motivating Example . 14

1.5 Organization . 15

2 Related Work 17

2.1 Trusted Computing . 17

2.2 Information Flow . 18

3 Execution Modes 21

3.1 Overview . 21

3.2 Standard Mode . 22

3.3 Tamper-Evident Mode . 22

3.4 Private Tamper-Resistant Mode . 23

3.5 Suspended Secure Processing Mode 24

4 High Level Programming Model 27

4.1 Overview . 27

4.2 Memory Model . 27

4.2.1 Data Types . 29

4.2.2 Application Code . 32

7

4.3 Functional Model . 34

5 Implementation 39

5.1 Overview . 39

5.2 Assumptions . 39

5.3 AEGIS Initialization . 40

5.3.1 Physical Memory . 40

5.3.2 AEGIS Entry Parameters . 43

5.3.3 Enter AEGIS . 44

5.4 AEGIS Mode Change Mechanics . 45

5.5 AEGIS Mode Change Implementation 50

5.6 AEGIS Exit . 50

5.7 AEGIS Tools . 51

5.7.1 AEGIS Tags . 51

5.7.2 AEGIS Private Code Encryption 52

5.7.3 AEGIS Malloc Functions . 54

6 Application to Sensor Networks 55

7 Conclusion 61

7.1 Future Work . 61

8

List of Figures

1-1 Silicon PUF Delay Circuit [12] . 12

3-1 AEGIS Secure Modes and Transitions [12] 22

4-1 AEGIS Malloc Functions . 31

4-2 Global Variable Tagging . 33

4-3 Function Tagging . 35

4-4 AEGIS Mode Changes . 37

5-1 AEGIS Physical Memory Layout [12] 42

5-2 AEGIS Memory Regions . 43

5-3 Verify Location of l.aegis.enter Instruction 45

5-4 Transferring Variable From Caller Stack to Callee Stack 47

5-5 Transforming Function Call . 48

5-6 C Attributes . 52

5-7 AEGIS OTP Pad Encryption of Private Code [11] 53

6-1 Sensor Network Code . 56

6-2 AEGIS Enabled Sensor Network Code 58

9

10

Chapter 1

Introduction

1.1 Motivation for AEGIS Secure Processor

Computing devices are quickly integrating themselves into every facet of our daily

lives. The number of interconnections among such devices is also growing at a rapid

pace, along with the amount of data being accessed. Furthermore, the popularity

of small, wireless devices such as laptops, PDAs, and cellular phones has increased

greatly. This has resulted in two new complications. First, as these devices are

generally less powerful than necessary, much of the actual computation is no longer

being done locally but being farmed out to a remote server. Second, it is now more

possible for an adversary to come into physical contact with a trusted device, and

therefore tamper with a ’secure’ system [12].

These conditions necessitate a secure method of computation that fulfills the fol-

lowing conditions. It must protect against physical tampering which attempts to

corrupt data, discover private data, or violate copy protection. It must be able

to reliably generate, protect, and share some type of secret which can be used in

cryptographic primitives. It should also attempt to reduce the overhead inherent in

advanced security measures to only that which is necessary.

The AEGIS single chip secure processor as described in [12] was developed to meet

these criteria, and provide a single device on top of which secure systems could be eas-

ily constructed. The processor is able to fulfill our security requirements by providing

11

Figure 1-1: Silicon PUF Delay Circuit [12]

a set of secure environments, each offering different levels of security. AEGIS also

utilizes Physical Random Functions (PUFs), as described in [5], to veritably create,

maintain, and share secrets.

A PUF is a random function that is tied to a physical device in such a way that,

given a polynomial amount of physical measurements, it is still extremely difficult

to deduce the response to a randomly selected challenge. The PUF utilized in the

AEGIS processor makes use of the inherent timing differences in any integrated circuit

due to slight variances in the manufacturing process [5]. The delay is measured

across a delay circuit like that shown in Figure 1-1. Using these delays, it is possible

to differentiate between different PUF-containing integrated circuits. These PUFs

have an exponential number of input/output pairs, making model building or full

characterization impossible. Thus, only with physical access to the PUF can you

hope to arrive at the correct output.

The AEGIS architecture provides four different secure environments, each provid-

ing a different level of security: Standard Mode, Tamper-Evident Mode (TE), Pri-

vate Tamper-Resistant Mode (PTR), and Suspended Secure Processing Mode (SSP).

These modes use a combination of Integrity Verification and Memory Encryption to

ensure that code and data stays private and untampered with throughout the ap-

plication’s execution. SSP mode allows a developer to temporarily switch out of a

secure mode to run untrusted code.

Thus, the AEGIS processor provides a secure, efficient means of developing a

secure computational system.

12

1.2 Motivation For High Level Programming Model

It is not enough to simply provide developers with the AEGIS processor; there is also

a need for a high level programming methodology to allow developers to utilize the

AEGIS constructs. In particular, there must exist a way for a developer to parti-

tion his application code and data among the three different AEGIS secure memory

regions, and to partition the execution of his application among the four different

security modes. The interaction with AEGIS should be as transparent as possible.

This thesis will demonstrate, using a high level language, such a programming

model for creating secure applications. This model separates an application’s proce-

dures and data structures into three distinct categories: unprotected, verified, and

private, which are then stored in corresponding regions of memory. The model also

separates an application’s execution into four distinct security modes: Standard, TE,

PTR, and SSP.

Unprotected procedures can only run in standard or SSP mode, and are restricted

to using only unprotected variables. Verified functions can either run in TE or PTR

mode, but in TE mode they are restricted to accessing verified and unprotected vari-

ables, while in PTR they can also access private variables. Finally, private procedures

run in PTR mode, and can access variables of any type.

In order to utilize the AEGIS system, the developer will be responsible for speci-

fying procedure and data structure memory regions, and switching execution modes

appropriately.

1.3 Motivation for Mid-Level Toolchain

To bridge the gap between the low-level AEGIS system calls and a high level program-

ming language such as C, there must exist a library that exposes to developers the

low-level functionality. This thesis will describe the implementation of a set of tools

13

that will be incorporated into a library and make the programming model previously

discussed possible.

The programming model requires a set of constructs to ensure the security require-

ments. It requires three different stacks and three different heaps to hold variables

of each type. It also requires a segmentation of memory to allow different sections of

the application to be stored according to their security parameters.

However, the developer should not have to worry about managing these disparate

structures. Their responsibilities should end with typing data correctly and making

appropriate security mode switches. Therefore, a set of underlying tools is needed to

manage memory at a low level.

These tools will be responsible for: initializing memory regions, making appro-

priate changes to the underlying stacks on a mode change, managing and retrieving

structures allocated on each of the three heaps, and loading the program data and

code into the correct memory segments.

There will also need to be methods that allow developers to initialize the AEGIS

system, make appropriate AEGIS mode changes, and exit the AEGIS system when

security is no longer needed. Developers should not have to interact with the low

level assembly commands, and their associated AEGIS parameters and structures.

They should be able to fully utilize AEGIS functionality from within the high level

language.

1.4 Motivating Example

A particular scenario where the AEGIS system would have a significant impact is sen-

sor networks. Sensor networks are networks of hundreds or thousands of small sensor

nodes. These nodes are made up of sensors, some form of actuator for movement, and

general purpose computing components. The nodes communicate with each other,

14

and with a central server, wirelessly [6].

Sensor networks are intended to monitor a given environment, such as a battlefield

for coordination or forward scouting purposes, or for inventory control in a warehouse.

The idea is that through monitoring of a small piece of the environment by a large

number of nodes, one can derive a good picture of the total environment.

The primary characteristic of such a sensor network is that the nodes, in order to

reduce size, operate on very low power and therefore have low bandwith availability

and reduced computational power.

Currently, there are a number of approaches, such as TinySec [6], that examine

the problem of sensor net security. However, in general, these solutions only deal

with the security of the messages being passed. They do not deal with a number

of other important security issues. For example, they do not protect cryptographic

material and other secret data contained on the nodes. Using this secret material,

an adversary can then place malicious nodes into the network which will will be able

to impersonate authorized nodes. These schemes also do not protect against a node

performing unauthorized computations in lieu of correct computations.

The AEGIS system can address these security issues, and offer a solution to these

problems. Once the AEGIS system has been fully detailed, I will explain its applica-

tion to sensor networks.

1.5 Organization

This thesis is structured as follows. Chapter 2 discusses related work, including

information flow and other secure computing bases. Chapter 3 discusses the AEGIS

secure execution modes. Chapter 4 discusses the high level programming model that

is exposed to a developer. Chapter 5 discusses the underlying implementation of the

programming model. Chapter 6 discusses AEGIS-enabling a sensor network. Finally,

15

Chapter 7 contains some concluding remarks and ideas for future improvements to

the programming model.

This work was done in collaboration with G. Edward Suh and Charles W. O’Donnell.

16

Chapter 2

Related Work

2.1 Trusted Computing

There are a number of platforms that attempt to offer a secure computing environment

similar to that of AEGIS. Next Generation Secure Computing Base, Trust Zone, and

Trusted Platform Module are three of the more prominent platforms.

Next Generation Secure Computing Base (NGSCB), created by Microsoft, is

meant to secure future versions of the Windows operating system. NGSCB offers

applications a higher level of security to ensure privacy of data, built in secret keys

to perform encryption, and application verification by program hash [7].

Trust Zone, created by ARM, is a secure system integrated with ARM micro-

processor cores. It is meant to be a basis for building secure hardware applications.

Trust Zone offers applications differing levels of security to ensure data privacy and

run trusted code. It also allows for tagging of application data and code, and then ap-

propriate partitioning in physical memory into separate secure and non-secure regions

[2].

Trusted Platform Module (TPM), created by the Trusted Computing Group, is

a secure computing hardware module meant to be an open industry-wide trusted

17

computing standard. TPM provides internal cryptographic tools and keys, hardware

protected storage, and program hashes of applications [3].

All three of these secure platforms share similar features with AEGIS. The main

distinction is that AEGIS protects against physical attacks on a computer system,

while the other three platforms do not.

Each platform has some form of protected and unprotected memory, data tagging,

and secure execution modes. Thus, they all need to have some form of programming

model similar to the one outlined in this thesis.

2.2 Information Flow

Information Flow research is concerned with investigating methods of controlling

data flow through an application. Myers et al. have done research in this area

specifically relating to information flow in secure applications [4, 8, 9]. Other research

on information flow has been done by Pottier and Simonet [10] and Abadi [1].

JFlow is the result of Myers’ work on statically typing Java applications. JFlow

is an extension to the Java language that allows a developer to add statically checked

information-flow annotations to application variables. This allows security of infor-

mation flow to be treated as an extended form of type checking.

The significant contributions of JFlow are as follows. First, it was developed to

a be a useable and practical programming model. Previous attempts at such static

information flow analysis were too restrictive to be used by developers. Second,

JFlow supports a number of language features not previously integrated with static

information flow such as subclassing, dynamic type tests, and exceptions. Third,

it allows for label polymorphism. This allows for application code to be written

independent of the specific label that will exist at run time. Fourth, it supports

automatic label inference. This means that labels will be implicitly extended to

18

variables even when there is no specific label assigned to that variable, reducing the

work of the developer. Finally, it utilizes the decentralized label model. This model

allows multiple principals to ensure their own privacy constraints, even in the presence

of other mutually distrusted principals.

JFlow works by allowing a developer to tag each piece of data with a form of

security label, describing which principal created the value, and which other principals

are allowed to view it. As variables are combined, for example by subtraction of two

integer variables, their labels flow to the newly created variable. For example, if

principals A and B are allowed to view the variable secret, and principals B, C,

and D are allowed to the view the variable notSoSecret, then only principal B can

view the variable biggerSecret = secret - notSoSecret. In this way, the security

constraints are propagated through the application. Also, individual principals can

relax their security constraints if the need arises without affecting the constraints of

other principals. For example, in the above situation, if Principal E were allowed to

view secret, he would still not be allowed to view notSoSecret or biggerSecret.

Once these type constraint labels have been established by the developer, they

can be checked at compile time by the compiler. The compiler can determine if

there is any propagation of labels that leads to information leakage. In this way, the

information flow through the application can be verified.

Myers and others have extended information flow research to the area of secure

program partitioning, of which Jif/split is the result [13, 14]. Secure program parti-

tioning is a technique for protecting private data in an environment with mutually

untrusted hosts, such as a distributed computing grid.

Myers’ method for secure partitioning involves first annotating application data

using a security-typed language, similar to JFlow. Then, based on the security policy

created by the security-typed language, an automatic splitter partitions the applica-

tion’s execution across the set of untrusted hosts. In sum, the distributed segments of

19

the computation perform the same computation as the original, unsegmented appli-

cation. At the same time, the security constraints of each host are satisfied, without

requiring a single universally trusted entity.

Currently, the AEGIS programming model does not perform any type of informa-

tion flow analysis. Ensuring correct information flow of application data is the job of

the developer. Also, partitioning the application among the different secure execution

modes is also a task that must be performed manually by the developer. Therefore, it

would be advantageous to integrate the secure typing and partitioning work described

above in order to automate these processes, and provide a more formal method for

arriving at a correct AEGIS enabled application.

20

Chapter 3

Execution Modes

3.1 Overview

The AEGIS processor provides four secure execution modes, each providing an in-

creased level of security for application processes. These four modes are: Standard

Mode, Tamper-Evident (TE) Mode, Private Tamper-Resistant (PTR) Mode, and

Suspended Secure Processing (SSP) Mode.

Standard mode offers no additional security measures. Tamper-Evident mode

verifies the integrity of application state. Private Tamper-Resistant Mode ensures

the privacy of application state. Suspended Secure Processing Mode provides an

insecure environment with no overhead that limits access to secure application state.

All applications begin in TE mode. From TE mode, switches to the more secure

PTR mode and the less secure SSP mode are possible. Symmetrically, from PTR

mode, only switches to TE and SSP modes are possible. Once in SSP mode, appli-

cations can only run designated functions and then must return to whichever mode

SSP was initiated from. On exiting the AEGIS secure system, control is returned to

the standard mode.

The AEGIS security mode flow is shown in Figure 3-1.

21

UM

Handler
Exception

STD Mode

PTR Mode

SSP Mode

TE Mode

S/U SM SM UM UM1 0 1 0

Drivers, etc
Untrusted Code

Scheduler, etc
Encrypted Routines

VMM, etc
Exception Handler

Bootstrapping

TE Mode

l.secure.enter

l.secure.suspend
l.secure.resume

l.secure.resume
l.secure.suspend

l.secure.exit

Private Code

Trusted Code

syscalls

Security Kernel

Supervisor Mode

SSP Mode

PTR Mode

STD Mode

Update

l.secure.csm

User Mode

Figure 3-1: AEGIS Secure Modes and Transitions [12]

3.2 Standard Mode

Standard Mode has no additional security features. This is equivalent to how a

normal process on a non-AEGIS system would be run. Therefore, Standard Mode

has no additional overhead.

3.3 Tamper-Evident Mode

Tamper-Evident (TE) mode ensures the integrity of program state. This ensures

that any attempts to tamper with or alter such data will be detected. However, no

attempt is made to hide this data from an adversary.

All program state deriving from the TE mode is stored in the Verified region of

physical memory. This section of memory is then protected by an integrity verification

algorithm, designed to detect any unauthorized changes.

The Verified memory region is further divided into two smaller regions, Static and

Dynamic. The Static Verified region is read-only, and therefore should not be changed

as the program is running. Therefore, a static cryptographic message authentication

code (MAC) is sufficient to protect this sub-section. The MAC need only be computed

22

once at the start of the program’s execution since the static data will not change, and

therefore the MAC itself should also remain unchanged. The MAC is then stored in

a reserved portion of the unprotected memory.

The Dynamic region, however, contains data that will change over the course of a

program’s execution. This region must therefore be protected against replay attacks.

A replay attack is when the new value at a particular memory address is replaced

with an older value by an adversary. The processor protects the Dynamic Verified

region against this type of attack by using a hash tree.

A hash tree works by creating a tree of hashes over the data to be protected. The

root of this hash tree is then stored in a safe location. On each store to memory, the

path from the data leaf stored to the root, and therefore the root, is updated. On

each load from memory, the path from the data leaf to be loaded is verified.

The AEGIS processor stores this root hash on-chip to ensure that it cannot be

tampered with.

3.4 Private Tamper-Resistant Mode

Private Tamper-Resistant (PTR) mode ensures data integrity, as previously described,

as well as data privacy. Data privacy is ensured through the use of memory encryp-

tion.

All program state derived from PTR mode is stored in the Private memory region.

All off-chip data stored in the Private region is encrypted when stored into memory,

and decrypted when loaded from memory. Encryption is performed using a One-

Time-Pad (OTP) encryption scheme. OTP encryption works by selecting a random

sequence of bits (secret key) equivalent in length to the data to be encrypted. This

secret key is then combined with the data using the xor function to create the en-

crypted data. The exact secret key used for encryption is again needed for decryption,

23

and again the xor function is used [12].

As with the Verified region, the Private memory region is further divided into two

smaller regions, Static and Dynamic. In general, data contained within the Private

Dynamic region will also be protected by the same hash tree that protects the Verified

Dynamic data. In certain cases where it is optimal to have a Private memory region

without Integrity Verification, time stamps can be maintained for all data in this

region to thwart replay attacks. These time stamps will then be protected by the

hash tree.

3.5 Suspended Secure Processing Mode

Suspended Secure Processing (SSP) mode is a special, insecure mode used to provide

developers with a more flexible security model. SSP mode can only be entered from

TE or PTR modes, and must return to the mode it was called from. Code executed

while in SSP mode has no security overhead, and also has no access to any of the

Verified or Private data being used by the processor.

SSP mode has two major uses. First, developers will almost certainly want to use

functionality in large, external existing codebases such as libraries. If forced to run

their entire application in one of the secure AEGIS modes, the developer would be

responsible for ensuring the security and trust of this external code, a challenging,

and ultimately unnecessary or impossible task. By first switching to SSP mode, and

then running this code, developers no longer have to worry about the potential for a

security breach by utilizing external code.

Second, it is also very likely that an application in its entirety will not need to run

in one of the AEGIS secure modes. By utilizing SSP mode, developers can switch

out of a secure mode to run code that is not integral to the security of the overall

application. By switching to SSP mode, they avoid the computational overhead

24

of the more secure modes. This allows developers the flexibility to optimize their

applications for performance.

25

26

Chapter 4

High Level Programming Model

4.1 Overview

In order to allow developers to utilize the functionality of the AEGIS processor, the

low-level AEGIS instructions must be exposed in a high-level language.

We have developed a programming model which allows developers to utilize the

AEGIS secure processor through the high level C programming language [12]. This

programming model has the following characteristics:

• Allow developers to store functional code in appropriately secure memory re-

gions

• Allow developers to store data structures in appropriately secure memory re-

gions

• Allow developers to switch execution modes on function calls

4.2 Memory Model

The AEGIS memory model is different from that of a standard processor to accom-

modate its added security features. Developers have the following view of the physical

27

memory of the system.

There are three basic memory regions: unprotected, verified, and private. Each

of these regions is further broken down into four smaller regions: code, data, stack,

and heap.

Code and data are placed into the appropriate section at compile time based on

how they are declared. Data structures are placed into the appropriate stack based

on the AEGIS mode in effect when the data structure is initialized. If declared

dynamically, data structures are inserted into the appropriate heap based on how

they are created.

The previously discussed verified and private regions encompass these smaller

regions. The verified static region includes the verified and private code regions. The

private static region includes just the private code region. The verified dynamic region

includes the private and verified stack, heap, and data regions. The private dynamic

region includes just the private stack, heap, and data regions.

This memory model has two advantages. First, it ensures physical separation of

variables with differing security levels. Second, it allows developers the flexibility to

decouple functions from AEGIS modes.

Without separate stacks and heaps, physical memory would be made up of blocks

of memory regions, each protected at a different security level. It would be very costly

and inefficient to segment memory in this fashion. With separate stacks and heaps,

AEGIS can be initialized to protect memory regions of known size.

By utilizing separate stacks and heaps, it is also possible to decouple functions from

AEGIS modes as local variables will be automatically placed onto the appropriate

stack at run-time. Therefore, developers are free to run any function in any mode

without worrying about security leakage or improper use concerning local variables.

28

4.2.1 Data Types

In any application, there are three types of data structures: global structures, struc-

tures allocated on the heap, and structures allocated on the stack. A developer has

the power to place each of these types of data structures into a different part of

memory depending on his security needs.

Stack Variables

Structures allocated on the stack are local variables and data structures declared

within the scope of a specific procedure. As far as the developer is concerned, these

variables will be placed onto a stack consistent with the current AEGIS mode.

• Standard Mode −→ Unprotected Stack

• TE Mode −→ Verified Stack

• PTR Mode −→ Private Stack

This abstraction provides a number of advantages. First, it ensures that developers

do not have to worry about attempting to specify the security level of each local

variable when writing an application. Second, it ensures that local variables are not

fragmented across physical memory.

The fact that local variables are created in a certain stack based on the current

AEGIS mode means that developers do not need to specify the security level of the

variable. Forcing developers to assign local variables a security level at development

would restrict the utility of each function.

For example, if a particular local variable were declared of type ’private’ in Func-

tion A, then Function A could only be run in PTR mode. This can cause two types of

problems. First, it is not always possible to predict before run time in which AEGIS

modes a function might be run. Thus, a developer would need to be certain that

29

Function A is never run in TE or SSP modes at any point. This could potentially be

a very complicated and painstaking process. Second, if the function did in fact need

to be run in different AEGIS modes, it might be necessary to have multiple versions

of the functions, with local variables declared appropriately. This is unnecessary, and

is a problem that is avoided with our model.

By placing all local variables for a given function onto the same stack, they are

assured to be contiguous in memory. This means that AEGIS does not have to worry

about dealing with defragmented memory, which would quickly degrade performance

as utilizing a fine granularity of memory is much more expensive in hardware.

Heap Variables

Heap variables are those that are dynamically allocated at run time. These are

variables for which a developer specifically allocates a set amount of memory on the

heap, and is then responsible for utilizing. In C, this is achieved through the malloc()

function and its associated family of memory access functions.

To allow developers maximum flexibility, our programming model has three dif-

ferent heaps as described earlier. Again, this has the advantage of allowing AEGIS

to protect memory regions of known size, instead of having to protect memory at

word granularity. Access to each heap is governed by a separate malloc() function

as follows:

• malloc −→ Unprotected Heap

• malloc v −→ Verified Heap

• malloc p −→ Private Heap

Each distinct malloc() function is used similarly to how the standard C function

is used, as shown in Figure 4-1.

30

• malloc(size t size);

• malloc v(size t size);

• malloc p(size t size);

Figure 4-1: AEGIS Malloc Functions

At any particular time during an application’s execution, the application can ac-

cess any heap variables that exist in a heap of equal, or lower, security when compared

with the current AEGIS mode.

• Standard Mode −→ Unprotected Heap

• TE Mode −→ Verified Heap, Unprotected Heap

• PTR Mode −→ Private Heap, Verified Heap, Unprotected Heap

Along with malloc(), there are two other methods necessary for correct heap

management. They are free() and realloc(). The free method is used to deallo-

cate unneeded space on the heap. The realloc() method is used to adjust the size

of a previously allocated heap variable due to new memory requirements. Each of the

previously described malloc() functions has an associated free() and realloc()

method as follows:

• malloc

– free(void *ptr)

– realloc(void *ptr, size t new size)

• malloc v

– free v(void *ptr)

– realloc v(void *ptr, size t new size)

31

• malloc p

– free p(void *ptr)

– realloc p(void *ptr, size t new size)

The usage of these functions is the same as that of their standard C counterparts.

Global Structures

Global structures are variables declared globally that persist through the entire exe-

cution of an application. Local static variables are also included in this category since

they are treated by the compiler as global variables. Local static variables are only

created once and persist across multiple calls to the same function, and therefore are

really global variables that are only accessible from within a particular function.

In general, global variables are placed by the compiler into the data memory

region of the compiled application. In the AEGIS model, there are three different

data memory regions as previously discussed. Developers can place global variables

into the correct region by utilizing AEGIS-specific tags as follows:

• verifieddata −→ Verified Data Region

• privatedata −→ Private Data Region

Unprotected global variables do not need to be tagged. These tags can be used

in an application as in figure 4-2.

4.2.2 Application Code

In general, application code is placed by the compiler into the .text memory region

of the compiled application. In the AEGIS model, there are three different memory

regions for application code as previously discussed.

32

#include "tags.h"

int x;
long y verifieddata;
char ∗z privatedata;

void test();

int main()
{ 10

.

.

.
}

void test()
{
static short test1;
static int test2 verifieddata;
static long test3 privatedata; 20

.

.

.
}

Figure 4-2: Global Variable Tagging

33

Developers can place application code into each section at the function level,

depending on their security requirements for each particular function. Functions can

be tagged, similarly to global variables, so that the compiler will place them into

memory appropriately at compile time as follows:

• verifiedcode −→ Verified Code Region

• privatecode −→ Private Code Region

Unprotected functions do not need to be tagged. These tags can be used in

an application as in figure 4-3. Functions must be tagged at the function prototype.

Although function prototypes are not required by C, they are required for all functions

which a developer wants to tag.

It is anticipated that developers will place most of their code into the Verified Code

Region. This ensures that any tampering with application code will be detected. The

Private Code Region is reserved for application code that must be kept private, such

as that for proprietary algorithms. The Unprotected Region should be used either for

hard/impossible to verify code, such as a pre-compiled library, or for code that does

not need to be verified for secure application execution.

4.3 Functional Model

There are four different AEGIS modes available to developers, Standard, TE, PTR,

and SSP mode. Applications will begin in TE mode, and on exit, return to Standard

mode. Therefore, if developers wish to switch to an unsecured mode, they will switch

to SSP mode.

The decision was made to begin execution in TE mode because we anticipate that

developers will want to execute most of their application in TE mode. Therefore, it

makes sense to initialize the application in TE mode.

34

#include "tags.h"

void test1();
long test2() verifiedcode;
char test3() privatecode;

int main()
{

.

. 10

.

test1();
test2();
test3();

.

.

.
} 20

void test1()
{

.

.

.
}

long test1()
{ 30

.

.

.
}

char test1()
{

.

.

. 40

}

Figure 4-3: Function Tagging

35

Developers can switch AEGIS modes only on a function call. Since application

developers think in terms of functional units, it seemed that the most appropriate

time to make mode changes is on a functional switch. This is also necessary given the

memory model that we have selected. Allowing mode changes only on function calls

guarantees that all local variables for a given function will be located on the same

stack, and ensures the memory constraints described earlier.

Mode changes are made by calling the appropriate AEGIS function, passing it

the function call to be executed in the new mode as an argument. The mode-change

functions are as follows:

• S SSP([function call]) −→ Suspended Secure Processing Mode

• S TE([function call]) −→ Tamper-Evident Mode

• S PTR([function call]) −→ Private Tamper-Resistant Mode

Developers must call these mode-change functions in one of the following two

fashions:

• No Return Value −→ S SSP([function call])

• Return Value −→ S SSP([returnVal]=[function call])

This means that function calls that involve AEGIS mode changes cannot be used

as a part of a larger expression, such as an equation, or as a parameter in another

function call.

Only allowing functional calls of this format was an implementation decision, and

will be discussed further in Section 5.5.

These functions are used as in figure 4-4.

Developers do not need to switch to Standard Mode, or exit the AEGIS system,

as this is done automatically at the end of an application. There is no need to exit

36

int summer(int w, int x, int y, int z) verifiedcode;
int verify(int test) verifiedcode;
void transmit(int data);

int main()
{

.

.

.
S TE(z=summer(2,3,4,5);); 10

S SSP(transmit(z););
return 0;

}

int summer(int w, int x, int y, int z)
{

int sum=w+x+y+z;
int result=0;

20

S PTR(result=verify(sum););

return result;
}

int verify(int test)
{

int key=14;
return(test==key);

} 30

Figure 4-4: AEGIS Mode Changes

37

AEGIS during an application’s execution as switching to SSP mode accomplishes the

same goal as exiting AEGIS and switching to Standard Mode.

However, in the case of an unexpected execution break, such as exit(1), proper

security protocol must still be followed to ensure the integrity of the AEGIS system.

Therefore, the standard C exit() method has been replaced with an AEGIS-specific

version. The syntax remains the same. This exit() method clears all potentially

sensitive memory, and then halts the application.

• exit(int status)

38

Chapter 5

Implementation

5.1 Overview

The AEGIS toolchain was implemented in a combination of C, Java, and Assembly.

There are three main aspects of the AEGIS implementation: tools for initializing

the AEGIS system, tools for making AEGIS mode changes, and tools for exiting

the AEGIS system. There are also a number of additional tools required to utilize

the AEGIS memory system. Section 5.3 discusses the implementation of AEGIS

initialization. Section 5.4 and Section 5.5 discuss the implementation of AEGIS mode

changes. Section 5.6 discusses the implementation of exiting the AEGIS system.

Finally, Section 5.7 discusses the implementation of additional AEGIS tools.

5.2 Assumptions

The following implementation makes two important assumptions. First, there is no

operating system and therefore no virtual memory system. AEGIS is designed to

work with an operating system and virtual memory manager, but as yet this has not

been implemented.

Second, in our implementation we made an effort to avoid modifying the GCC

39

calling convention and front-end. It is possible to obtain the same functionality

described previously by modifiying GCC appropriately. However, this is a very messy

and complicated process which we decided to avoid. As we will discuss later, this is

an area for future research.

5.3 AEGIS Initialization

There are three main steps to initialize the AEGIS system, culminating in executing

the l.aegis.enter instruction.

1. Set up physical memory

2. Set up AEGIS entry parameters

3. Enter AEGIS

There are three code segments involved in AEGIS initialization: the AEGIS linker

script, the AEGIS bootstrapper, and the enter aegis() method. The linker script

instructs the linker on how to create the object file. The bootstrapper is the first code

run by the AEGIS processor on application execution. Finally, enter aegis() is the

function responsible for preparing for, and calling, the l.aegis.enter instruction.

Section 5.3.1 will discuss initializing physical memory. Section 5.3.2 will discuss

setting up the AEGIS entry parameters. Finally, Section 5.3.3 will discuss how to

correctly make the call l.aegis.enter.

5.3.1 Physical Memory

When linking an application, physical memory must be correctly partitioned accord-

ing to the AEGIS memory model. This is done by the AEGIS linker script.

The purpose of the linker script is to partition physical memory and initialize any

linker symbols. The AEGIS linker script partitions memory into the regions described

40

in Section 4.2. There are four regions for each security level as follows: code, data,

heap and stack.

1. Unprotected Region

• Unprotected Code −→ ucode

• Unprotected Data −→ udata

• Unprotected Heap −→ uheap

• Unprotected Stack −→ ustack

2. Verified Region

• Verified Code −→ vcode

• Verified Data −→ vdata

• Verified Heap −→ vheap

• Verified Stack −→ vstack

3. Private Region

• Private Code −→ pcode

• Private Data −→ pdata

• Private Heap −→ pheap

• Private Stack −→ pstack

The linker will populate the code and data regions with the appropriate application

code and data, and allocate memory for each stack and heap region. The layout of

physical memory is shown in Figure 5-1.

Application code and read only data are placed into the correct code sections

based on their AEGIS tags as described in Section 4.2.2. Application data such as

C variables is placed into the appropriate data region based on its AEGIS tag as

described in Section 4.2.1. All untagged code and data is placed into the appropriate

Unprotected region. Finally, the .bss section, which contains reserved memory for

uninitialized global and static variables, is placed in the Unprotected region. As

all global and static variables meant to be protected will be tagged as such, only

41

PHash

Unprotected code (.text) & read−only data (.rodata)

Private code (.text) & read−only data (.rodata)

Private STACK

Private HEAP

Verified HEAP

Unprotected HEAP

Unprotected STACK

Private (Dynamic)

Private (Static)

Verified code (.text) & read−only data (.rodata)

Verified STACK

Verified (Dynamic)

Verified (Static)

Private initialized data (.data, .bss)

Verified initialized data (.data, .bss)

Unprotected initialized data (.data, .bss)

Figure 5-1: AEGIS Physical Memory Layout [12]

unprotected global and static variables will be marked as .bss. Thus, this section can

be included in the Unprotected region.

Each heap and stack is allocated a set amount of memory. These values can in fact

be set before compilation to ensure optimum memory usage based on the particular

application being run.

Stacks

The three stack pointers must also be properly initialized. The C compiler, however,

only knows of the existence of one stack. Thus, the stack pointer for the current stack

is loaded into r1 (stack pointer register), and the remaining two stack pointers are

stored in memory. The memory locations for these three stack pointers are determined

by the linker in the linker script, as are the initial values for the stack pointers

themselves.

Next, at beginning of the AEGIS bootstrapper, the verified stack pointer is

switched into r1.

Finally, in the enter aegis() function, the initial locations of the three stack

pointers, set up by the linker, are stored to their preset memory locations.

42

5.3.2 AEGIS Entry Parameters

When AEGIS is initialized, it must be told how physical memory is partitioned so

that it knows which regions to protect in which manner. This is accomplished by

setting up a table in memory describing the necessary regions, and then passing this

information to AEGIS when entered.

The required regions, and their inclusive memory regions, are shown in Figure

5-2.

Verified Static vcode, pcode

Verified Dynamic vdata, pdata, vstack, vheap, pstack, pheap

Private Static pcode

Private Dynamic pdata, pheap, pstack

Program Hash vcode

Figure 5-2: AEGIS Memory Regions

The first four regions are as previously discussed. The final region, the Program

Hash, defines the region containing the application code and read only data over

which AEGIS should calculate the necessary program hash. This program hash is

then compared to an existing hash to ensure that the correct application is being

executed.

These AEGIS parameters are set up in two steps. First, in the linker script, the

required linker symbols are initialized. These symbols are initialized at link time, and

are then available to the running C application to use as extern variables.

The C function enter aegis(), contains the second part of the AEGIS initializa-

tion code. This function utilizes the linker symbols to create the table required by

l.aegis.enter, and store it in memory.

43

5.3.3 Enter AEGIS

The final step in initializing the AEGIS system is to call the l.aegis.enter instruction.

Once this call is made, however, two checks must be performed before application

execution can continue. If either of these checks fail, AEGIS is immediately exited.

These checks, and the initial call to l.aegis.enter, take place in the enter aegis()

function.

First, AEGIS must check that the l.aegis.enter instruction is in the correct location

in the executable. This arises from the fact that the Program Hash region is calculated

using an offset, calculated at compile time, from the l.aegis.enter instruction. If this

check is not made, an adversary could shift all code in the object file by some amount.

This could potentially cause two problems. First, if the application assembly contains

absolute jumps, i.e. jumps to a specific location in memory, they will now jump to an

incorrect instruction, breaking the security model. Second, the program hash, when

taken, would only include trusted code, but the Program Hash region itself would

include a different set of data due to the fact that the object file had been modified.

Again, this would break the security model.

This check is accomplished by setting an assembly-level label at the l.aegis.enter

instruction. Then, at execution, the location of this label is compared with the

location of the l.aegis.enter instruction set at compile-time as in Figure 5-3. The

label enter loc: marks the l.aegis.enter instruction. The last three Assembly

commands retrieve the current Program Counter during execution, and check that

the Program Counter at line 1 is one word away from the enter loc label.

Second, AEGIS must check a hash of the private code and data regions. As

previously discussed, AEGIS utilizes a hash of the application to ensure that the

correct application is being executed. However, private code and data are stored

encrypted in memory. Thus, before actually executing application code, this private

44

asm volatile("l.add r27,r0,%0" :: "r" (enter aegis loc));
asm volatile("enter_loc:\n"

"l.aegis.enter r31,r29\n"

"l.mfspr r25,r0,0x0010\n"

"l.addi r27,r27,0x4\n"

"l.sfne r25,r27\n"

"l.bf exit_aegis\n");

Figure 5-3: Verify Location of l.aegis.enter Instruction

region also be verified. The private region is verified by first entering PTR mode.

Once in PTR mode, the encrypted private code and data are decrypted by AEGIS

utilizing the application provided secret key. A hash of the pcode and pdata sections

is then created using the SHA-1 algorithm. This hash is compared with the correct

hash of the private code and data region, stored at a known location in Verified

memory, where it is also protected and included in the program hash.

Finally, once both checks have passed, the AEGIS system is in effect.

5.4 AEGIS Mode Change Mechanics

As previously discussed, AEGIS mode changes occur only on function calls. Mode

changes have the following syntax:

• No Return Value −→ S SSP([function call])

• Return Value −→ S SSP([returnVal]=[function call])

The AEGIS mode before the function call is called the caller-mode. The AEGIS

mode being switched to, in this particular case SSP mode, is called the callee-mode.

Actual execution flows around a mode change is as follows:

Caller-function → Mode Change (to callee-mode) → Callee-function → Mode

Change (to caller-mode) → Caller Function

45

In other words, on a function call involving a mode change, the mode is changed

to the callee-mode, the callee-function is run, and then the mode is changed back to

the caller-mode and control is returned to the caller-function. This removes the need

for the developer to revert to the callee-mode, and ensures that mode changes equate

exactly with functional calls.

Switching to Callee-Mode

When making the initial switch to callee-mode, there are six tasks that must be

performed prior to making the actual AEGIS switch.

1. Transfer required variables to new stack

2. Save Current Stack Pointer

3. Store all GPRs

4. Clear all GPRs

5. Load new stack pointer

6. Switch to new mode

When making a function call, the calling function can pass parameters to the callee

function. These parameters are generally passed on the stack to the callee function.

However, AEGIS uses three different stacks. Therefore, after a mode switch, AEGIS

will not be able to locate the required parameters on the caller-stack. So, prior to

the actual function call, these variables, or at least their values, must be moved to

the callee stack.

Local variables are located by GCC through an offset from the stack pointer. For

example, let us take a local C variable int counter. This variable is referenced

by GCC as an offset in bytes from the location pointed to by the stack pointer.

For example, int counter might be 16 bytes (4 words) offset from the stack pointer.

Even after the caller stack has been switched to the callee stack, GCC will still believe

46

//transfer variable temp2 to new stack

//find absolute location of temp2 in caller stack
asm volatile("l.add r31,%0,r0" :: "r" (&temp2));
asm volatile("l.lwz r29,0x0(r31)");

//calculate offset from stack pointer
int currstack1=0;
asm volatile("l.add %0,r1,r0" : "=r" (currstack1) :);
int offset1=(int)&temp2 − (int) currstack1; 10

//store the value of temp2 into callee stack
asm volatile("l.add r23,%0,%1" :: "r" (offset1), "r" (vstack end));
asm volatile("l.sw 0x0(r23),r29");

Figure 5-4: Transferring Variable From Caller Stack to Callee Stack

that int counter is located 16 bytes away from the new stack pointer. Thus, if the

value of int counter is copied to a location 16 bytes away from the callee stack

pointer, GCC can still utilize int counter as if it were a local variable on the new

stack. Our method of copying parameters was therefore to copy their values to a

location in the callee stack with the same offset as the parameter’s original location

in the caller stack, as shown in Figure 5-4.

However, this solution still has one problem. It is possible that a parameter in

the function call might not be a local variable, but a variable in another stack frame,

and is still being referenced by looking in that stack frame. For example, if an array

has been passed into the caller function, and a parameter to the callee function is an

element of that array, that element does not exist in the local stack frame as a local

variable. It exists as an element of an array in another stack frame, pointed to by the

array pointer passed into the caller function.

To avoid this problem, a new temporary variable temp1, temp2, ... tempn

is created for each parameter in the caller stack. These temporary variables are

created as type void*, since the true type of each parameter is unknown. Each

47

//original variables
int∗ weight = malloc(sizeof(int));
∗x = 4;
int volume=6;

//original function call
z=summer(2,3,∗weight,volume);

↓

//new temporary variables
void∗ temp1=2;
void∗ temp2=3;
void∗ temp3=∗weight;
void∗ temp4=volume;

//rewritten function call
z=summer(temp1,temp2,temp3,temp4);

Figure 5-5: Transforming Function Call

temporary variable is then assigned the value of its corresponding parameter. Since

every parameter must evaluate to a value of some kind, these values now exist in local

variables on the current stack frame. The function call is then rewritten using the

temporary variables as parameters.

In order to ensure that the correct stack is used, r1 must be replaced with the

appropriate stack pointer. However, before this is done, AEGIS must save the value

of the caller stack pointer so that it can be correctly retrieved when necessary.

When switching from a higher-security mode, such as PTR mode, to a lower-

security mode, such as TE mode, there is the potential for information leakage through

the General Purpose Registers (GRPs). If they were used by the PTR function to

temporarily hold private data, this data would still be in the GPRs when the TE

function was called and run. To ensure that this situation does not occur, the GPRs

need to be cleared out before the TE function is called. However, the compiler

assumes that these values are the same before and after the function call, so AEGIS

48

must therefore restore the correct values post function call. The solution is to store the

GPR values on the caller-stack and then zero the GPRs before calling the function.

Finally, the switch to the callee-mode must be made. This is done by the

l.aegis.cam instruction.

Returning to Caller-Mode

When returning to caller-mode, there are five tasks that must be performed.

1. Switch back to caller-mode

2. Save callee-mode stack pointer

3. Restore caller-mode stack pointer

4. Restore GPRs

5. Place return value into correct variable

Just as when switching to the callee-mode, when switching back to the caller-

mode, the callee-mode stack pointer must be stored to memory and the caller-mode

stack pointer loaded into r1.

The GPRs that were stored to memory before the function call must also be

restored for correct application execution. Then, the mode can be changed back to

the caller-mode through the l.aegis.cam instruction.

The last task is to place the return value into the correct return variable. This

needs to be done because the return variable exists on the caller-stack, while the

return value exists only in the return value register, r11. Therefore, only once the

stack pointer has been changed back to the caller stack pointer, the value in r11 can

be placed into the correct return value. However, if the function does not have a

return value, r11 will be set to 0 in order to prevent information leakage.

49

5.5 AEGIS Mode Change Implementation

The primary decision concerning the implementation of AEGIS mode changes was

what form the S SSP(), S TE(), and S PTR() ’functions’ should take. Should they be

C functions, C defines, or some form of pre-processing tag? The decision was made

to implement these ’functions’ as pre-processing tags.

This means that once a developer has created an application file, they must run

it through the AEGIS pre-processor. This pre-processor was written in JAVA, and

searches for the AEGIS mode-change tags S SSP(), S TE(), and S PTR(). Upon

finding a tag, the pre-processor replaces the tagged function call with the necessary

C and Assembly code to perform the tasks described in the previous section.

The decision to utilize a pre-processor instead of an actual C function or C define

for AEGIS mode changes was made for a few reasons. The central problem with using

a C function to make the mode change is that the C function would need to generate,

on the fly, a new function call using the previously discussed temporary parameter

variables. This would mean creating a function call to an unknown function with

an unknown number of parameters, which is impossible in C. It is possible, using a

function pointer, to call an unknown function. However, the definition of such a call

must include a specific number of arguments. Therefore, this was not a viable option.

In order to create the correct functional call, a pre-processor was needed that could

create the call ahead of time, and was not constrained by the C run-time functionality.

5.6 AEGIS Exit

There are two code segments involved in exiting AEGIS: the AEGIS bootstrapper

and the exit() method. exit() is responsible for preparing for, and finally exiting,

the AEGIS system. Our exit() method replaces the standard C exit() method.

The AEGIS bootstrapper is responsible for invoking exit().

50

When exiting the AEGIS system, the primary concern is to ensure that all private

data is wiped from memory to ensure no leakage. Private data can persist in two

places: AEGIS registers and system memory. The memory that we are concerned

about is only memory that could contain private data: private heap and private

stack. The actual heap and stack are encrypted, however data from the heap or stack

sitting in the data cache or instruction cache will not be encrypted. Therefore, on

exit, these three locations must be cleared of all data. This can be done by loading

a 0 into the registers, storing a 0 to all memory locations in the private heap and

private stack, and invalidating the instruction cache. Then, AEGIS switches back

to the unprotected stack and calls the l.aegis.exit instruction to exit the AEGIS

system. This functionality is all contained within the exit() method.

5.7 AEGIS Tools

In order to utilize the AEGIS system, two additional tools are necessary. First, a

method for tagging functions and variables as verified and private. Second, a tool

for encrypting private application code prior to application execution. Third, three

distinct malloc() functions for allocating variables on each of the three different

heaps.

5.7.1 AEGIS Tags

As discussed in Section 4.2.1 and Section 4.2.2, there are four AEGIS tags for tagging

data and code so that it is placed into the correct Verified or Protected region.

• verifiedcode

• verifieddata

• privatecode

51

• privatedata

These tags are created using C attributes. C attributes allow a developer to

specify into which memory region application code or data will be placed when the

application is compiled into a C object file. By defining the above tags as specific C

attributes, these tags can be used to place code and data into the correct section of

the object file. This is shown in Figure 5-6.

#define verifiedcode attribute ((section(".verifiedcode")))
#define privatecode attribute ((section(".privatecode")))
#define verifieddata attribute ((section(".verifiedddata")))
#define privatedata attribute ((section(".privatedata")))

Figure 5-6: C Attributes

5.7.2 AEGIS Private Code Encryption

In order to ensure the privacy of code flagged as private, the Private Code memory

region must be encrypted prior to an application’s execution. This is accomplished by

editing the final, compiled binary executable and encrypting the appropriate sections

using the AEGIS encryption pre-processor.

This pre-processor is written in C. It takes as input the compiled AEGIS ex-

ecutable, and outputs an AEGIS executable with the appropriate Private Region

encrypted.

The pre-processor works as follows. As AEGIS executables are in the ELF (Ex-

ecutable and Linking Format) binary format, section information can be retrieved

utilizing information stored in the executable.

The main task is to locate the Private Code region of the file. For each section,

there is a section header which contains, among other information, the location of

the actual section data within the ELF file. Section names are contained within a

String Table, which is contained in its own section of the ELF file. Section headers

52

AES-1 AES-1 AES-1 AES-1

EB[1] EB[2] EB[3] EB[4]

B[1] B[2] B[3] B[4]

128 bits128 bits 128 bits 128 bits

(V, Address,

Time Stamp, 0)

(V, Address,

Time Stamp, 1)

(V, Address

Time Stamp, 2)

(V, Address,

Time Stamp, 3)

Pad

GenerationKey

Encryption Pad

Cache Block B[1] B[2] B[3] B[4]

Encryption

Cipher Text

Decryption

Cache Block

Figure 5-7: AEGIS OTP Pad Encryption of Private Code [11]

themselves do not contain the actual name of the section, but an index into this String

Table where the name is stored. So, by iterating through all the section headers and

checking the corresponding location in the String Table, .pcode section header can be

identified. From this header, the location of the .pcode instructions can be found in

the ELF file. The .pcode section is encrypted at a cache block granularity (64 bytes),

since this is how instructions will be decrypted by the AEGIS processor.

Encryption of this section is a two-step process. First, a One Time Pad (OTP)

is generated for each cache block sized segment. The OTP is generated by using

AES encryption to create a OTP specific to the application. As AES creates 128 bit

outputs, it can only generate a 128 bit pad. Thus, for each 512 bit cache block, four

AES encryptions are needed. The inputs to AES are a bit vector V (the program

hash), the address of the cache block being encrypted, a time stamp, and a number

denoting the segment of the current cache block being encrypted. The AES key is

provided by the developer.

Second, the appropriate segment of .pcode is combined with the OTP using xor to

created the encrypted version instruction set. The .pcode section of the ELF binary is

then replaced with the new encrypted version. The entire process is shown in Figure

5-7.

53

5.7.3 AEGIS Malloc Functions

In order to take advantage of the three heaps available in the AEGIS system, there

must also be three heap allocation functions. In C, the general heap allocation func-

tion is malloc(). Therefore, three different versions of malloc() were created:

malloc(), malloc v(), and malloc p(). Symmetrically, three different versions

of free() and realloc() were created: free(), free v(), free p(), realloc(),

realloc v(), and realloc p().

• malloc, free, realloc −→ Unprotected Heap

• malloc v, free v, realloc v −→ Verified Heap

• malloc p, free p, realloc p −→ Private Heap

The general malloc(), free(), and realloc() functions are simply the ones

that exist in the C standard library. The other functions were created by taking

the general malloc(), free(), and realloc() implementations, and changing the

variable defining where the heap begins and ends.

The AEGIS linker script defines three different heap symbols: end, AEGIS end v,

and AEGIS end p. Each symbol defines the end of its corresponding heap, end be-

ing the symbol used by the C standard library. Thus, three different functions can

be created by utilizing the correct heap symbol.

The heap symbol is utilized by malloc() when it actually obtains physical mem-

ory for a given variable. This is done by the sbrk() function. So, two additional

versions of malloc() were created by creating two additional versions of sbrk(), each

utilizing a different heap end symbol. Similarly, three different versions of free() and

realloc() were created. When each function is used, the system will allocate mem-

ory into the correct heap section as described by the linker script, ensuring that each

heap is correctly protected by AEGIS.

54

Chapter 6

Application to Sensor Networks

Now that the AEGIS system has been fully explained, we will revisit the topic of

sensor networks, and explain the application of AEGIS to these networks.

As described earlier, the security problems faced by sensor networks are ensuring

the secrecy of cryptographic material and ensuring accurate and authorized compu-

tation.

By writing all applications running on the sensor network nodes using AEGIS,

these problems can be alleviated. As an example, let us take a simple data retrieval

application. This application retrieves information from the environment, performs

a computation on it, and then transmits the result of the computation to a central

server. More specifically, the application retrieves data from its external sensors. A

computation is then performed on the data. The node then generates a secret key.

Utilizing this secret key and the computed data, a MACed message is created. The

node then transmits this message to the central server.

The relevant section of a possible data retrieval application, nodeFunction, is

shown in Figure 6-1.

There are now two steps to apply AEGIS to this application. First, global data and

application functions must be partitioned in physical memory. Second, application

55

long secretKey;

long generateSecretKey();
long retrieveData();
void transmitData(long data);
long performComputation(long data);
long mac(long clearText);

void nodeFunction()
{ 10

long retrievedData;
long computedData;
long message;

retrievedData = retrieveData();

computedData = performComputation(retrievedData);

message = mac(computedData);
20

transmitData(message);
}

void mac(long clearText)
{

secretKey = generateSecretKey();
.
.
. 30

}

Figure 6-1: Sensor Network Code

56

execution must be partitioned across the different AEGIS security modes.

First, let us partition data and functional code.

The secret key is a cryptographic value which needs to be kept private. Therefore,

it is tagged as privatedata and will be placed into the Private region of memory.

The retrieved data, the computed data, and the final message are local variables

in nodeFunction(). Therefore, since nodeFunction() executes in TE mode, these

variables will be created on the Verified stack.

All the functions, with the exception of retrieveData() and transmitData(),

will be placed into the Verified region of memory to ensure they are not tampered with.

Since the retrieveData() and transmitData() functions do need to be verified for

secure execution, they will be placed into the Unprotected region of memory.

Second, let us partition the execution of the application across the AEGIS security

modes. Since the retrieveData() and transmitData() functions are I/O functions,

they can be run in SSP mode. We have assumed that an adversary can modify the

data sent over the wireless network, and therefore there is no reason to run these

functions in a more secure mode. Since mac() uses private data (the secret key),

in must be run in PTR mode. Finally, since performComputation is important to

correct application execution, but does not utilize private data, it should be run in

TE mode.

The relevant section of the AEGIS-enabled version of the application is shown in

Figure 6-2.

Now, the application has been secured against the previously discussed issues. All

private data will be kept private. We can be sure that the node is executing the

version of the retrieval function that it is supposed to execute. Finally, the node can

authenticate itself to the server verifiably. This would not be possible without the

AEGIS system.

Furthermore, from this application the usefulness and necessity of a high level

57

long secretKey privatedata;

long generateSecretKey() verifiedcode;
long retrieveData();
void transmitData(long data);
long performComputation(long data) verifiedcode;
long mac(long clearText) verifiedcode;

void nodeFunction()
{ 10

long retrievedData;
long computedData;
long message;

S SSP(retrievedData=retrieveData(););

computedData = performComputation(retrievedData);

S PTR(message=mac(computedData););
20

S SSP(transmitData(message););
}

void mac(long clearText)
{

secretKey = generateSecretKey();
.
.
. 30

}

Figure 6-2: AEGIS Enabled Sensor Network Code

58

programming model is clear. Without such a model, enabling such an application

for AEGIS would mean writing all the requisite mode changes, memory partitioning,

and AEGIS initialization/exit code in assembly. This is not a simple process, and

requires a complete low-level understanding of the AEGIS system. It is not realistic

to expect that any developer would go through such a process to use the system.

However, with the high level model described in this thesis, it is extremely easy to

AEGIS-enable the application, and also very transparent to the developer. Thus, the

utility of the high-level programming model can be seen.

59

60

Chapter 7

Conclusion

In this thesis, we have presented a high level programming model for the AEGIS

processor. This programming model exposes the low level AEGIS instruction set

to application developers in the high level C language, and allows them to almost

transparently utilize the AEGIS system.

The principal parts of the implementation concerned AEGIS initialization, AEGIS

mode changes, and exiting AEGIS. There was also an additional set of tools necessary

in order to correctly partition application code and data in physical memory.

Finally, we saw how to apply this programming model in the sensor net scenario.

This example showed how to AEGIS-enable an application, and also displayed the

usefulness and necessity of a high level programming model.

7.1 Future Work

This programming model should be regarded as a starting point for developing a

complete, integrated programming model for a secure processor. There is still a

significant amount of future research that can be conducted in this area.

First, the current implementation works on top of the GCC calling convention and

the C language. It might be possible, and more useful, to integrate the programming

61

model more tightly with the compiler and with the programming language. This

would mean the compiler would be aware of the AEGIS security model including the

different heaps, stacks, and variable types. Close integration would allow developers

more flexibility in using AEGIS combined with a high level programming language,

and reduce the number of syntax restrictions. More importantly, by making the

compiler aware of the security systems at work, it will be possible to run compile-

time checks on the security of an application. Developers would be able to determine,

at compile time, if there were any potential security leaks in their application.

Second, it was beyond the scope of this thesis to attempt to determine an optimal

method for partitioning application code and data between the three security levels

available. Since integrity verification and encryption have a significant overhead,

the more application code executed in TE and PTR modes, the higher the added

overhead. Thus, ideally one would like to execute as little code as possible in the more

secure modes, while still fulfilling the security requirements of the overall application.

How to do this optimally is still an open question.

Third, a more formal calculation of the performance overhead of the AEGIS sys-

tem utilizing this programming model could be performed. This would aid developers

in determining what kind of performance hit they could expect, and how they could

best optimize their applications to avoid as much overhead as possible.

Finally, currently there is no support through this model for interacting with

an operating system and virtual memory system. These features are not currently

available on the existing AEGIS implementation. However, AEGIS is intended for

use in a multi-user, operating system environment with its associated virtual memory

manager. In order to utilize this memory model with such a system, additional work

will have to be done to modify the AEGIS malloc() methods.

62

Bibliography

[1] Mart́ın Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,

1999.

[2] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software

security. ARM White Paper, July, 2004.

[3] Sundeep Bajikar. Trusted platform module (tpm) based security on notebook

pcs. Intel White Paper, June 20, 2002.

[4] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In CCS

’04: Proceedings of the 11th ACM conference on Computer and communications

security, pages 198–209, New York, NY, USA, 2004. ACM Press.

[5] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Con-

trolled physical random functions. In Proceedings of the 18th Annual Computer

Security Applications Conference, December, 2002.

[6] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link layer security

architecture for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems, pages 162–175,

New York, NY, USA, 2004. ACM Press.

63

[7] Microsoft. Microsoft Next-Generation Secure Computing Base - Technical

FAQ. http://www.microsoft.com/technet/archive/security/news/ngscb.mspx,

July, 2003.

[8] Andrew C. Myers. Jflow: practical mostly-static information flow control. In

POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 228–241, New York, NY, USA, 1999.

ACM Press.

[9] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized

label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[10] François Pottier and Vincent Simonet. Information flow inference for ml. ACM

Trans. Program. Lang. Syst., 25(1):117–158, 2003.

[11] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. Aegis: A single-

chip secure processor. In Proceedings of the 32nd International Symposium on

Computer Architecture, June, 2005.

[12] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas.

Design and implementation of the AEGIS single-chip secure processor using phys-

ical random functions. In Proceedings of the 32nd International Symposium on

Computer Architecture, June, 2005.

[13] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.

Untrusted hosts and confidentiality: secure program partitioning. In SOSP ’01:

Proceedings of the 18th ACM symposium on Operating systems principles, pages

1–14, New York, NY, USA, 2001. ACM Press.

[14] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.

Secure program partitioning. ACM Trans. Comput. Syst., 20(3):283–328, 2002.

64

